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Abstract Given a set of signals, a classical construction of an optimal truncatable basis
for optimally representing the signals, is the principal component analysis (PCA for short)
approach. When the information about the signals one would like to represent is a more
general property, like smoothness, a different basis should be considered. One example is
the Fourier basis which is optimal for representation smooth functions sampled on regular
grid. It is derived as the eigenfunctions of the circulant Laplacian operator. In this paper,
based on the optimality of the eigenfunctions of the Laplace-Beltrami operator (LBO for
short), the construction of PCA for geometric structures is regularized. By assuming
smoothness of a given data, one could exploit the intrinsic geometric structure to regularize
the construction of a basis by which the observed data is represented. The LBO can be
decomposed to provide a representation space optimized for both internal structure and
external observations. The proposed model takes the best from both the intrinsic and the
extrinsic structures of the data and provides an optimal smooth representation of shapes
and forms.
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1 Introduction

One of the most popular procedures used for data representation is the principal component
analysis (PCA for short). Based on recent results reported in [2] that proclaim the optimality
of eigenfunctions of the Laplace-Beltrami operator (LBO for short), we revisit the construction
of PCA for geometric structures and propose to redesign one of the fundamental tools in in-
formation analysis. Provided smoothness of a given data entity, we could exploit the intrinsic
geometric structure to regularize the construction of a basis by which the observed data is
represented. The same LBO that when it is applied to the coordinates of a surface produces
the mean curvature vector, can be decomposed to provide a representation space optimized for
both internal structure and external observations. As a motivational sketch, the reconstruction

of the horse model , given the training set

{
,

}
, is demonstrated in

Figure 1. The reconstruction is computed by projecting the coordinates of the model onto the
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first 100 eigenvalues of the PCA (left), the LBO (middle), and the suggested hybrid measure
(right). In this case, the proposed hybrid model best represents the shape of the desired model.
It allows the horse to rotate its head, a pose that does not exist in the training set, and thus
could not have been realized by a convex combination of its decomposition captured by the
PCA basis.

Figure 1 The reconstruction of a surface of a horse by projecting its coordinates onto

the first 100 PCA eigenvectors (left) extracted from training on two horses, on the LBO

eigenvectors (middle) extracted from one of the training horses, and the proposed hybrid

(right).

2 Ubiquitous LBO

We start with the simple example of a scalar periodic function f defined on a closed curve
C : [0, L)→ R

2 in the plane, such that one could write f : [0, L) → R
1. Here, L is the length

of the planar curve, and s ∈ [0, L) denotes the arclength parametrization along the curve
C(s) = {x(s), y(s)}. The second order derivative of f(s) can be written as fss(s) = ∂ssf(s). If
instead of a general f , we differentiate the curve’s coordinates, we obtain ∂ssC(s) = Css(s) =
{xss(s), yss(s)} = κ(s)�n(s), where κ is the curvature of the curve, and �n its normal. Next,
consider the operator ∂ss in its discrete setting along the curve. That is, assume uniform
sampling of n points along the closed curve, such that the operator is approximated by

∂2

∂s2
≈

(n
L

)2

⎛⎜⎜⎜⎝
−2 1 0 0 · · · 1

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

...
...

...

⎞⎟⎟⎟⎠ . (2.1)

The discrete operator is a circulant matrix which is diagonalized by the discrete Fourier trans-
form. In other words, the eigenvectors of the matrix are the sine and cosine functions uniformly
sampled along the closed curve. It appears that ordering these eigenvectors in an ascending
order by their corresponding eigenvalues and picking only the first vectors as the representation
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sub-space, one obtains an optimal subspace for representing smooth functions defined on the
curve. In signal processing terminology, we say that a low pass filter applied to the family of
functions with bounded gradient magnitude, is optimal in terms of representation error. In
approximation theory terms, projecting bounded gradient functions to the leading eigenvectors
is optimal in a worst case L2 sense.

The second derivative operator that generated the curvature and provided the Fourier trans-
form as an efficient representation space, can be extended to more interesting domains. The
second order derivative of a scalar function in a flat domain is known as the Laplacian. Its
extension to curved domains is the Laplace-Beltrami operator or LBO.

The influence of the Laplace-Beltrami operator can be found in all modern fields of science.
Its eigenspace is used to analyze and represent structures in graph theory, geometry, chemistry,
biology, physics and machine learning. Its action on the coordinates of a surface produces
the mean curvature vector, while its decomposition as an operator defined for regular sampled
periodic scalar functions yields the vectors that compose the Fourier transform. Here, we
exploit some of the LBO nice properties in order to accurately and efficiently represent signals
in a way that goes beyond the classical convex hull of the given observation set. To that end,
we revisit the notion of principal component analysis (PCA for short) in data understanding
and couple it with a regularization term in an attempt to construct a natural orthonormal
low dimensional representation space. We relate our construction to the Laplace-Beltrami
operator that is known to provide an optimal basis for smooth functions on manifolds (see
[2]). The efficiency of the proposed space is demonstrated to be a compact representation for
articulated objects. The surface coordinates at one end, captured by the classical PCA, and the
intrinsic geometric structure of the objects expressed by the metric at the other end, support
one another in reconstructing the object from a small number of projections. Out-of-sample
poses are encapsulated by the metric, while the fine details of the shapes are handled by the
principal components. It is worth noting that a similar motivation led the authors of [17] to
construct a different numerical solver to a dual regularized PCA problem, while different (non-
geometric) smooth PCA methods can be found, for example, in [28]. For further reading on
regularization methods using the LBO for other problems, see [19, 21–22, 31].

3 History in a Brief

A classical problem in machine learning is one in which the data is to be represented by a
linear combination of a small set of vectors that belong to a specific orthonormal basis. The
most common approach in data representation is probably the principal component analysis
method known as PCA (see [18]). Related to the PCA, we have multidimensional scaling (MDS
for short) methods (see [7]) and generalized MDS (GMDS for short) (see [9]). Observing the
data from a different geometric perspective, local relations between data points can construct a
manifold for which a Laplacian could be defined. The spectral domain of such a Laplacian could
serve for data representation. We focus on a specific data representation application, namely
shape reconstruction, that would allow us to demonstrate the regularized PCA procedure.
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Reviewing all existing shape representation techniques is obviously beyond the scope of this
paper yet, it is interesting to mention Gotsman and Karni [20] who used the LBO spectral
domain to approximate coordinates of shapes, while Lévy [23] filtered the spectral domain
to deform shapes. Eigenfunctions and eigenvalues of the LBO are often used to approximate
diffusion distances on manifolds (see [6, 11–13, 27]). The spectral domain provides an efficient
way to construct shape descriptors like the scale-space representation (see [35]), the heat kernel
signature (HKS for short) (see [33, 15]), the wave kernel signature (WKS for short) (see [3]),
and the global point signature (GPS for short) (see [30]). The eigenfunctions were also used
for dimensionality reduction for object recognition, as demonstrated in [29].

Traditional signal representation techniques resort to low pass filters in the Fourier domain
that are classically justified through statistical reasoning like the optimality of the Karhunen-
Loève transform that coincides with the Fourier in some cases. Related stochastic geometry
processing reasoning motivated Ben-Chen et al. [5] to support the eigenfunctions of the LBO as
a convenient representation space. Recently, with Brezis, we have been able to prove that the
LBO spectral domain is optimal for the representation of smooth functions on the manifold (see
[2], where a deterministic optimality proof based on the Courant-Fischer min-max principle in
[34] , and Problems 37 and 49 in [8], was provided). The LBO eigen-space was also suggested by
Belkin and Niyogi [4] to represent information about data manifolds. The number of required
eigenfunctions was estimated in [36] (see [32, 16, 14] for related approaches).

The generalization of Fourier produced by the LBO handles optimally signals of bounded
gradients. In some cases, more information about the data we would like to represent is pro-
vided, say, samples of typical signals. Assuming there is a low rank description to the in-
formation, we could use the observations to estimate a low dimensional representation space.
Technically, instead of considering all possible periodic functions, assuming that we are given
k observation {fi}ki=1, where fi : [0, L)→ R

1, we represent the space of functions which we are
interested in. Next, denote by xi(j) = fi( jLn ) the sampled fi(s) at equally spaced n points.

When dealing with observations of discrete data, the most popular tool for finding a low
rank representation space is probably the PCA algorithm. It finds an orthonormal basis of m
vectors Pj ∈ R

n denoted by Pn×m, out of k sample vectors xi ∈ R
n denoted by Xn×k for

k ≥ m.
The PCA algorithm searches for a low rank space P that would best describe these observa-

tions. In a flat domain, the PCA algorithm computes an orthonormal basis P that minimizes
the error of projecting xi onto P, namely,

argmin
P

k∑
i=1

‖PPTxi − xi‖22 s.t. PTP = I, (3.1)

where the projection of xi onto the basis P is given by PPTxi. Here, I denotes an identity
matrix of size m×m. Using these notations, one could show that

‖PPTxi − xi‖22 ≡ (PPTxi − xi)T(PPTxi − xi)
= xT

i xi − trace(PPTxix
T
i ). (3.2)
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Recalling that
m∑
i=1

xix
T
i ≡ XXT, the minimization (3.1) can be easily shown to be equivalent

to the maximization problem

argmax
P

trace(PPTXXT) s.t. PTP = I. (3.3)

P that solves (3.3) can be extracted by a singular value decomposition (SVD for short) of X.

4 Intrinsic LBO Versus Extrinsic PCA

A shape representation model that is invariant to poses of articulated objects and to gestures
of most creatures in nature is the isometry model. As empirically shown in [10] for the case
of facial expressions, the intrinsic geometry of a facial surface is more or less preserved for the
same subject when smiling, posing a neutral expression or expressing sadness. Isometry or
length preserving mappings were thus used for expression invariant face recognition. At the
other end, the coordinates of the surface, that can be thought of as functions defined on the
surface manifold, determine the pose itself.

We suggest to consider two geometric structures, the intrinsic one defined by the differential
relations between surface points also known as the metric, and the extrinsic one defined by
the coordinates themselves. As shown in [2], smooth functions defined on the surface are
optimally approximated by the leading eigenfunctions of the Laplace-Beltrami operator. In
some cases, more information about functions defined on the surfaces is provided, like examples
of the surface coordinates that we would like to represent, given in different poses. In that
case, the leading terms, or the principal components derived through a PCA method could
provide the best representation space for realizations within the convex hull of the observed
functions. The combination of both intrinsic structure and extrinsic observations could allow
us to enjoy the best of both worlds. The result that we are looking for would be an orthonormal
optimal representation space in terms of projection to the leading subspace. It could faithfully
approximate realizations outside the convex hull of the observed functions. Here, we propose
to combine the knowledge of both intrinsic geometry, that is captured by the decomposition of
the LBO, and extrinsic examples apprehended by the PCA, to construct a naturally regularized
PCA.

5 Regularized-PCA Formulation

Principal component analysis in [25], as a classical method in data representation and anal-
ysis, also plays a major role in modeling and studying surfaces.

Given the surface S, the principal components of k given scalar continuous functions, fi :
S → R, are defined by the orthonormal basis {ψj} that is obtained as a solution of

argmin
{ψj}

k∑
i=1

∥∥∥fi − m∑
j=1

〈fi, ψj〉ψj
∥∥∥2

g
(5.1)

for any given m. Up to this point the surface S and its metric g do not play a major role in the
definition of {ψj}. The manifold S and its metric g should allow us to tune the representation
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space better. In the above definition of continuous principal components, there is no smoothness
assumption of the representation space {ψj} on the manifold.

Next, assume that the functions that we would like to represent, have a bounded gradient
magnitude ‖∇gf‖2g ≤ 1 on the surface S. Such smooth functions are best represented by the
eigenfunctions of the LBO, and those can be obtained as a minimization of the Dirichlet energy

argmin
{ψj}

m∑
j=1

‖∇gψj‖2g s.t. 〈ψi, ψj〉g = δij . (5.2)

Next let us translate the general metric case into its discrete form. The metric (gij) defines
the mapping between an arc length on a given parametrization space to length on the given
manifold. An area element can then be defined by

√
det(g), and in a discrete setting, one can

define an area elements diagonal matrix A. For example, for a triangulated surface, the area
elements Aii are proportional to the sum of areas of all triangles that share the vertex i (see
Figure 2).

Figure 2 The area of the Voronoi cell about the vertex vi (red region) defines the entry

Aii of the diagonal matrix A.

On the surface S, the geometric projection of xi onto P reads PPTAxi, and an orthonormal
P is defined as PTAP = I. The geometric PCA reads

argmin
P

k∑
i=1

‖PPTAxi − xi‖2g s.t. PTAP = I, (5.3)

which can be shown to be equivalent to solving

argmax
P

trace(PPTAXXTA) s.t. PTAP = I. (5.4)

Next, we would also like to incorporate the natural smoothness of the signals that we would
like to represent. It turns out that the geometric Dirichlet energy produces the Laplace-Beltrami
operator that would have yielded the generalized Fourier basis. On a manifold, the discrete
Laplacian can be defined, for example, by the general form L = A−1W. A specific realization
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of these weights for two dimensional triangulated surfaces is given by the cotangent weights
scheme (see for example [26, 24]). The Laplacian for a triangulated surface given by its vertices
{vi} and edges {eij} can be approximated by L = A−1W, where A is the diagonal matrix of
the areas of Voronoi cells about each vertex (see Figure 2).

The matrix W is defined by the cotangent weights

Wij =

⎧⎪⎪⎨⎪⎪⎩
∑

j:vj∈N1(vi)

(cotαij + cotβij), if i = j,

− cotαij − cotβij , if i �= j, vj ∈ N1(vi),
0, otherwise,

(5.5)

where N1(vi) is the set of 1-ring (neighboring) vertices about vi, and αij and βij are the angles
opposite to the edge (vi, vj) (see Figure 3).

Figure 3 Cotangent weights as defined in the equation 5.5.

For the j-th column of P we have

‖∇gPj‖2g ≡ 〈∇gPj ,∇Pj〉g = 〈ΔgPj , Pj〉g
≈ (LPj)TAPj = PT

j WTA−TAPj

= PT
j WPj = trace(WPjP

T
j ), (5.6)

and for the basis P as a whole, optimizing for the geometric discrete Dirichlet energy reads

argmin
P

trace(PPTW) s.t. PTAP = I. (5.7)

We could replace the above minimization problem with the following maximization one

argmax
P

trace(PPTW+) s.t. PTAP = I, (5.8)

where W+ is the pseudo inverse, also known as Moore-Penrose matrix inverse, of W.
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6 Secrets of Marriage

In [1], it was proven that an optimal and unique solution to the regularized-PCA problem

argmin
P

k∑
i=1

(‖PPTAxi − xi‖2g + μ trace(WPjP
T
j )) s.t. PTAP = I, (6.1)

whose solution is equivalent to that of

argmax
P

trace(PPT(AXXTA− μW)) s.t. PTAP = I, (6.2)

can be realized by decomposing the matrix M = AXXTA− μW. The leading eigenvectors of
the decomposition of M define P. Another option is defining the intrinsic smoothness given by
the equation (5.8) and the PCA given by the equation (5.4) as eigendecomposition maximization
problems that again allows us to unite them into a single regularized-PCA problem

argmax
P

trace(PPT(AXXTA + μW+)) s.t. PTAP = I. (6.3)

Here, the matrix that we have to decompose, namely AXXTA + μW+, is positive definite
and symmetric. Most numerical decomposition algorithms extract the eigenvectors of a given
matrix one at a time, where the order is determined by the magnitude of the corresponding
eigenvalues. The basic operation of such procedures, also known as Arnoldi iteration, involves
in the multiplication of the matrix with a vector. It is obviously efficient for sparse matrices.
Here, we are combining a low-rank (PCA) part, given by AXXTA, with a sparse LBO, given
by W. This combination poses a numerical challenge.

As a remedy, we propose to apply a small size SVD to Xn×k, such that

Xn×k = Un×nDn×kVT
k×k,

where D is a diagonal, and U and V are both orthonormal matrices. Denoting Ũ = AU, we
can write

AXXTA = AUD2UTA = ŨD2ŨT. (6.4)

Given a general vector y, the multiplication

(ŨD2ŨT + W+)y = Ũ(D2(ŨTy)) + W+y (6.5)

can be efficiently executed by the following procedure.

Algorithm 1 Compute Ũ(D2(ŨTy)) + W+y

input y
a← ŨTy
a← D2a
a← Ũa
Compute b by solving y = Wb in a least square sense.
return (a+ b)
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Let us analyze the complexity of the above procedure. The first step takes O(kn), after Ũ is
truncated to an n× k matrix, where k is the number of required PCA components, and k � n.
The result, a k × 1 vector, is then multiplied by D2

k×k which takes O(k2). The complexity
of the third step is O(kn), obtained by computing Ũn×kak×1. Next, numerically solving the
sparse system y = Wb, with O(n) elements in W, can be efficiently performed by classical
procedures. The above marriage of a low rank term with a sparse structured part is computed
very fast with very low requirements. For example, hundred eigenvectors for a 10, 000 vertices
surface can be computed in a few seconds by using Matlab on a modern laptop computer. Note
also that the above procedure exploits both the sparsity of W and the low rank property of X

within a unified procedure.

7 Experimenting with Shapes

In the following example, shown in Figure 4, we demonstrate the power of the regularized

Figure 4 Top row: Training set. Second row: Test set. Third row: Projection to the

100 leading eigenfunctions of the LBO. Fourth row: Projection to the first 100 principal

components vectors. Bottom row: Projection to the first 100 vectors computed by the

regularized-PCA hybrid model.
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PCA in modeling out-of-sample shapes. We treat the X,Y and Z coordinates of given shapes
as training vectors for a PCA procedure. We also use the intrinsic geometry of one of the
shapes, which is assumed to be similar for all poses, to define a Laplace-Beltrami operator
for which we computed the leading eigenfunctions (corresponding to the smallest eigenvalues).
The coordinates of five shapes, being more different than the training ones, are then projected
onto the first 100 leading eigenvectors or the LBO (third row), the PCA (fourth row), and the
regularized model (bottom row). From Figure 4, it appears that the intrinsic geometry provided
by the leading eigenfunctions of the LBO captures the general pose while giving up the fine
details. The PCA subspace, at the other end, captures the fine details and poses within the
convex-hull of the given training set while it is failing to represent poses beyond the observed
ones. The hybrid model captures both poses and details, and obviously enjoys the best of both
representation spaces.

8 Happy Ending

The LBO Δg applied to the coordinates of a surface S yields the mean curvature vector,
H �N = ΔgS. At the spectral end, smooth functions on the manifold, like shape coordinates,
are best represented by the leading eigenfunctions of the LBO, Δgψi = λiψi. However, when a
set of observations is provided, like many instances of the same objects in various poses {Si},
classical statistical learning techniques suggest the PCA as a method of choice for finding a
low rank matrix P that would represent these observations, by minimizing

∑
i

‖Si − PPTSi‖
or equivalently maximizing trace(PPTSST), where SST =

∑
i

SiS
T
i . We have shown that the

best representation space could be provided by a model that unifies the two different sources
of information about our data. By marrying the intrinsic structure with extrinsic observations,
we have shown that even extreme out-of-sample configurations can be projected onto a new low
dimensional space that preserves poses without sacrificing the fine details.
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