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We consider the problem of exact and inexact matching of weighted
undirected graphs, in which a bijective correspondence is sought
to minimize a quadratic weight disagreement. This computationally
challenging problem is often relaxed as a convex quadratic program,
in which the space of permutations is replaced by the space of doubly
stochastic matrices. However, the applicability of such a relaxation is
poorly understood. We define a broad class of friendly graphs
characterized by an easily verifiable spectral property. We prove that
for friendly graphs, the convex relaxation is guaranteed to find the
exact isomorphism or certify its inexistence. This result is further
extended to approximately isomorphic graphs, for which we develop
an explicit bound on the amount of weight disagreement under
which the relaxation is guaranteed to find the globally optimal
approximate isomorphism. We also show that in many cases, the
graph matching problem can be further harmlessly relaxed to a
convex quadratic program with only n separable linear equality
constraints, which is substantially more efficient than the standard
relaxation involving 2n equality and n2 inequality constraints. Fi-
nally, we show that our results are still valid for unfriendly graphs
if additional information in the form of seeds or attributes is
allowed, with the latter satisfying an easy to verify spectral
characteristic.

graph isomorphism | graph matching | permutation | convex relaxation

Graphs are a natural abstraction in a variety of problems and
are particularly useful for modeling structures, frequently

arising in different domains of science and engineering. In many
applications, graphs have to be compared or brought into cor-
respondence. The term “graph isomorphism” or the less precise
term “graph matching” (used mainly in the applied community)
refers to a class of computational problems consisting of finding
an optimal correspondence between the vertices of two graphs
that minimizes adjacency disagreement. The uses of graph
models in general and graph matching in particular are too nu-
merous to allow a comprehensive review within the scope of this
paper. In what follows, we will just list a few prominent ones,
referring the reader to a (partial) review of applications with
a particular emphasis on the domain of pattern recognition (1).
In computer vision and pattern recognition, graph matching is
used for stereo vision and 3D reconstruction (2), object detection
and recognition (3, 4)—in particular, optical character recogni-
tion (5)—and image and video indexing and retrieval (6). In
biometric applications, graph-based techniques have been widely
used for identification tasks implemented by means of elastic
graph matching. These include, among others, face recognition
and pose estimation (7) and fingerprint recognition (8). In bio-
medical applications, graphs have been used to model vascular
structures and, more recently, to represent connections between
neurons (9). In data mining, graphs are used to model networks,
including the Web and social networks (10).
Despite the tremendous popularity of graph models, graph

matching remains a computationally intensive task. In the strict
sense, it is computationally intractable as no polynomial algo-
rithms are known for its solution, except for graphs admitting
certain particular structures. The increase in the available com-
putational power of modern computers and the remarkable de-
velopment of numerous efficient graph matching heuristics have
made graph matching feasible for relatively large graphs, counting

about a thousand vertices. However, novel applications such as the
analysis of brain graphs—the so-called “connectomes”—and so-
cial networks require matching of graphs with millions if not bil-
lions of vertices. These scales are far beyond the reach of existing
heuristics. Furthermore, a major disadvantage of graph matching
heuristics is that, in general, they are not guaranteed to find the
optimal matching, or at least to guarantee how far the found
matching is from the optimal one.

Contributions
In this paper, we focus on the family of scalable graph matching
heuristics based on continuous (in particular, convex) optimiza-
tion (11). We analyze the standard convex relaxation of the
graph-matching problem based on replacing the space of per-
mutations by the space of doubly stochastic matrices, and make
the following contributions.
First, we establish conditions under which the relaxation is

equivalent to exact graph matching, in the sense that it is
guaranteed to find the exact graph isomorphism if such exists, or
certify its inexistence (Theorem 1). The class of graphs on which
such an equivalence holds is characterized by an easily verifiable
spectral property we call “friendliness,” and is surprisingly large—
practically, as large as the class of asymmetric graphs.
Second, we generalize this result to inexact graph matching,

providing an explicit bound on the amount of weight disagree-
ment under which the relaxation is guaranteed to find the globally
optimal approximate isomorphism (Theorem 2).
Third, we show that equivalence of convex relaxation to exact

graph matching still holds for unfriendly graphs if additional
information besides the graph adjacencies is allowed to disam-
biguate the symmetries. Specifically, we consider such additional
information in the form of a collection of knowingly corresponding
functions (seeds) or vector-valued vertex attributes, and show a
constructive spectral condition on the seeds/attributes under
which convex relaxation of seeded/attributed graph matching is
guaranteed to find one of the isomorphisms (Theorem 3).
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These three contributions establish the boundaries of appli-
cability of the convex relaxation, which have so far been poorly
understood. Finally, a byproduct of our analysis is the fact that
the former results are also satisfied by a simpler convex re-
laxation, in which the space of permutations is replaced with an
affine space of matrices we call “pseudostochastic.” This alter-
native relaxation leads to a simpler, and potentially more effi-
ciently solvable, optimization problem.

Notation
The following notation will be used in the rest of the paper: Vectors
and matrices are denoted in bold lower and uppercase, respectively,
and their elements by lower and uppercase italic with appropriate
subscript indices. The norm k · k will denote the standard ℓ2 norm of
a vector, and the spectral norm of a matrix (to be distinguished from
the Frobenius norm, specified with the subscript F). Constraints in
optimization problems will be specified as “s.t.” standing for “sub-
ject to”. Throughout the paper, the not so rigorous term “matching”
refers to the exact or inexact graph isomorphism problems rather
than to the graph-theoretic notion of an independent edge set.

Graph Matching
Let A= ðV ;AÞ and B= ðV ;BÞ be two undirected graphs built
upon a common vertex set V, which, for convenience, is assumed
to be V = f1; . . . ; ng. As A and B are fully represented by the
symmetric n×n adjacency matrices A and B, we will use the two
notations interchangeably. We allow the adjacency matrices to
contain nonbinary edge weights, and henceforth consider this
case without explicitly specifying that the graphs are weighted.
Let us denote by PðnÞ= fπ : V →Vg the space of vertex per-
mutations, which can be equivalently represented by n× n per-
mutation matrices of the form fΠ∈ f0; 1gn×n : Π1=ΠT1= 1g,
with 1 denoting a column vector of ones. With some abuse of
notation, we will refer to both spaces as PðnÞ, dropping the n
whenever possible. A permutation π represents a bijective cor-
respondence between the two graphs, mapping each vertex i in A
to a vertex πi in B. Similarly, for each edge ði; jÞ, the corre-
spondence pulls back the adjacency weight bπi;πj . The latter can
be stated equivalently by constructing a new adjacency matrix
ΠTBΠ, where Π is the permutation matrix representing π. To
measure the adjacency disagreement under correspondence, we
define on P a distortion function of the form disA↦BðΠÞ=��A−ΠTBΠ

��, with k · k denoting some norm (for brevity, we
will drop A↦B whenever possible). The graphs are said to be
isomorphic if there exists a zero-distortion permutation. We
denote the collection of all isomorphisms relating A and B by
IsoðA↦BÞ= fΠ : disðΠÞ= 0g.
In this notation, the graph-matching (GM) problem consists of

finding a zero-distortion permutation; such a permutation might
not be unique if the graph possesses symmetries, as we clarify in
the sequel. The closely related graph isomorphism (GI) problem
consists of verifying whether a zero-distortion permutation exists.
This strict setting is usually referred to as “exact.” Since, in
practical applications, the matched graphs might be contami-
nated by noise, GM is frequently stated in the “inexact” flavor,
consisting of finding a minimum rather than zero-distortion
permutation. It is worthwhile noting that the formulation of GM
based on a norm of the adjacency disagreement is extremely
popular in computer vision, shape analysis (12), and neurosci-
ence (13), where graphs are used to represent geometric struc-
tures, and the matching distortion can be interpreted as the
strength of geometric deformation. While we focus exclusively
on this class of problems, distortion criteria for partial and ap-
proximate isomorphism, as hinted in Fig. 1, deserve a deeper
discussion beyond the scope of this paper. Several alternative
formulations of inexact GM, particularly those based on edit
distance (14) and maximum common subgraph (15, 16), have
been extensively addressed in the literature.

Computationally, GM is at least as hard as GI, which is an NP
problem (i.e., a problem whose solution can be verified in
polynomial time) presently not known either to be solvable in
polynomial time or to be NP complete. In fact, GI is one of the
few problems which, if P ≠ NP, might reside in an intermediate
“GI-complete” complexity class (17). However, the GI problem is
known to be only “moderately exponential” (18); furthermore,
polynomial (and even linear) time algorithms exist for checking the
isomorphism of various particular types of graphs, such as planar
graphs (19), graphs with bounded vertex degree (20), and trees
(21). However, the constants characterizing the complexity of such
algorithms are extremely large; for example, the linear time algo-
rithm for checking the isomorphism of graphs with vertex degree
bounded by 2 is over 2× 106! Moreover, these results are largely
inapplicable to inexact or weighted GM. Because of this fact, exact
GM is not used in practical applications involving even moderately
scaled graphs, except for very particular cases. Instead, various
types of heuristics are usually used.
The common property of heuristic algorithms is that they often

perform well on real problems and scale to large graphs at the
expense of having no theoretical guarantee to converge to the
true global minimizer of the GM problem. The wealth of litera-
ture dedicated to GM heuristics counts hundreds of studies
published in the past four decades, and we will not attempt to re-
view it within the scope of this paper. Instead, we refer the reader to
ref. 1 for a comprehensive review, and focus on the popular class of
continuous optimization relaxations. In these heuristics, the com-
binatorial GM problem is replaced by an optimization problem with
continuous variables, enabling the use of efficient and scalable
continuous optimization algorithms (22).

Relaxation of GM
Adopting this perspective, GM can be formulated as an optimi-
zation problem

Πp = argmin
Π∈P

disA↦BðΠÞ= argmin
Π∈P

��A−ΠTBΠ
��: [1]

The norm in the objective is typically chosen to be the standard ℓ1
norm kXk1 =

P
i;j

��xij
��, the Frobenius (ℓ2) norm kXk2F =

P
i;jx

2
ij, or

the minimum−maximum (ℓ∞) norm kXk∞ =maxi;j
��xij

��. In what
follows, we will adopt the Frobenius norm, henceforth defining

Fig. 1. (Left) Two deformable shapes are represented as weighted graphs
with edge weights proportional to the pairwise geodesic distances between
the corresponding vertices. Optimal isomorphism in the sense of dis=��A−ΠTBΠ

�� quantifies how isometric these two discrete metric spaces are
and is related to the Gromov−Hausdorff distance (12). (Right) Limitation of
the former distortion criterion. The bottom graphs are both 1-isomorphic to
the top one, without distinguishing between exact partial isomorphism
(Bottom Left; isomorphic subgraphs are marked in red) and inexact full
isomorphism (Bottom Right).
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disA↦BðΠÞ=��A−ΠTBΠ
��
F = kΠA−BΠkF;

where the second identity is possible due to unitarity of permutation
matrices. For this particular choice, Eq. 1 can be rewritten as

Πp = argmin
Π∈P

kΠA−BΠk2F = argmax
Π∈P

tr
�
BΠAΠT�; [2]

known as a quadratic assignment problem (QAP).
Both Eqs. 1 and 2 are NP due to the combinatorial com-

plexity of the constraint Π∈P. Relaxation techniques reduce
this complexity by replacing the latter constraint with a more
tractable continuous set. Since the practically used norms in
Eq. 1 can yield a convex minimization objective, convex re-
laxation techniques consist of replacing P with a larger convex
set, resulting in a tractable convex program. Various techniques
differ mainly in the choice of the norm, the choice of the convex
set (i.e., the relaxation), and the particular numerical algorithm
used to solve the resulting convex program (11).
A popular choice is to relax P to the space of doubly stochastic

matrices D= fP≥ 0 : P1=PT1= 1g constituting the convex hull
of permutation matrices in Rn×n. Combined with the ℓ1 or the
ℓ∞ norms, such a relaxation leads to a linear program (23), while
the use of the Frobenius norm results in a linearly constrained
quadratic program (LCQP or QP for short) (13). Both types of
optimization problems are solvable using polynomial time algo-
rithms, very efficient in practice (22).
Along with convex relaxations of the GM problem (Eq. 1),

there exist numerous techniques for relaxing its QAP formula-
tion (Eq. 2). Note that after the relaxation, the two problems are
generally not equivalent! Unlike Eq. 1, the objective of Eq. 2 is
nonconvex, and hence, even if P is replaced by a convex set, the
resulting optimization problem is nonconvex. One of the most
celebrated relaxations of QAP is the spectral relaxation (24), in
which the solution matrix is constrained to constant Frobenius
norm, which transforms the relaxed problem to the maximum
eigenvector problem. The latter is one of the few nonconvex
optimization problems for which there exist algorithms with
global convergence guarantees. Other nonconvex relaxations of the
QAP have been proposed, including restricting the matrix P to the
nonnegative simplex (25), or to the space of doubly stochastic
matrices (13). All such relaxations have only local convergence
guarantees.
In this paper, we consider the convex QP relaxation of GM,

Pp = argmin
P∈D

kPA−BPk2F: [3]

In the sequel, we show that the double stochasticity constraint
can be further harmlessly relaxed. Since the solution Pp of the
relaxation is, generally, not a permutation matrix, it has to be
projected back onto P (n). The orthogonal projection Pp onto P
has to maximize the standard Euclidean inner product, which
can be stated as the optimization problem

Π̂=PPPp = argmax
Π∈P

hΠ;Ppi= argmax
Π∈P

tr
�
ΠTPp

�
: [4]

This problem is called a “linear assignment problem” (LAP) and,
unlike QAP, is solvable in polynomial time using a family of
techniques collectively known as the Hungarian method (26).
LAP can also be formulated and solved as a linear program, in
which the linear objective is minimized over the polytope D in-
stead of P. The solution of such a linear program is guaranteed
to be in P due to a particular property of the constraints called
total unimodularity.

The considered convex relaxation of GM can be thus sum-
marized as the following two-step procedure, which we hence-
forth call the relaxed GM or RGM: (1) Solve QP (Eq. 3) and
(2) project the obtained solution onto the space of permutation
matrices by solving the LAP (Eq. 4). We will henceforth refer to
the permutation matrix Π̂ obtained from step 2 above as the
solution of the RGM.
Variants of the described procedure are often used in practice;

due to their relatively low computational complexity, they scale
to large graphs. There is a considerable practical evidence that
the RGM produces a good approximation to the exact solution
of the GM problem, in the sense that disðΠ̂Þ≈ disðΠpÞ, and often
Π̂≈Πp. It is therefore astonishing that no theoretical bounds
exist on

��disðΠ̂Þ− disðΠpÞ��, and practically nothing is known
about

��Π̂−Πp
��! One of the main goals of this paper is to es-

tablish conditions under which RGM is equivalent to the exact
GM, in the sense that the projection of the solution space of
Eq. 3 onto P coincides with IsoðA↦BÞ. We also investigate
conditions for the converse situation, when the solution space of
the relaxation contains nonzero distortion permutations, making
the relaxation unusable.

Exact Matching of Asymmetric Graphs
We start with the case of exact (i.e., distortionless) matching of
asymmetric graphs. An undirected graph A with the adjacency
matrix A is said to possess a symmetry Π∈P if disA↦AðΠÞ= 0.
This notation emphasizes that symmetries are self-isomorphisms.
Symmetries form a group with the matrix multiplication opera-
tion (or with the function composition, if permutations are inter-
preted as bijective functions), which we refer to as the “symmetry
group” (also known as automorphism group) of A and denote by
Sym A. The graph is called asymmetric if its symmetry group is
trivial, Sym A= fIg.
It is straightforward to show that two isomorphic graphs A and

B have identical (isomorphic) symmetry groups, and if Π∈P is an
isomorphism, then ΠSymTA= fΠΠ′T : Π′∈ Sym Ag (or, equiva-
lently, SymBΠ) are also isomorphisms. The converse is also true:
If the two graphs are related by a collection of isomorphisms
IsoðA↦BÞ= fΠ1; . . . ;Πk ∈Pg, then they are symmetric with
Sym A generated by IsoðB↦AÞ ∘ IsoðA↦BÞ= fΠT

i Πjg, and
Sym B by IsoðA↦BÞ ∘ IsoðB↦AÞ= fΠiΠT

j g. Consequently, if A
is asymmetric and B is isomorphic to it, they are related by a
unique isomorphism which is the global minimizer of Eq. 1. In
what follows, we denote this unique isomorphism by Πp.
We emphasize that the symmetry or asymmetry of a graph has

nothing to do with the fact that the adjacency matrix A is sym-
metric. The latter property stems from the fact that the graph is
undirected, and because of it, A admits unitary diagonalization of
the form A=UΛUT, with an orthonormal U= ðu1; . . . ; unÞ con-
taining the eigenvectors in its columns, and a diagonal Λ=
diagfλ1; . . . ; λng containing the corresponding eigenvalues.
The uniqueness of the isomorphism relating isomorphic asym-

metric graphs is crucial for the results we present next. However,
the existence or the absence of symmetry is not an easy property to
verify. To overcome this difficulty, instead of considering the class
of asymmetric graphs, we consider another class of graphs char-
acterized by the following spectral property:
Definition. A graph A is called friendly if its adjacency matrix A

has simple spectrum (i.e., all of the λi are distinct), and all its
eigenvectors satisfy uTi 1≠ 0.
We note the following important consequence of friendliness:
Lemma 1. A friendly graph is asymmetric.
Proof. Let A=UΛUT denote the adjacency matrix of the

graph, and let us assume by contradiction that there exists Π≠ I
such that ΠA=AΠ. Then, for every eigenvector ui of A, we have
AΠui =ΠAui = λiΠui, that is, Πui is also an eigenvector of A.
Since, due to friendliness, A has a simple spectrum, the only two
possibilities are Πui =±ui. Since we assumed Π≠ I, there must
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be at least one eigenvector ui for which Πui =−ui. Then,
1TΠui =−1Tui. On the other hand, sinceΠ is a permutation matrix,
1TΠui = 1Tui. Hence, uTi 1= 0 in contradiction to friendliness of A.
The converse is not true, as there might exist an asymmetric

graph with an unfriendly adjacency matrix. For example, any
regular unweighted graph has a constant eigenvector and is thus
highly unfriendly; on the other hand, there exist asymmetric
regular graphs such as the Frucht graph with n= 12. However,
unfriendliness still seems to be a singular property, and intuition
suggests that unfriendly graphs should have measure zero among
random asymmetric weighted graphs, and the class of friendly
graphs should be almost as big as that of asymmetric graphs. We
do not pursue the rigorous proof of this claim, since it might
delicately depend on what is meant by “random.” We only em-
phasize that, in contrast to asymmetry, friendliness is an easily
verifiable property.
Using the notion of friendliness, we state our first result:
Theorem 1. Let A and B be friendly isomorphic graphs. Then,

GM and RGM are equivalent.
Proof. We consider the relaxation (Eq. 3) of GM, denoting by

Πp the global minimizer of the latter. The minimizer is unique
due to asymmetry. For any doubly stochastic matrix P,

PA−BP=
�
PΠpTB−BPΠpT�Πp =QB−BQ;

where Q=PΠpT. We therefore reformulate Eq. 3 in terms of Q
as the minimization of f ðQÞ= ð1=2ÞkQB−BQk2F with respect to
Q∈D. Since the objective f ðQÞ is convex in Q, and so is the set
of double stochastic matrices D, the problem has a global mini-
mum at Q= I. It remains to prove that the minimum is unique.
Since B is symmetric, simple calculus yields the gradient of
f ðQÞ, ∇Qf =QB2 +B2Q− 2BQB. By omitting the nonnegativity
and unit column sum constraints, we further relax the constraint
Q∈D to Q1= 1, referring to such matrices as pseudostochastic.
The Lagrangian of f with the pseudostochasticity constraint on Q
is given by LðQ;αÞ= f ðQÞ+αTðQ1− 1Þ= f ðQÞ+ trððQ1− 1ÞαTÞ,
with α denoting the vector of Lagrange multipliers. Problem
Eq. 3 reaches a minimum when

∇QLðQ;αÞ=QB2 +B2Q− 2BQB+α1T = 0:

Substituting the unitary eigendecomposition B=UΛUT, the latter
equation can be rewritten as

FΛ2 +Λ2F− 2ΛFΛ+ γvT = 0; [5]

where γ=UTα, v=UT1, and F=UTQU. It is easy to see that Eq. 5
can be expressed coordinate-wise as

Fij
�
λi − λj

�2 + vjγi = 0: [6]

For every i= j, we have viγi = 0; since the friendliness assumption
implies vi ≠ 0 for all i, we have γ= 0. This yields

Fij
�
λi − λj

�2 = 0 for  every  i≠ j: [7]

Since friendliness also implies λi ≠ λj, F must be diagonal. Be-
cause Q is pseudostochastic, it has to satisfy 1=Q1=UFUT1 or,
equivalently, v=Fv. However, since F is diagonal and, due to
friendliness, v has no zero elements, the above property is satis-
fied only if F= I. This implies that Q= I or, equivalently, P=Πp.
Hence, Πp is the unique minimizer of Eq. 3. Since the solution is
already in P, the projection (Eq. 4) leaves it unchanged.
Note that in the proof, we only used the pseudostochasticity

constraint P1= 1. This leads to an important consequence: In-
stead of relaxing P to the space D of doubly stochastic matrices,
a coarser relaxation to pseudostochastic matrices is equivalent in

the discussed case. Practically, this means that we can solve a
simpler quadratic program

Pp = argmin
P

kPA−BPk2F s:t:P1= 1; [8]

with n2 variables and only n equality constraints, instead of 2n
equality constraints and n2 inequality constraints in Eq. 3. In
what follows, we focus on this simpler convex relaxation instead
of Eq. 3 in the RGM.
While checking the friendliness condition in Theorem 1 is

straightforward, checking whether the perfect isomorphism con-
dition is satisfied is not (in fact, it is a graph isomorphism prob-
lem!). However, in practice, one can simply solve relaxation Eq. 8
for the two friendly graphs, project the result onto P, and check
whether disðΠ̂Þ= 0. If the answer is positive, Π̂ is guaranteed to
be the unique isomorphism; otherwise, the theorem guarantees
that the graphs are not isomorphic.

Inexact Matching of Asymmetric Graphs
The case of perfectly isomorphic graphs, to which Theorem 1 is
applicable, is often an unachievable mathematical idealization.
Many practical applications of GM assume some amount of noise,
and seek a least distortion correspondence rather than a perfect
isomorphism. To formalize this notion, we say that two graphs A
and B are ρ-isomorphic if there exists Πp ∈P with disðΠpÞ≤ ρ.
Similarly, we say that a graph A possesses a ρ-symmetry Π∈P

if disA↦AðΠÞ≤ ρ. Note that unlike their exact counterparts,
ρ-symmetries do not form a group, as the composition of two
ρ-symmetries might have dis> ρ. A graph with a trivial ρ-symmetry
set is called ρ-asymmetric. The lack of symmetry of such a graph is
strong enough to guarantee that a bounded perturbation of the
adjacency weights does not produce new, previously inexistent
symmetries.
To generalize our result to the case of nearly isomorphic

graphs, we define the strength of a graph’s friendliness:
Definition. A graph A is (e; δ)-friendly if its adjacency matrix

A=UΛUT has the spectral gap σðAÞ= mini≠j
��λi − λj

��> δ, and
e<

��uTi 1
��< ð1=eÞ for i= 1; . . . ; n.

Also note that our former definition of friendliness corre-
sponds to ðe; δÞ= ð0; 0Þ. We refer to the case e; δ> 0 as “strong”
friendliness.
For the broad family of strongly friendly graphs, we first show

that the result of Theorem 1 is stable in the sense that a bounded
perturbation in the adjacency matrix results in a bounded per-
turbation of the solution:
Lemma 2. Let A and B be ðe; δÞ-friendly isomorphic graphs

with spectral radius σ =maxijλij, related by the unique iso-
morphism Πp. Let ~B be a perturbed version of B with ~B=B+ ρR,
where R is symmetric with kRkF ≤ 1, and ρ≤minf ffiffiffi

2
p

σ; ½ðδ2e4Þ=
ð12σn1:5Þ�g. Then, the solution Pp

ρ of the perturbed problem,
Eq. 8, is unique and satisfies

��Pp
ρ−Πp

��
F
< ð1=2Þ.

The proof closely follows the proof of Theorem 1, and relies
on a result from perturbation analysis of linear systems. Full proof
as well as the mentioned result (summarized as Lemma S1) are
presented in Supporting Information.
Applying the former result to matching a graph with itself

(A=B), the following generalization of Lemma 1 can be straight-
forwardly obtained:
Corollary 1. An (e; δ)-friendly graph is ρ-asymmetric, with ρ

satisfying the conditions of Lemma 2.
In fact, this property guarantees that the perturbation creates

no symmetries and, thus, the perturbed version of system Eq. 7
remains full rank.
The stability of the relaxation in Lemma 2 leads directly to our

second result:
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Theorem 2. Let A be an (e; δ)-friendly graph with the adjacency
matrix normalized such that σ = 1, and let B be ρ-isomorphic to A.
Then, if ρ< ½ðδ2e4Þ=ð12n1:5Þ�, RGM and GM are equivalent.
Proof. Let Πp be a ρ-isomorphism relating B and A, and let

us denote B0 =ΠpAΠpT and R= ð1=ρÞðB−B0Þ. Then, B0 is per-
fectly isomorphic to A, and B is a perturbed version of B0 with
B=B0 + ρR and kRkF = ð1=ρÞ��B−ΠpAΠpT

��
F ≤ 1. By Corollary 2,

B is ρ-asymmetric and, hence, B0 is asymmetric. Denoting by
Pp the solution of Eq. 8 applied to A and B, we invoke Lemma
2, which guarantees uniqueness of Pp and kPp−ΠpkF < 1=2.
By standard norm inequalities, this implies

��Pp
ij −Πp

ij

��< 1=2 ele-
ment-wise for every i; j. Therefore, the projection of Pp onto P
coincides with Πp.
As in the case of perfectly isomorphic graphs, checking the

strong friendliness condition in Theorem 1 is straightforward,
while checking the ρ-isomorphism of A and B is not. However, as
in the previous case, one can again solve relaxation Eq. 8, project
the solution onto P, and verify whether disðΠ̂Þ< ρ. In case of a
positive answer, Π̂ is guaranteed to be the unique global mini-
mizer of the GM problem; otherwise, the graphs are guaranteed
not to be ρ-isomorphic. An empirical evaluation of the bound in
Theorem 2 is presented in Fig. 2.

Matching of Symmetric Graphs
The assumption of friendliness plays a crucial role in the results
we have developed so far: It guarantees uniqueness of solution
of the relaxation. These results cannot be directly extended to
symmetric graphs, for which the solution space of the relaxation
should contain all isomorphisms and their affine combinations.
Unfortunately, besides the true isomorphisms, this affine sub-
space may also contain pseudostochastic matrices that are not
permutations, some of which fall into Voronoi cells of permu-
tations that are not isomorphisms. As a result, using convex re-
laxation for matching symmetric graphs may lead to a wrong
solution, depending on the particular optimization algorithm
and its initialization. Empirical evidence of this phenomenon is
presented in Fig. S1; see ref. 27 for a formal proof of failure of
convex relaxation on a particular class of random graphs. How-
ever, in what follows, we show that by providing additional in-
formation in the form of corresponding seeds or vertex attributes
disambiguating the symmetry, equivalence of the relaxation to
the exact GM problem still holds.

Let C and D be n× q matrices, whose columns are real-valued
functions on the vertices of the graphs A and B, respectively. For
example, an indicator function of the kth vertex in the graph is
the kth vector of the standard Euclidean basis in Rn. The ma-
trices C and D can be alternatively interpreted as q-dimensional
vector-valued vertex attributes, with the kth row of C repre-
senting the attribute of vertex k in A. We say that the matrices C
and D are covariant under a permutation Π relating between the
graphs if ΠC=D. With this additional information, we consider
the following extension of Eq. 8:

Pp = argmin
P

kPA−BPk2F + μkPC−Dk2F s:t:P1= 1: [9]

This problem can be thought of as a convex relaxation of seeded
GM, in which the seeds are provided through a penalty, whose
strength is controlled by the parameter μ, rather than through
a hard constraint; alternatively, it can be interpreted as a relaxa-
tion of attributed GM, in which a permutation is sought to
minimize the aggregate of edge adjacency and vertex attribute
disagreement. In light of this duality, we henceforth refer to C
and D as seeds.
As before, to avoid verifying whether a graph is symmetric or

not, we consider the easily verifiable friendliness property. We
assume that a general adjacency matrix of a graph has d non-
simple eigenspaces with multiplicities summing up to m+ d. To
simplify notation, we will say that an eigenvalue λi has multi-
plicity mi+1, referring to the multiplicity of the eigenspace to
which λi belongs. Since the eigenvectors spanning an (mi+1)-
dimensional eigenspace are defined up to a rotation within it,
eigenvectors shall be selected such that none of them is or-
thogonal to the constant vector 1, unless the entire eigenspace is
orthogonal to it. We call the latter eigenspaces “hostile,” and
denote by k the total dimension of hostile eigenspaces. A graph
is friendly if and only if both m and k are 0, and is ðm; kÞ-
unfriendly otherwise.
It is easy to observe that with μ= 0, each (mi+1)-dimen-

sional nonsimple eigenspace of the adjacency matrix de-
creases the rank of Eq. 5 by mi; if the eigenspace is hostile, the
rank is further decreased by 1. This is precisely the reason for
Theorem 1 not being applicable to unfriendly graphs. The in-
troduction of the seeds disagreement term to the objective con-
tributes to Eq. 5 a term of the form μFG, where G=UTDDTU is
the Gram matrix of the seeds D represented in the eigenbasis of
the adjacency matrix. Since G is always positive semidefinite, the
rank of Eq. 5 typically increases and becomes full under the
following conditions:
Theorem 3. Let A and B be isomorphic unfriendly graphs with

adjacencies A and B and seeds C and D, respectively. Let C and
D be covariant under a particular isomorphism Πp ∈ IsoðA↦BÞ,
and let D further satisfy for every nonsimple (mi+1)-dimensional
eigenspace of B corresponding to λi =⋯= λi+mi , ð1TuiÞDDTuj ≠
1ðuTi DDTujÞ for every j= i+ 1; . . . ; i+mi if the eigenspace is not
hostile, or DDTuj ≠ 0 for every j= i; . . . ; i+mi otherwise. Then,
Πp is the unique minimizer of Eq. 9 for any μ> 0.
For a proof, see Supporting Information. Conditions of Theo-

rem 3 are both easy to verify and constructive in the sense that
given the spectral decomposition of the adjacency matrix of one
of the graphs, the theorem specifies how to construct a set of
seeds such that if a set of corresponding seeds in the other graph
is further given and is covariant under a preferred isomorphism,
the convex relaxation (Eq. 9) is guaranteed to find the latter
isomorphism. In particular, D must have at least m+ k linearly
independent columns. In practice, we observed that it is suffi-
cient to generate random point seeds ensuring that the matrix
D is not invariant under any nontrivial symmetry of the graph,
namely ΠD≠D for every Π∈ SymB∖fIg. An empirical corrobo-
ration of this result is presented in Fig. S1.
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Fig. 2. Empirical evaluation of the bound in Theorem 2 on 103 random
strongly friendly graphs. For each graph, different amount of noise was
added, and the ratio of successful runs of convex relaxation (Eq. 8) recorded
on the vertical axis (a run was deemed successful if the ground truth iso-
morphism is recovered). The noise strength on the horizontal axis is nor-
malized for each graph in such a way that the value of the bound is always 1.
Observe that all runs with noise within the bound converged successfully,
while those with stronger noise failed with probability increasing as the
amount of noise grows.
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Discussion and Conclusion
In this paper, we considered convex relaxation of the NP GM
problem. We proposed an easy-to-verify friendliness property, and
proved that for friendly graphs, convex relaxation is equivalent to
the computationally intractable exact matching; the result extends
to inexact matching of strongly friendly graphs. In such cases,
convex relaxation is guaranteed to find the exact (or approximate)
isomorphism or guarantee its inexistence. We also showed that
convex relaxation is applicable to exact matching of unfriendly
graphs (in particular, those possessing nontrivial symmetries),
provided that additional information is supplied in the form of
seeds or vertex attributes. We showed constructive spectral char-
acteristics that such seeds/attributes have to satisfy in order for the
convex relaxation of seeded GM to be guaranteed to find one of
the isomorphisms. The analysis we presented is inspired in part
by ref. 28, where matching surfaces is treated as matching metric
spaces performed in their spectral domain. However, despite this
superficial resemblance, our proofs here are based on the spec-
tral properties of the adjacency matrices, in contrast to those of
the graph Laplacian frequently studied in spectral graph theory.

A surprising observation is that none of our results is influ-
enced by the nonnegativity constraints P≥ 0. While the space of
doubly stochastic matrices is the smallest convex set containing
the space P of n× n permutations, and is therefore the most
natural convex relaxation of the latter, our findings question the
utility of the nonnegativity constraints in GM problems, and
suggest relaxing P as a bigger affine space. Also, for the class of
friendly graphs on which we were able to prove global con-
vergence of convex relaxations, the column-wise equality con-
straints PT1= 1 have no utility and can be removed. The
question of whether these constraints are at all needed, and
whether they can help extend the applicability of convex re-
laxation, requires further investigation. From the practical per-
spective, the removal of the nonnegativity constraints renders the
quadratic problem much easier to solve, essentially, by solving
a linear system.
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Lemma S1
Let u0 be the solution of a full-rank linear system Mu= c, and let u
be the solution of the perturbed full-rank system ðM+ ρNÞu= c,
ρ> 0. Then,

ku− u0k≤
ρ
��M−1��kNkku0k
1− ρkM−1kkNk : [S1]

Proof. Denoting δ=u−u0, we have Mu0 = c and ðM+ ρNÞ
ðu0 + δÞ= c, from which ðM+ ρNÞδ=−ρNu0. The latter is equiv-
alent to δ=−ρðM+ ρNÞ−1Nu0 assuming an invertible ðM+ ρNÞ−1.
From the identity

ðM+ ρNÞ−1 =M−1�I+ ρM−1N
�−1

=M−1
�X∞

i=0

ð−ρÞi�M−1N
�i
�

and the inequality
���ðM−1NÞiv

���≤
��M−1��ikNkikvk holding for ev-

ery i≥ 0 and every v, we have

kδk=
���ðM+ ρNÞ−1Nu0

���≤
��M−1��kNkku0k
1− ρkM−1kkNk:

Proof of Lemma 2. The proof goes along the lines of the proof of
Theorem 1. As before, we reparametrize the optimization in
terms of Q=PΠpT instead of P. Denoting by B=UΛUT the or-
thonormal eigendecomposition of B and E=UTRU, we substitute
~B=UðΛ+ ρEÞUT into a perturbed version of the Lagrangian,

∇QLðQ; αÞ=Q~B
2
+B2Q− 2BQ~B+α1T = 0; [S2]

and obtain a perturbed version of Eq. 5,

�
FΛ2 +Λ2F− 2ΛFΛ

�
+ ρðFEΛ+FΛE− 2ΛFEÞ+ γvT + ρ2FG= 0

where G=E2, and F, v, and γ are defined as before. The system
can be rewritten coordinate-wise as

Fij
�
λi − λj

�2 + vjγi + ρ
X

k

Fik
�
Ekj
�
λj + λk − 2λi

�
+ ρGkj

�
= 0: [S3]

Substituting i= j and rearranging the terms yields

γi =−
ρ

vi

X

k

FikðEkiðλk − λiÞ+ ρGkiÞ:

Substituting γi back into Eq. S3 and multiplying both sides by
vi yields

Fijvi
�
λi − λj

�2 + ρ2
X

k

Fik
�
viGkj − vjGki

�

+ ρ
X

k

Fik
�
viEkj

�
λj + λk − 2λi

�
− vjEkiðλk − λiÞ

�
= 0:

Denoting

sijk =
1

�
λi − λj

�2

�
Ekj
�
λj + λk − 2λi

�
−
vj
vi
Ekiðλk − λiÞ

�

tijk =
1

�
λi − λj

�2

�
Gkj −

vj
vi
Gki

�
;

[S4]

for i≠ j, and siik = tiik = 0, we arrive at the following perturbed
linear system:

Fij + ρ
X

k

Fik

�
sijk + ρtijk

�
= 0;  i≠ j

X

k

Fikvk = vi;
[S5]

where the second set of equations Fv= v comes, as before, from
the pseudostochasticity constraint Q1= 1. Also note that we ab-
sorbed the second-order perturbation into the terms tijk.
From this point, it remains to show that the solution F of the

perturbed system (Eq. S5) is unique and sufficiently close to the
solution F0 = I of the unperturbed system, for which we rely on
a result in perturbation analysis of linear systems summarized as
Lemma 3 above. Denoting by f = ðF11; . . . ;F1n; . . . ;Fn1; . . . ;FnnÞT
the row stack vector representation of F, Eq. S5 can be rewritten as

ðM+ ρNÞf = c [S6]

with M= diagfM1; . . . ;Mng being an n2 ×n2 block-diagonal ma-
trix, where each Mi is an n× n block consisting of the identity
matrix with the ith row replaced by the row vector v= ðv1; . . . ; vnÞ.
Similarly, N is an n2 × n2 block-diagonal matrix with the n× n
blocks Ni = ðsijk + ρtijkÞjk, and c is an n2 × 1 vector of zeros,
with every ði− 1Þðn+ 1Þ+ 1-st element replaced by vi. Due to
the block-diagonal structure of M, we readily have that M−1 is
also block-diagonal with the same structure, where each n× n di-
agonal block M−1

i is the identity matrix with the ith row replaced
by the row vector w= 1

vi
ð−v1; . . . ;−vi−1; 1;−vi+1; . . . ;−vnÞ. Decom-

posing each M−1
i into the sum of the identity matrix and a rank-

one matrix, we have
��M−1

i

��≤ kIk+ kwk< 1+
ffiffiffi
n

p
e2

;

where the second inequality is due to the ðe; δÞ-friendliness as-
sumption. Due to the block-diagonal structure of M−1,

��M−1��≤ max
i=1;...;n

��M−1
i

��< 1+
ffiffiffi
n

p
e2

: [S7]

Similarly, we obtain

kNk2 ≤ max
i=1;...;n

kNik2F =
X

jk

�
sijk + ρtijk

�2

≤ 2

 
X

jk

�
sijk
�2

+ ρ2
�
tijk
�2
!

:

[S8]

To bound the ðsijkÞ2 terms, we invoke strong friendliness again,
obtaining ðvi=vjÞ≤ ð1=e2Þ. Combining this result with ðλi − λjÞ2 ≥ δ2

for i≠ j, λ2i ≤ σ2 and substituting into Eq. S4 yields
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�
sijk
�2

≤
�
2σ
δ2

�
2Ekj +

1
e2

Eki

��2

≤
4σ2

δ4

�
2E2

kj +
4
e2

jEkjEkij+ 1
e4

E2
ki

�
:

[S9]

For the first term, we use

X

jk

E2
kj = kEk2F =

��UTRU
��2
F = kRk2F ≤ 1;

from which E2
ki ≤ 1. Using standard norm inequalities,

X

jk

jEkjEkij≤
X

jk

jEkjj≤ n:

Substituting the latter bounds into Eq. S9 yields

X

ijk

�
sijk
�2

≤
4σ2

δ4

�
2+

4n
e2

+
1
e4

�
: [S10]

The ðtijkÞ2 terms in Eq. S8 are bounded in a similar way. First, we
observe that

�
tijk
�2

≤
2
δ4

�
G2

kj +
1
e4
G2

ki

�
:

Substituting G=E2 leads to

X

jk

G2
kj = kGk2F ≤ kEk4F ≤ 1;

from which

X

jk

�
tijk
�2

≤
2
δ4

�
1+

1
e4

�
: [S11]

Substituting Eqs. S10 and S11 into Eq. S8 and assuming ρ2 ≤ 2σ2
yields

kNk2 ≤ 4
δ4

�
2σ2
�
2+

4n
e2

+
1
e4

�
+ ρ2

�
1+

1
e4

��

≤
8σ2

δ4

�
3+

4n
e2

+
2
e4

�
:

[S12]

Combining bounds Eqs. S7 and S12 and requiring e≤ 1, one has

��M−1��kNk<
ffiffiffi
8

p
σ
�
e2 +

ffiffiffi
n

p �

δ2e4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e4 + 4e2n+ 2

p

≤
ffiffiffiffiffi
13

p

2

�
1+

ffiffiffi
2

p � σn
δ2e4

:

[S13]

It is easy to verify that for n≥ 2, demanding ρ< ðδ2e4Þ=ð12σn1:5�
implies

ρ<
1

ð1+ 2
ffiffiffi
n

p Þ��M−1��kNk; [S14]

from which it follows that

ρ
��M−1��kNk

1− ρkM−1kkNk<
1

2
ffiffiffi
n

p : [S15]

Since Eq. S14 implies
��ρM−1N

��< ρ
��M−1��kNk< 1, I+ ρM−1N

is invertible, and so is MðI+ ρM−1NÞ=M+ ρN, from which
uniqueness of the solution follows. Invertibility of the perturbed
system (Eq. S6) allows invoking of Lemma 3, which, combined
with Eq. S15, yields

kF−F0kF = kf − f0k≤
ρ
��M−1��kNk

1− ρkM−1kkNk kf0k<
1
2
; [S16]

where we used kf0k= kF0kF =
ffiffiffi
n

p
since F0 = I. Recalling that

P=UFUTΠp and that the unperturbed solution is P0 =Πp, and
using the orthonormality of U and Πp, one has kP−ΠpkF =��UðF−F0ÞUTΠp

��
F = kF−F0kF, which completes the proof.

Proof of Theorem 3. The proof goes along the lines of the proof
of Theorem 1. We reparametrize the optimization problem
(Eq. 9) in terms of Q=PΠpT instead of P. The assumption that
ΠpTC=D allows us to rewrite the second term of the objective as
μkPC−Dk2F = μkQD−Dk2F, yielding the following first-order op-
timality condition:

QB2 +B2Q− 2BQB+ μðQ− IÞDDTα1T = 0: [S17]

Denoting by B=UΛUT the orthonormal eigendecomposition
of B, and multiplying by UT from the left and by U from the
right, yields

FΛ2 +Λ2F− 2ΛFΛ+ μFG− μG+ γvT = 0; [S18]

with G=UTDDTU, to which, as before, we add the pseudosto-
chasticity constraint Fv= v. Eq. S18 can be expressed coordinate-
wise as

Fij
�
λi − λj

�2 + μ
X

k

FikGkj − μGij + vjγi = 0: [S19]

Note that both the system and the constraint decouple into n
independent systems whose variables are the rows f i = ðFi1; . . . ;FinÞT
of F.
Let us fix i and distinguish between two cases: First, if vi ≠ 0 (ui

does not belong to a hostile eigenspace), setting j= i yields

γi =
μ

vi

 

Gii −
X

k

FikGki

!

: [S20]

Substituting this result into Eq. S19, we obtain

Fij
�
λi − λj

�2 + μ
X

k

FikGkj − μGij

+μ
vj
vi

 

Gii −
X

k

FikGki

!

= 0:
[S21]

This can be further rewritten as the n×n system Mif i = ci, where

Mi = diag
n
ðλi − λ1Þ2; . . . ; ðλi − λ1Þ2

o

+μ
�
I−

1
vi
veTi

�
G+ eivT

[S22]
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ci = μGei − μ
Gii

vi
v+ eieTi v [S23]

and ei denotes the ith standard Euclidean basis vector. Note that
since Eq. S21 gives a trivial equation for j= i, we replaced it by
the pseudostochasticity constraint vTf i = vi, expressed by the last
terms of Mi and ci above.
The assumption that C and D are covariant under the iso-

morphism Πp makes the above system consistent in the sense that
f i = ei is its solution; it remains to show that the latter is the only
solution, that is,Mi is full rank. Denoting the matrixMi with μ= 0
by M0

i , we observe that it is full rank if and only if λi is a simple
eigenvalue; otherwise, if it has multiplicity mi+1 > 1, M0

i is rank-mi
deficient with the null space nullðM0

i Þ= spanfei+1; . . . ; ei+mig
corresponding to the vanishing rows ofM0

i . To makeMi full rank
for μ> 0, the range of R= ½I− ð1=viÞveTi �G has to contain the
latter null space, which happens if for every j= i+ 1; . . . ; i+mi,
Rej ≠ 0. Rearranging terms in R yields viGej ≠ veTi Gej; substitut-

ing the definition of G in terms of D and U, and using ui =Uei
and vi = 1Tui, yields

�
1Tui

�
UTDDTuj ≠ veTi U

TDDTuj; [S24]

from which the first condition of the theorem follows.
In the second case where vi = 0 (ui belongs to a hostile ei-

genspace), the Lagrange multiplier γi remains undetermined and
the system Mif i = ci is defined by

Mi = diag
n
ðλi − λ1Þ2; . . . ; ðλi − λ1Þ2

o
+ μG+ eivT

ci = μGei − γiv:
[S25]

Now, if λi has multiplicity mi+1,M0
i is rank-ðmi + 1Þ deficient with

the null space nullðM0
i Þ= spanfei; . . . ; ei+mig, as the ith row ofM0

i
also vanishes. For μ> 0, the system becomes full rank if the range
of G contains the latter null space, which yields the second con-
dition of the theorem.
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Fig. S1. Empirical evaluation of convex relaxation of seeded unfriendly graph matching on multiple graphs of different sizes and with different number and
types of symmetries. Seeded matching was performed with a different number of random point seeds (plotted on the horizontal axis as the ratio with the
number of nontrivial symmetries), all of which were made not invariant under the corresponding number of nontrivial symmetries. The vertical axis represents
the success rate of recovering one of the exact isomorphisms. Average values and minimum and maximum values are plotted as the red line and the error bars,
respectively. Two extreme points on the horizontal axis are remarkable in particular: The leftmost point corresponds to unseeded graph matching, showing
empirical evidence of the fact that convex relaxation fails on unfriendly graphs. The failure rate depends on the number of nontrivial symmetries. The
rightmost point corresponds to seeded graph matching with the seeds fully disambiguating the symmetries. In this case, perfect recovery of one of the iso-
morphisms is achieved.
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