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Abstract—We consider curve evolution based on comparing distributions of

features, and its applications for scene segmentation. In the first part, we promote

using cross-bin metrics such as the Earth Mover’s Distance (EMD), instead of

standard bin-wise metrics as the Bhattacharyya or Kullback-Leibler metrics. To

derive flow equations for minimizing functionals involving the EMD, we employ a

tractable expression for calculating EMD between one-dimensional distributions.

We then apply the derived flows to various examples of single image

segmentation, and to scene analysis using video data. In the latter, we consider

the problem of segmenting a scene to spatial regions in which different activities

occur. We use a nonparametric local representation of the regions by considering

multiple one-dimensional histograms of normalized spatiotemporal derivatives.

We then obtain semisupervised segmentation of regions using the flows derived in

the first part of the paper. Our results are demonstrated on challenging

surveillance scenes, and compare favorably with state-of-the-art results using

parametric representations by dynamic systems or mixtures of them.

Index Terms—Segmentation, Earth Mover’s Distance, curve evolution, scene

analysis.

Ç

1 INTRODUCTION

1.1 Motivation and Overview

MOTIVATED by surveillance applications, our goal is to identify, in a
given scene, different regions where different types of activities take
place. Rather than dealing with image segmentation, we use
dynamics-based observations, extracted from a video stream from
the scene, in order to segment the scene into various spatial regions.

In this paper, we use a curve evolution variational framework
for segmentation. The flow fields driving the curves are based on
the distributions of features in the inner and outer regions
bounded by the curves. Therefore, in the first part of this paper,
we consider the general problem of histogram-based curve
evolution. We derive novel flow fields to guide the evolution
process, based on using the Earth Mover’s Distance (EMD) [29] for
measuring the dissimilarity between two histograms. We apply
these flows to various examples and discuss their limitations.

In the second part of this paper, we return to the problem of
activity-based scene segmentation. We model regions by histo-
grams of features and apply the relevant flow fields for obtaining
semisupervised region segmentation.

1.2 Related Work

1.2.1 Curve Evolution Using Region Statistics

Active contours techniques were originally based on flow fields
derived by integrating region boundary image data—such as
edge strength—with a contour regularization term [4]. Early
papers using region data to drive the curve are, for example, the
papers by Ronfard [27], Zhu and Yuille [33], and Chan and Vese
[7]. A review of level-set methods based on region statistics was
recently presented by Cremers et al. [10]. Jehan-Besson et al. [19]

present a general scheme for deriving flow fields that minimize
a functional constituting of a regional integral of certain
descriptors which themselves depend on the region. The
descriptors integrated within a region may also depend on the
region—for example, a probability density on the region. We
adopt this framework in order to derive the flow fields
presented in this paper.

More specifically, histograms were used as the regional
descriptors in various papers. In Freedman and Zhang’s work
[16], the Kullback-Leibler and Bhattacharyya distances between
the sample density inside the region and a template density are
used as the minimization objective. Michaelovich et al. [24]
maximize the Bhattacharyya distance between the density inside
the region and the density outside of the bounded region. Aubert
et al. [1] compare histograms again by using the Kullback-Leibler
distance and the Hellinger distance which is equivalent to the
Bhattacharyya metric. A disadvantage these measures have is their
sensitivity to quantization: Some bin differences may be due to the
quantization of measurements into bins and not to differences in
the actual distributions.

The first contribution of this paper is the derivation of gradient
flow fields with respect to the Earth Mover’s Distance metric. We
first derive a simple and efficient expression for the EMD on one-
dimensional histograms. Then, we use this tractable expression to
derive the corresponding gradient flow fields. A related derivation
has also been presented by Chan et al. [6]. We present an intuitive
proof of the tractable EMD expression, and use slightly different
functionals for which we derive the corresponding flows.

Since the flow fields that drive the curves implement gradient
descent for minimizing a functional, the success of the method
relies on the given initial contour from which we start the process.
A second contribution is a method for obtaining a rough initial
segmentation, using again histogram descriptors. We limit our use
of histograms to rectangular regions, which allows us to exploit the
efficiency of the integral histogram data structure [26] in this
initialization stage.

1.2.2 Segmentation of Dynamic Scenes

There has been a lot of research on various segmentation tasks
using spatiotemporal data. A lot of research considered segmenta-
tion of objects using their motion, e.g., [11], [18], [20], [23]. Another
issue which received a lot of attention is temporal segmentation of
the video, e.g., [32]. Examples of techniques employed on
spatiotemporal data are Gaussian mixture models [17], mean-shift
[12], and spectral clustering [15]. However, relatively few papers
addressed the problem we are considering here—namely scene
segmentation using spatiotemporal data.

The works most directly related to our problem are those
inspired by the dynamic texture models introduced by Doretto
et al. [13]. There, linear dynamic systems were shown to model
certain types of videos of dynamic phenomena such as fire,
flowing water, smoke, etc. Following that framework, the works in
[14], [9] have considered the problem of spatial segmentation of a
scene using a video stream of the scene. More recently, Chan and
Vasconcelos [5] considered mixtures of dynamic textures and have
shown their applicability to a wider range of videos including
traffic and pedestrian videos. Our framework is different from
these previous efforts in that our approach is purely nonpara-
metric. In addition, we go beyond the smoke/fire/water type of
videos and demonstrate the applicability of our approach to
surveillance-type videos of various scenes.

1.3 Summary of Contributions

We summarize the main contributions of this paper:

1. Derivation of gradient flows for minimizing functionals
that use the EMD. A closely related result has appeared
(independently) in [6]. We provide an intuitive proof for
the tractable EMD expression which allows the flows to
be derived.
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2. Consideration of the question of initializing the curve
evolution process. We exploit the integral histogram data
structure and use standard clustering techniques on a set
of local histograms to automatically obtain a meaningful
initial contour.

3. The use of nonparametric models of different regions to
represent dynamic scenes, in contrast to modeling by
linear dynamic systems [14], [9], [5]. Our nonparametric
model does not involve the calculation of optical flow in
contrast with [21].

4. Demonstration of our approach on cluttered real-life
scenes with lots of human activity, unlike the scenarios
analyzed in [14], [9], [21].

2 THE EMD AND A TRACTABLE EXPRESSION

FOR ONE-DIMENSIONAL DENSITIES

Let fp1; . . . ; pNg and fq1; . . . ; qNg be the two histograms, where we
name the bins as 1; 2; . . . ; N . In this paper, all histograms are
normalized (sum up to unity). Assume that the cost of moving a unit
of probability mass from bin i to bin j is cij (cii ¼ 0). The idea behind
the EMD [29] is to find the cheapest way to transfer the probability
mass from fp1; . . . ; pNg to fq1; . . . ; qNg. The cost of this cheapest
possible transfer measures the distance between the two histograms.

Let us now limit ourselves to cases in which the histograms are
one-dimensional. In this case, there is a unique “path” from every
bin i to every bin j and it necessarily passes through other bins in
between. The unique path between every two bins significantly
constrains the possible flows and leads to the following:

Claim. Let P ¼ fp1; . . . ; pNg and Q ¼ fq1; . . . ; qNg be discrete prob-

ability distributions on N bins. Let fP1; . . . ; PN ¼ 1g and

fQ1; . . . ; QN ¼ 1g be the corresponding cumulative distribution

functions (CDFs): Pi ¼ p1 þ � � � þ pi; Qi ¼ q1 þ � � � þ qi.

Assume that the cost structure is cij ¼ ji� jj. Then,

EMDðP;QÞ ¼
XN
i¼1

jPi �Qij: ð1Þ

Proof. First suppose that P1 � Q1; P2 � Q2; . . . ; PN ¼ QN ¼ 1. The
first bin currently contains p1 mass, and needs to contain q1 � p1

mass. Therefore, we have to move p1 � q1 mass out, necessarily
to bin 2. Now, we have p2 þ p1 � q1 mass in bin 2. We need
leave there only q2 mass. By the assumption P2 � Q2, we have
p2 þ p1 � q1 � q2 so we have to move p2 þ p1 � q1 � q2 ¼
P2 �Q2 mass out of this bin, necessarily to bin 3.

Note that the cost for the mass moving we have done so far
is jP1 �Q1j þ jP2 �Q2j. We continue this way and obtain, in
this specific case, that the only feasible flow that transforms
fp1; . . . ; pNg to fq1; . . . ; qNg indeed costs

P
i jPi �Qij.

Thus, we have proven the claim for the case where the two
CDFs do not intersect—i.e., one CDF is always greater or equal
to the other CDF. In the general case where the CDFs intersect,
we apply the same argument over each of the segments where
one CDF is larger than the other. tu

Note that our proof relies on the specific cost structure that we
chose. Also note that the standard Kolmogorov-Smirnov statistic is
defined by KSðP;QÞ ¼ maxijPi �Qij. The claim we proved shows
that the EMD distance replaces the L1 norm between the CDFs by
the L1 norm.

3 CURVE EVOLUTION BASED ON EMD

We now use the simplified form of the EMD between two
distributions derived in (1) to obtain gradient flows for functionals
involving the EMD.

3.1 Maximal-Discrepancy Functional

We assume that our features are one-dimensional (e.g., intensities,
single-variable derivatives, edge orientations, etc.) and that we
characterize a region by the distribution of features in the region.
Let us represent a distribution in a nonparametric form by using a
histogram with z1 < z2 < � � � < zN being the maximal values in
each bin.

Let � be a closed curve in the image plane. Let

CDFRðziÞ ¼ Probðfeature value in region R � ziÞ; ð2Þ

where R ¼ fin; outg is one of the two regions separated by �. We
would like to find the curve � and its associated inside and outside
regions, such that the discrepancy between the features’ distribu-
tions inside and outside is maximal. We will measure the
discrepancy by the EMD

EMDð�Þ ¼ EMDðPin; PoutÞ ¼
XN
i¼1

jCDFinðziÞ �CDFoutðziÞj: ð3Þ

Following [19], we represent our functional (3) as a sum of
(absolute value of) expressions of the form

Z Z
�out

koutzi
ðx; y;�outÞdxdyþ

Z Z
�in

kinzi ðx; y;�inÞdxdy: ð4Þ

Let us define V ðzi;�Þ ¼ CDFinðziÞ � CDFoutðziÞ and

Tzðx; yÞ ¼
1; Iðx; yÞ � z
0; Iðx; yÞ > z;

�
ð5Þ

where Iðx; yÞ is the feature value at ðx; yÞ. Then,

CDFRðziÞ ¼ ProbðIðx; yÞ � zijðx; yÞ�RÞ ¼
R R

R Tzi ðx; yÞdxdyR R
R 1dxdy

: ð6Þ

Denote the denominator (using the same notation as in [19]) by

AR ¼ GR
1 ¼

R R
R 1dxdy and define

kinzi ðx; y;�Þ ¼ g
inðx; y;Gin

1 Þ ¼
Tzi ðx; yÞ
Gin

1

:

Then, we have

CDFinðziÞ ¼
Z Z

�in

kinzi ðx; y;�Þdxdy ¼
Z Z

�in

Tzi ðx; yÞ
Gin

1

dxdy;

and in a similar fashion,

� CDFoutðziÞ ¼
Z Z

�out

koutzi
ðx; y;�Þdxdy ¼

Z Z
�out

�Tzi ðx; yÞ
Gout

1

dxdy:

Following [19], the flow that minimizes

V ðzi;�Þ ¼
Z Z

�out

koutzi
ðx; y;�outÞdxdyþ

Z Z
�in

kinzi ðx; y;�inÞdxdy

is given by

~F ¼
�
kinzi � k

out
zi
þAin

1 H
in
1 �Aout

1 Hout
1

�
~N; ð7Þ

where ~N is the inward normal to the curve, and Ain
1 ; H

in
1 are as

follows:

Ain
1 ¼

Z Z
�in

@gin

@Gin
1

�
x; y; Gin

1

�
dxdy ¼

Z Z
�in

�Tzi ðx; yÞ
Gin

1
2

dxdy

¼ � 1

Gin
1

2

Z Z
�in

Tzi ðx; yÞdxdxy
ð8Þ

and Hin
1 � 1 (Gin

1 integrates 1 over �in). Similarly, Aout
1 ¼

1
Gout

1
2

R R
�out

Tzi ðx; yÞdxdxy.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 9, SEPTEMBER 2009 1709



Plugging everything in (7), and writing Ain; Aout instead of

Gin
1 ; G

out
1 , we obtain

~Fzi ðx; yÞ ¼
Tzi ðx; yÞ
Ain

þ Tzi ðx; yÞ
Aout

� Cin

Ain
2
� Cout

Aout
2

� �
~N; ð9Þ

Cin ¼
Z Z

�in

Tzi ðx; yÞdxdxy

¼ number of pixels inside; where Iðx; yÞ � zi;
ð10Þ

Cout ¼
Z Z

�out

Tzi ðx; yÞdxdxy

¼ number of pixels outside; where Iðx; yÞ � zi:
ð11Þ

This flow minimizes V ðzi;�Þ ¼ CDFinðziÞ � CDFoutðziÞ. Since

we want to maximize EMDð�Þ ¼
PN

i¼1 jCDFinðziÞ � CDFoutðziÞj,
the resulting flow is computed as follows:

Algorithm 1.

1. For every threshold zi, compute

si ¼ sign½CDFinðziÞ � CDFoutðziÞ� ¼
1; CDFinðziÞ�CDFoutðziÞ
�1; CDFinðziÞ<CDFoutðziÞ:

�

(12)

2. Compute

Fzi ðx; yÞ ¼ Tzi ðx; yÞ
1

Ain
þ 1

Aout

	 

� Cin

Ain
2
� Cout

Aout
2

� �
; (13)

where Cin; Cout are as defined in (10), (11) and Ain;Aout are the

areas of the inside and outside regions determined by �,

respectively.

3. The overall flow field is then given by

T ðx; yÞ ¼
X
zi

ð�siFzi ðx; yÞÞ~N; (14)

where ~N is the inward normal.

3.2 Match-to-Template Functional

Another useful criterion is to measure how close the distribution

inside the curve is to a given template distribution. Let H be the

template histogram which is fixed and independent of the curve �.

Let Jð�Þ ¼ EMDðdistribution inside �; HÞ be the functional. Then,

by the claim in Section 2, we have

Jð�Þ ¼
XN
i¼1

jCDFinðziÞ � CDFHðziÞj: ð15Þ

In a similar fashion to Algorithm 1, the overall flow for

minimizing the discrepancy with respect to a given template goes

as follows:

Algorithm 2.

1. For every threshold zi, compute �i ¼ CDFHðziÞ and

si ¼ sign½CDFinðziÞ � �i�.
2. Compute

Fzi ðx; yÞ ¼ Tzi ðx; yÞ
1

Ain
� Cin

Ain
2

� �
; (16)

where Cin is as defined in (10) and Ain is the area of the inside

region determined by �.

3. The overall flow field is

T ðx; yÞ ¼
X
zi

siFzi ðx; yÞð Þ~N; (17)

where ~N is the inward normal.

3.3 Balloon-Type Flow

The similarity-to-template flow that we have just considered has
two drawbacks. First, it has no incentive to find the maximal region
corresponding to the given template. Second, the flow field does not
vanish around the boundary and, in general, the curve will oscillate
near the boundary. A possible solution is to add to the objective
function in (15) an area term (properly weighted), resulting in an
addition of balloon force [8] to the flow. However, the choice of
relative weights between the terms is a well-known issue.

We chose a more robust alternative by considering a normal
flow where the speed is governed by a histogram difference metric.
At each point ðx; yÞ on the curve, a local histogram Histðx; yÞ of
feature values is extracted. This may be done efficiently using the
integral histogram data structure [26] as will be described in the
next section. If H is the template histogram, then the flow at ðx; yÞ is

~F ðx; yÞ ¼ �e��EMDðHistðx;yÞ;HÞ ~N: ð18Þ

This way, in a sense, we compute the weighted distance from
the original contour. Once the distance map has been computed,
we would like to extract a contour along which integration over the
distance gradient is the largest. Here, we implemented a heuristic
approach that goes back to Malladi et al. [22] and Caselles et al. [3],
where we actually stop the computation of the distance as the
distance gradient gets higher than a specific threshold. In fact,
since here we do not have the parabolic diffusion terms in the
above models, the treatment of the problem as that of a search for
high distance gradients along a distance map becomes natural and
provides a new variational meaning to the proposed solution.

We note that the local histograms Histðx; yÞ are extracted from a
neighborhood whose size is chosen empirically. The neighborhood
should be large enough to provide a meaningful histogram, but not
too large to obtain good localization.

4 INITIALIZATION

We now present a method for initializing curves for the maximal-
discrepancy functional. Using the integral histogram data structure
[26], we may efficiently associate with each pixel a local histogram
representing the distribution of features over a rectangular patch
around the pixel. This histogram serves as an easily computable
local feature.

We use this idea to derive the following variant of k-means
clustering. First, we cover the image by a set of M square (or
rectangular) neighborhoods fNðxi; yiÞji ¼ 1; . . . ;Mg with centers
at ðxi; yiÞ and half widths/heights w. For simplicity, we assume
that ðxi; yiÞ are spaced 2wþ 1 pixels apart, so that every pixel in the
image belongs to exactly one neighborhood.

Next, we extract the vector Qi corresponding to the per-bin
counts in the neighborhood Nðxi; yiÞ. Qi is of length N (the number
of bins in the histograms) and its kth coordinate counts the number
of pixels in Nðxi; yiÞ falling into bin k. The following is a k-means
algorithm for clustering the local histograms fQ1; . . . ; QMg:

Algorithm 3.

1. Initialize two cluster centers C1; C2 by choosing randomly from

fQ1; . . . ; QMg.
2. For each Qi, compare EMDðQi; C1Þ and EMDðQi; C2Þ. Assign Qi

to the closer cluster center.

3. Update C1; C2 by summing the counts of all the assigned Qis:

Cnew
j ¼

X
fijlabelðiÞ¼jg

Qi: (19)
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Note that here we use the fact that the descriptors Qi are counts

and were not normalized to histograms.

4. Go back to step 2 until assignments have stabilized.

By running this algorithm, we get a partition of our M local

neighborhoods into two sets. The quality of this partition is the

EMD between the two final vectors C1 and C2. We run this

algorithm R times—each time with a different random initializa-

tion of the two cluster centers—and choose the partition with

maximal final EMD between C1 and C2.

5 IMPLEMENTATION

The first two gradient flows derived in Section 3 were implemented

using an explicit scheme within the level-sets framework [30], [25].

For the local histogram similarity flow, we used the fast marching

method, since the curve passes through each point only once.
The choice of time step in the implementation of the EMD flow is

restricted by the CFL condition [30], [25], and is limited by the

largest flow magnitude in the relevant spatial domain. If the outer

and inner regions have significantly different areas, the flow field

may exhibit large variations in magnitude, leading to slow

evolution. We, therefore, bound the outer region such that

Aout � Ain.

6 EXPERIMENTAL RESULTS—STILL IMAGES

We first experiment with the maximal-discrepancy functional and

then demonstrate the match-to-template functional (with balloon

force flow) using segmentation in ultrasound images and scene
segmentation as discussed in Section 1.

Fig. 1 shows several gray-scale images. We ran the initialization
method described in Section 4 (Algorithm 3), where the local
feature vector is a 32-bin intensity histogram, extracted on a 9	 9
neighborhood (w ¼ 4). Column (b) shows the results of this
initialization stage, which indeed provide a good starting point
for the flow.

In column (c) of Fig. 1, we see the result of employing the
maximal-discrepancy flow (Algorithm 1), starting from the curve
shown in column (b). We stopped the flow upon convergence of the
functional value EMDð�Þ (3) to a local maximum. Column
(d) shows the kernel-density-estimated intensity histograms for
the final foreground and background regions. Recall that the flow
is designed to maximize the difference between these two
distributions. We emphasize that in all of these results we used
only gray-scale intensities quantized to 32 bins, and all parameter
values were the same.

Sometimes, the maximal-discrepancy functional does not
capture a perceptually meaningful region of the image. Fig. 2
shows two such examples, where the flow separates the dark and
bright regions, giving a flawed segmentation.

Fig. 3 demonstrates the advantage that the EMD flow has over
traditional flows for bin-wise metrics as the Bhattacharyya flow or
Kullback-Leibler flow [16], [24]. We initialized the yellow contour,
and ran the EMD, Bhattacharyya, and Kullback-Leibler flows to
maximize the distributional difference between foreground and
background. When using bin-wise metrics as the Bhattacharyya or
Kullback-Leibler metrics, the resulting segmentations in columns
(b) and (c) are as good a result (in terms of the functional maximal
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value) as the segmentation in column (a). However, with the EMD
metric, the segmentation in column (a) provides a larger value for
the functional than those in columns (b) and (c), and indeed, the
EMD flow is the only flow to converge to this segmentation.

We ran the balloon-type flow (Section 3.3) on intracardiac

ultrasound images. In this application, segmentation is a first stage

before further processing such as 3D reconstruction [2]. The

segmentation process is semisupervised in two aspects. First, the

initial “seed” is placed by the user inside the region to be

segmented. Second, the user chooses the time to stop the flow.

This extra input from the user is required since usually parts of the

object boundary are nonexistent, and hence, the curve flows beyond

the object. Automatic methods for handling this problem—for

example, shape-based prior knowledge [28]—are out of the scope of

this work. Fig. 4 shows some results. One may note the quality of

the results on these challenging images, using 32-bin quantized

gray-scale intensities.

7 ACTIVITY-BASED SCENE SEGMENTATION

We now return to the application discussed earlier—namely spatial

segmentation of a scene based on a video showing scene activity.

We will describe the features whose distributions we compare

using the EMD, and hence, derive the flow of the segmenting curve.

7.1 Feature Extraction

Let fIðx; y; tÞg be a video sequence from a given scene. We assume

that the camera is static, as is the case in most surveillance videos

(small camera vibrations due to wind may be compensated using

standard alignment techniques). The features for which we will

compute one-dimensional histograms are normalized values of the

spatiotemporal derivatives Ix; Iy; It. These features were used by

Zelnik-Manor and Irani [31] for action representation and recogni-

tion. In contrast to Zelnik-Manor and Irani [31], who used a single

global histogram of these features, we use local histograms of these

features as local features of a spatial position. In order to efficiently

extract these local descriptors over multiple positions, we use the

integral histogram data structure as described in Section 4.
The following is a detailed description of the feature extraction

process:

1. Input: a video sequence fIðx; y; tÞjt ¼ 1; . . . ; Fg, number of
bins B, temporal change threshold T .

2. Output: integral histograms IHx; IHy; IHt each containing B
integral images for each bin b ¼ 1; . . . ; B.

3. For each current frame Ið�; �; kÞ, compute the following
three normalized derivative images:

Nx ¼
jIxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ix
2 þ Iy2 þ It2

q ; Ny ¼
jIyjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ix
2 þ Iy2 þ It2

q ;

Nt ¼
jItjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ix
2 þ Iy2 þ It2

q :

4. Bin every pixel in each of the images Nx;Ny;Nt into one of
B bins, taking into account only pixels where jItj > T .

5. Compute the integral histograms of the current frame I

obtaining IHk
x; IH

k
y; IH

k
t .

6. Aggregate the per-frame integral histograms over all
frames
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Fig. 3. Initial contour (yellow) and final segmentation for three flows. (a) EMD-based flow. (b) Bhattacharyya flow. (c) Kullback-Leibler flow. Note that EMD flow converged

to a solution which perceptually seems to separate foreground from background better than the solution obtained by the flows based on bin-wise metrics.



1 � k � F : IHx ¼
X
k

IHk
x; IHy ¼

X
k

IHk
y; IHt ¼

X
k

IHk
t :

Note that each data structure in the sum is actually B

images—one for every bin.

The above process (appropriately implemented) can run in real

time on a video sequence. The output is three integral image data

structures IHx; IHy; IHt allowing us to efficiently extract the

histogram of Nx;Ny, or Nt values over a rectangular spatial region

extending over all frames k ¼ 1; . . . ; F .
Real-life scenes often exhibit large variations in the dynamics

of objects in the scene. For example, urban outdoor scenes

contain both slow pedestrians and fast vehicles. Therefore, we

run the above process over several (usually two or three)

temporal scales. This is done by temporal smoothing and

downsampling of the sequence.

7.2 Similarity-to-Template Image

Suppose that we extracted ðIH1
x; IH

1
y; IH

1
t ; . . . ; IHR

x ; IH
R
y ; IH

R
t Þ, where

r ¼ 1; 2; . . . ; R denotes the temporal resolution. We have 3R

integral histograms which allow us to extract 3R histograms from

each rectangular region. Let Histiðx; yÞ denote the ith histogram

extracted from a rectangular neighborhood of ðx; yÞ (so that

Hist1ðx; yÞ is the histogram of Nx values at first temporal

resolution, Hist6ðx; yÞ is the histogram of Nt values at second

temporal resolution and so on). Let Hi be the ith template

histogram, extracted from a template region selected by the user.

Then, the similarity image to this template is

Sðx; yÞ ¼
X3R
i¼1

EMDðHistiðx; yÞ; HiÞ: ð20Þ

From this similarity image, we derive the flow

~F ðx; yÞ ¼ �e��Sðx;yÞ ~N; ð21Þ

as in (18).

7.3 Results

We now present several examples of semisupervised spatial

segmentation of scenes using video input. Fig. 5 shows several

example scenes and regions segmented in these scenes. The first

column shows the first frame from the input video. The next

columns show the user-selected seed, and the region that was
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Fig. 5. Example scenes and extracted regions in them. (a) First frame from the input videos. (b)-(d) Example regions. These regions are associated with different

activities, and have a clear semantic meaning.

Fig. 4. Intracardiac ultrasound segmentation results. The curve has grown from a user-selected seed (marked) using the EMD similarity-to-template flow (Section 3.3).



segmented using that seed. In the first row (mall scene), we
segmented two escalators and a floor region where people move
freely. These regions clearly have different activities associated
with them.

In the second row (pool scene), the pool has three distinct
regions. In the far region, children play freely and no swimmers
exercise. The second-from-camera lane is intended for fast swim-
mers and the closest lane is reserved for slow swimmers. Given user-
chosen seeds, our algorithm extracted these regions successfully.
Note that no overflow to nonwater areas has occurred. Also note
that the lane markings are there in the images but were not used and
results would have been the same had they not been in the pool.

The third row depicts a junction scene. In this scene, we
segmented a right-turning lane where the traffic is generally fast
(b), several lanes going downward in the image, where traffic is
either fast or standing (corresponding to green/red lights) (c), and
a pedestrian-crossing zone (d). Again, these regions have clear
semantic meaning and could not have been segmented without
using video data.

Finally, we show in the fourth row that our method is
successful on classical dynamic textures such as those in [14].

8 DISCUSSION AND SUMMARY

Motivated by medical and surveillance applications, we explored
in this work the issue of histograms-based curve evolution. Using a
tractable form of the EMD for one-dimensional histograms, we
derived gradient flows for several functionals using the EMD.

The maximal-discrepancy functional is mathematically appeal-
ing and was shown to be perceptually valid in some cases,
usually of uniform background. However, we also presented
cases where it was shown to be of limited perceptual value. We
found the similarity-to-template functional useful in both of the
applications we considered, using a variant to maximize the area
similar to a template.

In applying the similarity-to-template flow, we used the
integral histogram to efficiently extract local histograms all over
the image. The same data structure allows efficient initialization of
curves as we have demonstrated using a variant of k-means.

The efficient and simple form of EMD, together with the use of
the integral histogram, allow the segmentation process to run in
real-time, which is extremely important in the medical application
we considered (being done as part of a medical intervention).

Finally, in surveillance-type scenes, we demonstrated extraction
of regions that have a clear semantic/activity interpretation. We
did this using nonparametric local representations using multiple
one-dimensional histograms of normalized spatiotemporal deriva-
tives. On real-life challenging scenes, our results compare
favorably with state-of-the-art approaches which use representa-
tions based on dynamic systems [14], [5].
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