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Abstract Multidimensional scaling (MDS) is a family of
methods that embed a given set of points into a simple,
usually flat, domain. The points are assumed to be sam-
pled from some metric space, and the mapping attempts to
preserve the distances between each pair of points in the
set. Distances in the target space can be computed analyti-
cally in this setting. Generalized MDS is an extension that
allows mapping one metric space into another, that is, MDS
into target spaces in which distances are evaluated numeri-
cally rather than analytically. Here, we propose an efficient
approach for computing such mappings between surfaces
based on their natural spectral decomposition, where the
surfaces are treated as sampled metric-spaces. The result-
ing spectral-GMDS procedure enables efficient embedding
by incorporating smoothness of the metric structure into
the problem, thereby substantially reducing the complex-
ity involved in its solution while practically overcoming its
non-convex nature. Themethod is compared to existing tech-
niques that compute dense correspondence between shapes.
Numerical experiments of the proposed method demon-
strate its efficiency and accuracy compared to state-of-the-art
approaches especially when isometry invariance is a domi-
nant property.
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1 Introduction

Matching non-rigid or deformable shapes is a challenging
problem involving a large number of degrees of freedom.
While matching rigid objects one needs to search for isome-
tries in a three dimensional Euclidean space, a problem that
can be described by six parameters. Matching solvers for
rigid surfaces inR3 are known as iterative closest point algo-
rithms or ICP (Chen and Medioni 1991; Besl and McKay
1992). Non-rigid matching usually involves much more
dimensions that can addup to thenumber of points of the sam-
pled surfaces that one wishes to match. When ignoring the
continuity of matching one surface to another, the problem
can be viewed as a combinatorial one, forwhich the computa-
tional complexity is exponential. The problem in this setting
is NP hard, the hardest to solve in terms of computational
complexity. The question we address is how to efficiently
solve this notoriously hard problem.

Various attempts to define robust and invariant meaning-
ful measures by which articulated objects and deformable
shapes could be identified were made. Adopting tools from
metric geometry, the Gromov–Hausdorff distance (Gromov
1981; Burago et al. 2001), and its variants were suggested
as candidates for measuring the discrepancy between two
deformable shapes (Memoli and Sapiro 2005;Memoli 2007).
TheGromov–Hausdorff distance between two surfaces S and
Q, or dGH(S, Q) in short, is the maximal distortion intro-
duced when bijectively embedding S into Q and vice-versa.
Motivated by early attempts of finding a common para-
metrization for surfaces (Schwartz et al. 1989) the idea of
treating surfaces as metric spaces that can be embedded into
simple spaces was thought of. There, the metric of each sur-
face is first embedded into a small dimensional Euclidean
space, say R

3, by a procedure known as multidimensional
scaling (MDS) (Borg and Groenen 1997). The flat mappings
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or canonical forms in the Euclidean space are then treated as
rigid surfaces and matched, for example, by ICP. Though the
idea is appealing, the embedding error of mapping a non-flat
manifold into a flat finite dimensional domain can be substan-
tial with little hope for convergence. The question is how to
avoid intermediate simple spaces while still being able to
computationally handle the seemingly complicated task of
matching non-rigid surfaces. Towards that end, Memoli and
Sapiro (2005) provided the support that sampling surfaces
could be toleratedwithin theGromov–Hausdorff framework.
In other words, the sampling error is linear as a function of
the distance between the sampled points, and could thus be
bounded when comparing sampled surfaces. Equipped with
that encouraging result, Bronstein et al. (2008) exploited the
fact that dGH could be formulated as three coupled general-
ized multidimensional scaling (GMDS) problems for which
they introduced a numerical solver.

In retrospective, the Hausdorff measure optimized for by
the celebrated iterative closet point (ICP) procedure (Chen
and Medioni 1991; Besl and McKay 1992) can be inter-
preted as a Gromov–Hausdorff distance, where distances are
computed in the embedding R3 Euclidean space. Other sim-
ple intermediate embedding spaces for matching non-rigid
shapes were advocated. The eigenspace of the Laplace–
Baltrami operator (LBO) was suggested in various flavors,
for example by Mateus et al. (2008), and by Rustamov et al.
(2013), as potential Euclidean target space, see also Bérard
et al. (1994), Coifman and Lafon (2006), Lévy (2006). Lip-
man et al. (2009, 2011) embedded shapes conformally into
disks between which the correspondence boils down again
to a six parameters Möbius transform, see also Gu et al.
(2004), Jin et al. (2004), Zeng et al. (2012). In that case,
metric embedding errors are replaced by numerical ones, as
important features with effective Gaussian curvature often
scale down substantially and can practically vanish when
sub-sampled. Kim et al. (2011) suggested a refinement pro-
cedure, while using conformal mappings that perform well
only locally. They softly tailored a handful of such locally
good maps, using a procedure they coined as blending.

Heuristics that reduce the complexity of the dense match-
ing problem and detect some initial state at a significant basin
of attraction for convex solvers to refinewere often employed
by the above approaches. Such heuristics use feature point
detectors and descriptors. Some examples include the heat
kernel signature (HKS) (Sun et al. 2009; Gȩbal et al. 2009),
global point signature (GPS) (Rustamov et al. 2013), wave
kernel signature (WKS) (Aubry et al. 2011), and scale-space
representation (Zaharescu et al. 2009). Matching the met-
ric spaces with either geodesic (Memoli and Sapiro 2005)
or diffusion (Bérard et al. 1994; Coifman and Lafon 2006)
distances, could then be treated as a regularization or refine-
ment term. It produced dense correspondence from the sparse
one provided by matching the feature points (Dubrovina and

Kimmel 2010). Higher order structures were suggested, for
example, in Zeng et al. (2010). Dense matching was fur-
ther accelerated by hierarchical solvers like Raviv et al.
(2012), Sahillioğlu and Yemez (2011). Still, the complex-
ity of searching over the space of all possible point-to-point
correspondences was determined by the number points one
wishes to match.

Ovsjanikov et al. (2012) illuminated the fact that given
two functional spaces, and given the correspondence between
these two spaces, there is a linear relation between the func-
tional representation of a function in one space (shape) and
its corresponding functional representation in the second
space (shape). This linear relation is due to the given cor-
respondence and can be viewed as a matrix translating the
decomposition coefficients of a function in one metric space
to its set of corresponding coefficients in the other. When
the functional spaces are the eigenfunctions of the surface
LBO (Lévy 2006), the right matching matrix for isometric
surfaces would be nothing but the identity. Ovsjanikov et al.
(2012) named these linear connections between functional
spaces as functional maps and used them to find dense corre-
spondence between shapes. Under the assumption of smooth
function representation, for which the Laplace–Beltrami pro-
vides a natural basis, as was proven in Aflalo and Kimmel
(2013), Aflalo et al. (2015a), only a small number of leading
eigenfunctions may be considered. Thus, the combinator-
ial problem of correspondence detection can be casted as
low dimensional functional map identification. As always,
in Ovsjanikov et al. (2012), Pokrass et al. (2013), a num-
ber of matching regions or feature points was required for
computing the correspondence using functional maps. To
the best of our knowledge, the most accurate shape matching
results, obtained using functional representations, were real-
ized in Shtern and Kimmel (2014, 2015), after this paper has
been submitted. When restricting the deformations to almost
isometries, the proposed method obtains similar correspon-
dence rates.

When matching non-isometric shapes, the correspond-
ing Laplace–Beltrami eigenspaces are incompatible. This
effect is substantial, for instance, in the case of various
human body shapes in the SCAPE dataset (Anguelov et al.
2004). Pokrass et al. (2013) subsequently formulated the non-
rigid isometricmatching problem as permuted sparse coding.
There, the dense correspondence is extracted through cou-
pling the functionalmap representationwith that ofmatching
corresponding regions. The computation is performed by
alternating minimization over the unknown functional map,
while penalizing non-diagonal solutions, and a permutation
matrix, representing the correspondences.

In this paper, we argue that the L2 version of the
Gromov–Hausdorff framework for matching deformable
shapes, namely, the GMDS (Bronstein et al. 2006), can be
naturally casted into the spectral domain. The present spec-
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tral formulation is denoted as spectral GMDS, or S-GMDS
in short. We utilize the following important observations:

– The point-to-point correspondence between two shapes
induces a map between the natural eigen-spaces of the
shapes. Furthermore, one can use truncated eigen-spaces
to faithfully approximate this correspondence.

– Distances measured on shapes are smooth functions, and
as such are well suited for compact spectral representa-
tion, see (Aflalo and Kimmel 2013; Aflalo et al. 2015a),
thereby allowing us to translate the Gromov–Hausdorff
framework into the spectral domain.

In a nutshell, we show that treating the shape matching
problem as a mapping between metric spaces can lead to an
efficient and accurate solver. Specifically, both metric spaces
and themapping are dealtwith in the dual spectral domain—a
representation space which is justified by its provable theo-
retical optimality (Aflalo et al. 2015a). Furthermore,we show
that when isometry invariance is approximately maintained
through poses, the suggested procedure outperforms state-of-
the-art dense correspondence solvers in terms of complexity
and accuracy, while avoiding the need for supporting fea-
tures.

2 Generalized Multidimensional Scaling

Consider the shape correspondence problem that involves in
searching for the best point to point assignment of two given
shapes, S and Q. The Generalized Multi-Dimensional Scal-
ing (Bronstein et al. 2008) is a procedure that computes the
map that best preserves the inter-geodesic distances while
embedding one surface into another. Formally, if dS(s, s′)
and dQ(q, q ′) represent the inter-geodesic distances between
s, s′ ∈ S and q, q ′ ∈ Q, respectively, then, the general-
ized multidimensional scaling problem is defined as finding
a mapping ψ : S → Q that minimizes

argmin
ψ

∫
S×S

(
dS(s, s

′) − dQ(ψ(s), ψ(s′))
)2

dasdas′ . (1)

Here, s, s′ ∈ S, and das is an area element about s ∈ S.
The GMDS is related to the Gromov–Hausdorff distance

between metric spaces defined as

dGH(S, Q) = 1

2
min
C

max
(s, q) ∈ C

(s′, q ′) ∈ C

∣∣dS(s, s′) − dQ(q, q ′)
∣∣

(2)

where

∀s ∈ S ∃q ∈ Q s.t. (s, q) ∈ C

and

∀q ∈ Q ∃s ∈ S s.t. (s, q) ∈ C. (3)

In this case, C represents the set of corresponding points.
The set C could be defined through an indicator function
p(s, q) such that p(s, q) = 1 if (s, q) ∈ C and p(s, q) = 0
for (s, q) /∈ C . Several variations were proposed to reduce
the complexity of the problem (Bronstein et al. 2008; Lip-
man and Daubechies 2011; Pokrass et al. 2013). In the
GMDS, the L∞ Hausdorff distance was replaced by an L2

norm.
Wenext symmetrize theGMDSproblem through the func-

tion p(s, q) that indicates whether two points s ∈ S and q ∈
Q correspond to one another. Instead of p : S×Q → {0, 1},
a continuous weak form for p : S × Q → R

+ is employed,
such that

∫
S p(s, q)das = 1 and

∫
Q p(s, q)daq = 1. Our

new p(s, q) defines a fuzzy correspondence between the
surfaces. To define the matching problem, let us denote
the correspondence between the two shapes by a pair of
mappings φ : Q → S and ψ : S → Q, such that
ψ = φ−1. That is, for any s ∈ S, q ∈ Q, their correspond-
ing points are ψ(s) and φ(q), respectively, and it holds that
s = φ(ψ(s)).

Let us assume that for any pair of corresponding points
q0 ∈ Q and s0 ∈ S, the function p(s0, q0) defined above
is approximately a Dirac delta function, that is p(s0, q0) ≈
δ(φ(q0) − s0), and, similarly, p(s0, q0) ≈ δ(q0 − ψ(s0)).
Here, the delta function δ(s) is defined in a classical sense,
such that

∫
S δ(s)das = 1 and

∫
S f (s)δ(s − s0)ds = f (s0),

for any continuous function f : S → R. Under this
assumption, given a mapping φ(q) of a point q ∈ Q, the
distance measured between φ(q) and some s ∈ S is given
by

dS(φ(q), s) =
∫
S
dS(s

′, s)p(q, s′)das′ . (4)

Similarly, the distance measured between q and ψ(s) on Q
is given by

dQ(q, ψ(s)) =
∫
Q
dQ(q, q ′)p(q ′, s)daq ′ . (5)

To measure the quality of the mapping p(s, q) we com-
pare the distances dS(φ(q), s) and dQ(q, ψ(s)), for all s ∈
S, q ∈ Q. Thus, when writing the GMDS problem in its
weak correspondence form using (4) and (5), we search for
p : S × Q → R

+ which minimizes
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∫
S,Q

(
dS(φ(q), s) − dQ(q, ψ(s))

)2
dasdaq

=
∫
S,Q

(∫
S
dS(s

′, s)p(q, s′)das′

−
∫
Q
dQ(q, q ′)p(q ′, s)daq ′

)2

dasdaq . (6)

In practice, we detect correspondences between sampled
triangulated surfaces, for which we can re-write our opti-
mization problem in matrix notation, so that it reads

minP ‖PASDS − DQAQP‖S,Q

s.t.

PAS1 = 1,

PTAQ1 = 1, (7)

where ‖F‖S,Q = trace
(
FTAQFAS

)
represents the L2 norm

of the function F : S × Q → R discretised by the matrix F.
Here,P, the discretization of p(s, q), is the doubly stochastic
weighted approximate-permutation matrix we are looking
for. AS and AQ are diagonal area elements matrices, where
(AS)i i ≈ dasi . In a triangulated surface, an area element
dasi about a specific vertex si ∈ S can be approximated by
the area of the Voronoi cell about that vertex, as specified
for example in Pinkall and Polthier (1993). Next, DS and
DQ are the symmetric inter-geodesics matrices, such that
(DS)i j = dS(si , s j ), that is, the geodesic distance between
points si ∈ S and s j ∈ S. The doubly stochastic requirement
is captured by the first two constraints in which 1 is a vector
of ones. As it was shown in Aflalo et al. (2015b), the solution
of the matching problem is not influenced by omitting a non-
negativity constraint P ≥ 0; instead, it is sufficient to relax
P to the affine space defined by the two constrains in (7).

3 Spectral Formulation

In order to reduce the dimensionality of the problem, we
propose to use a spectral representation of the permutation
matrix P. Unlike the functional maps approach (Ovsjanikov
et al. 2012), we do not search for the linear map between
spectral representations of corresponding features, but rather
express the correspondence matrix P in the dual spectral
domains.

Let �S be the matrix with columns given by the eigen-
vectors {φS

i } of the Laplace Beltrami operator (LBO) of
S, and ΛS its associated eigenvalues diagonal matrix, such
that WS�S = AS�SΛS . Here, w.l.o.g. we used the LBO
discretization of Pinkall and Polthier (1993) bywhich a trian-
gulated surface Beltrami operator is defined by L = A−1W,
where again (A)i i ≈ dasi , and W represents the well estab-
lished cotangent weights coefficients organized in a sparse

laplacian matrix. Any other Laplace Beltrami operator could
be handled in a similar manner. In the continuous setting, the
fuzzy correspondence p(s, q) is a mapping from S × Q to
R. For any given q, we can express p(s, q) using the spectral
domain of S by

p(s, q) =
∑
i

〈
p(s, q), φS

i (s)
〉
S
φS
i (s) =

∑
i

αS
i (q)φS

i (s).

(8)

Now, for each i , the coefficient αS
i (q) is a mapping (a func-

tion) αS
i : Q → R that can be expressed in the spectral

domain of Q as

αS
i (q) =

∑
j

〈
αS
i (q), φ

Q
j (q)

〉
Q

φ
Q
j (q) =

∑
j

αi jφ
Q
j (q).

Plugging the last expression into Eq. (8) we have

p(s, q) =
∑
i

∑
j

αi jφ
Q
j (q)φS

i (s),

or in matrix form

P = �Qα�T
S , (9)

which is the spectral representation of P with respect to �S

and �Q , that is captured by a matrix α.
A specific interesting mapping would be one where Q =

S. In that case we write P : S × S → R and express
P = �Sα�T

S . It is obvious that for α = I, the trivial identity
mapping should hold. Now, what would happen if we con-
sider just a few leading eigenvectors of �S? The truncation
effect on mapping surface points to their original locations
using a different number of eigenvectors is captured in Fig. 1.
The effect could be thought of as a lowpassfilter, affecting the
maximum points of filtered delta functions, representing the
original point locations. It appears from our experiments that
100 eigenfunctions are sufficient for accurate localization of
the identity mapping. Figure 2 illustrates the accuracy of
the mapping obtained for different numbers of eigenvectors.
This accuracy is measured by geodesic distances between
the original point locations and the locations of the maxima
of the corresponding smoothed delta functions, weighted by
the square root of the area of S,

√
AS .

The double stochastic conditions

PAS1 = 1 and PTAQ1 = 1,

can be rewritten as

�Qα�T
SAS1 = 1 and �Sα

T�T
QAQ1 = 1.
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Fig. 1 Mapping 5
surface-points (indicated by
yellow spheres) to their own
location, using (from left to
right) 10, 50, 100, 500 and 1000
eigenvectors of the
Laplace–Beltrami operator,
respectively (Color figure
online)

20 40 60 80 100 120 140 160 180
0
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15
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Fig. 2 Geodesic distance error between surface points and their map-
ping to themselves using 10–1000 eigenfunctions, averaged over 50
points randomly sampled from S

Setting ηS = �T
SAS1 and similarly ηQ = �T

QAQ1, the
double stochastic conditions can be compactly written as

αηS = ηQ and αT ηQ = ηS . (10)

Putting all ingredients together, we consider the spectral
representation of Eq. (7) by which P = �Qα�T

S , and αηS =
ηQ and αT ηQ = ηS . In order to make the spectral story
complete, we still have to handle the inter-geodesic distance
maps and represent them in the spectral domain.

4 Correspondence in Spectral Domain

The correspondence P may be written in the spectral bases
of S and Q, up to area normalization. Thus, following the
analysis in Sect. 3, we may write

P = �Qα�T
S . (11)

One of the important consequences of using the spectral rep-
resentation of the correspondence is a reduction of the size of
the problem.We started by searching for a point-wise match-

ing between the vertices of S and those of Q, with P of size
|S| × |Q|, where |S| is the number of points in S (vertices in
case of a triangulated surface). Now, working in the spectral
domains we consider the matrix α relating the bases �S and
�Q . The size of α relates to the size of the truncated spectral
domains. In our experiments, for a given surface sampled at
n = 10,000 vertices, it was enough to consider m = 100
eignefunctions for a faithful reconstruction of P. Note, that
we do not require |S| = |Q|, and two differently sampled sur-
faces and any high order approximation of the maximal point
would allow us to find its position inside a triangle approxi-
mating the surface, rather than restricting the mapping to an
existing vertex.

Next, similar to the spectral expression of P, we could
express D : S × S → R in the natural eigenspace of S,
namely�S . The inter-geodesic distancematrixDS could then
be written as

DS = �SβS�
T
S , (12)

where

βS = �T
SASDSAS�S,

or in its continuous setting

β i j =
∫
S×S

dS(s, s
′)φi (s)φ j (s

′)dasdas′ .

Truncating the eigenspace in the above expression tom � n
eigenfunctions instead of n, would lead to an approximation
of the distance function DS that we denote by D̃S .

In fact, in order to compute an approximation to βS , there
is no need to compute all inter-geodesic distances. By sub-
stantially sub-sampling the matrix DS we could solve for
βS and keep the interpolated geodesic distances matrix in its
implicit form. Here, following the ideas put forward inAflalo
and Kimmel (2013) we use the biharmonic equation for the
interpolation. It eliminates the need to compute the O(n2)
components of DS to almost linear space (and time) com-
plexity in n. The motivation for that efficient construction is
that the global structure of DS is captured by the geodesic
distances from the sampled points to the rest of the domain,
while the local smooth structure is naturally interpolated by
the leading eigenfunctions of �S , which can be proven to
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be optimally tailored for the representation task of DS , see
Aflalo et al. (2015a).

We are now ready to reformulate Problem (7) in the spec-
tral domain, that now reads,

max
P

‖PASDS − DQAQP‖S,Q

≈ max
P

‖PASD̃S − D̃QAQP‖S,Q (13)

Morevover, we have,

PASD̃S = �Qα�T
SAS�SβS�

T
S = �QαβS�

T
S

and, similarly,

D̃QAQP = �QβQα�T
S .

It is also straightforward to see that

‖�QF�T
S ‖SQ = trace

(
(�QF�T

S )TAQ(�QF�T
S )AS

)

= trace
(
(�SFT�T

QAQ(�QF�T
S )AS

)

= trace
(
(FT (�T

QAQ�Q)F(�T
SAS�S)

)

= trace
(
FTF

)

= ‖F‖2F .

Then, we have

‖PASD̃S − D̃QAQP‖S,Q = ‖αβS − βQα‖2F .

Finally, plugging all ingredients together we are lead to an
optimization problem

min
α

‖αβS − βQα‖2F
s.t.

αηS = ηQ and αT ηQ = ηS . (14)

The first eigenvector of the Laplace–Beltrami operator is
the constant vector φ1 = τ(1 1 1 1 1 · · · 1)T , where τ is a
scalar constant. The orthonormality of the basis � by which
�TA� = I allows us to write φT

1 Aφ1 = 1, from which

τ can be extracted to be τ = (∑
i Ai i

)−1/2
. By the same

orthonormality property, for any eigenvector φ j , j > 1, we
have φT

1 Aφ j = 0. Thus,

η = �TA1 = �TA τ−1φ1 = τ−1

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ .

When the shapes are almost isometric and can be assumed
to have similar area, the double stochastic constraints can be
directly enforced by

α

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ and αT

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ ,

or equivalently

α =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 α22 · · · α2m
...

...
...

...

0 αm2 · · · αmm

⎞
⎟⎟⎟⎠ .

Finally, in order to solve Problem (14) numerically, we use
the PBM toolbox byM. Zibulevsky (Ben-Tal and Zibulevsky
1997).

5 Additional Constraints

In order to guarantee convergence to significant solutions
one usually adds constraints to the optimization problem
(14). Let us consider some popular alternatives. First, region
correspondences could be applied by pre-segmentation of
the shapes using tools like the MSER (Ovsjanikov et al.
2012; Pokrass et al. 2013). Another option is to start with
sparse point to point correspondences, for example, by con-
sidering the local maxima of the geodesic spectrum (Baloch
et al. 2005) and finding correspondences at few special points
using descriptors such as WKS (Aubry et al. 2011) and HKS
(Sun et al. 2009). In this paper, we follow the latter approach.
Given a shape S, at each point s ∈ S, we compute the integral
of the geodesic distances between s and the rest of the points
in S. That is,

g(s) =
∫
S
D(s, s′)da(s′).

This quantity can be efficiently evaluated using the spectral
approximation of the geodesic distances described in Sect. 4.
That is,

g(s) = DSAS1 ≈ �SβS�
T
SAS1.

Identifying local maxima of g(s) provides a unique set of
feature-points; usually up to 5 points are enough for each
surface. Then, exhaustive search for correspondences could
be applied between the two sets.
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Fig. 3 Mapping functions
between two almost isometric
shapes via SGMDS (Color
figure online)

6 Experimental Results

Several experiments were performed in order to evaluate the
accuracy and efficiency of the proposedmethod.Weused two
publicly available datasets—TOSCA (Bronstein et al. 2008)
and SCAPE (Anguelov et al. 2004). The TOSCA dataset
contains 90 densely sampled synthetic human and animal
surfaces, divided into several classes with given point-to-
point correspondences between the shapes within each class.
The SCAPE dataset contains scans of real human bodies in
different poses.

In all of our experiments, we used pre-computed geo-
desic distances between a small subset of surface points. The
geodesic distances were calculated using the fast marching
method between 5% of the surface points, sampled using
the farthest point sampling method (Hochbaum and Shmoys
1985; Gonzalez 1985). Tominimize the objective function in
Eq. (14) we used the PBM toolbox by M. Zibulevsky (Ben-

Tal and Zibulevsky 1997). All the experiments were executed
on a 2.7 GHz Intel Core i7 machine with 16GB RAM.

In our first experiment, we selected almost isometric sur-
faces within the same class from the TOSCA dataset, and
computed correspondences between themusing the proposed
Spectral-GMDS algorithm. We visualize the quality of the
mapping by transferring a couple of functions defined on
one shape to the other, as shown in Figs. 3 and 4. In Fig. 5
we visualize point-to-point correspondences between sev-
eral almost isometric poses of a horse, obtained using the
S-GMDS. Note, that for intrinsically symmetric shapes, like
the ones used in our experiments, there can be more than
one optimal mapping. In our examples, there exist two pos-
sible correspondences between the surface to itself, and thus,
between each object and its appearance in other poses. The
objective function in Eq. (14) does not distinguish between
such symmetries. In such cases, the algorithm is expected
to detect one of the possible mappings, and may therefore
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Fig. 4 Mapping functions
between two almost isometric
shapes via SGMDS (Color
figure online)

Fig. 5 Dense point-to-point
correspondence between six
almost isometric shapes of a
horse from the TOSCA dataset
(Color figure online)

produce symmetric flips, as shown in Fig. 3 (bottom), Fig. 4
(top), and Fig. 6 (bottom).

Figure 7 compares the accuracy of the proposed method
to other methods using the evaluation procedure proposed
in Kim et al. (2011). In these experiment we used 6 first
eigenvectors of the Laplace–Beltrami operator. The evalua-
tion protocol was applied to both TOSCA (Bronstein et al.
2008) and SCAPE (Anguelov et al. 2004) datasets. For the
other methods, we used the information provided in Kim
et al. (2011), and in Ovsjanikov et al. (2012); Pokrass et al.
(2013). Figure 6 demonstrates the robustness of the proposed
approach to typical types of noise.

In the benchmark protocol proposed by Kim et al. (Kim
et al. 2011), the ground-truth correspondence between shapes
is assumed to be given. Then, a script, provided by the

authors, computes the geodesic departure of each point,
mapped by the evaluatedmethod, fromwhat the authors refer
to as true location. The distortion curves describe the per-
centage of surface points falling within a relative geodesic
distance fromwhat are assumed to be their true locations. For
each shape, the geodesic distance is normalized with respect
to the shape’s squared root of the area.

Notice that “true location” here is actually a subjec-
tive measure. In fact, measuring the geodesic distortion of
the given correspondences demonstrates a substantial dis-
crepancy between corresponding pairs of points on most
surface pairs from the given datasets. The distortion curves
incorporate an intrinsic ambiguity of about 5–25 % due to
the lack of absolute isometry within seemingly identical
objects at different poses. In a favorable scenario, given a
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Fig. 6 Mapping functions
between two, almost isometric,
noisy shapes via SGMDS (Color
figure online)
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Fig. 7 Quantitative evaluation of the SGMDS applied to the shapes from the TOSCA and SCAPE datasets, using the protocol from Kim et al.
(2011) (Color figure online)

pair of shapes for which the corresponding geodesic dis-
tortion is relatively small, the SGMDS provides superior
results compared to existing methods, as demonstrated in
Fig. 8.

Figure 9 illustrates the accuracy of the mapping found by
the proposed SGMDSmethod. A set of random points on the
left shape are mapped to the right one. Each shape was then
colored according to the Voronoi regions of the points. Note
that the Voronoi Diagram was generated separately for each
shape after mapping of the points. Given the substentially
different poses, the accuracy of the mapping compared to the
existing alternatives is relatively high. Next, Fig. 10 presents

a quantitative evaluation of the SGMDS using a different
number of eigenvectors for each experiment. Note that in
this experiment, increasing the number of the eigenvectors
beyond 100 does not provide a significant improvement in
the matching accuracy.

7 Conclusions

Spectral generalized multidimensional scaling method (S-
GMDS) was proposed and proven to be an accurate model
and efficient tool for matching non-rigid shapes. It accounts
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Fig. 8 Performance evaluation
of the S-GMDS compared to
other methods applied to pairs
of “David” and “Centaur”
shapes from the TOSCA dataset
which are relatively isometric.
See shapes on the right. The
comparison protocol is adopted
from Kim et al. (2011) (Color
figure online)
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for almost isometric deformations of surfaces with respect
to the regular metric. Being able to consider large as well
as small distances when comparing two surfaces, with a nat-
ural regularization of the matching, reduces the need for the
support of heuristics or initializations. By incorporating the
smoothness of the inter-geodesic distances matrix for sub-
sampling and then implicitly interpolating in that domain,
we treat the shape matching problem holistically rather than
as an interpolation between multiple matched features such
as points, regions, or localized functions.

Here, we used a regular metric in which geodesic dis-
tances on the surface determine the isometric quantity we try
to preserve and whose distortions we use as a discrepancy
measure. In our future research, we will try to axiomati-
cally tackle the problem of analyzing objects between which
local scale can be a notable factor, yet, the conceptual mean-
ing of such local structures with different scale is preserved.
For example, utilizing a scale invariant metric (Aflalo et al.
2013) could allow us to handle shapes with similar struc-
tures that vary in their relative size, like a small face with
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Fig. 9 SGMDS mapping:
Visualization of a Voronoi
diagram on one shape and its
corresponding map on a
different pose of the articulate
object as computed by the
propsoed method (Color figure
online)

Fig. 10 Top quantitative
evaluation presented as rate
distortion graphs of the SGMDS
applied to two human shapes
from the TOSCA dataset (shown
in red), using a different number
of eigenvectors in each
experiment. Bottom Zoom in
into the rate distortion graph for
geodesic errors in the range of
[0, 0.05]. The comparison
protocol is adopted from Kim
et al. (2011) (Color figure
online)
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large ears that we try to match to a large face with smaller
ears.

Moreover, when topological noise is present, a robust
matching that could gracefully handle cuts and holes, can
be achieved by using diffusion or commute time distances
(Coifman and Lafon 2006; Bronstein and Bronstein 2011;
Bronstein et al. 2010), instead of the geodesc distance, in the
proposed framework. In fact, when dealing with diffusion
distances, it is natural to approximate the distance matrices
in the spectral domain.
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