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Role of optics in the accuracy of
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The depth-from-focus–defocus approach to 3D reconstruction is based on the fact that objects closer to or far-
ther from the object in focus appear blurred, and the amount of blur increases with the distance from the object
in focus. An important characteristic of any depth-from-defocus system is the depth reconstruction accuracy.
Several 3D reconstruction algorithms have been proposed, and the influence of image noise and image spec-
trum on the system accuracy has been studied. However, so far the effect of optics on the accuracy has not been
fully explored. Here, we derive an expression estimating the system accuracy as a function of its optical pa-
rameters. It turns out that optics plays a major role in the accuracy, and tenfold increase of the lens focal
length, and the aperture can increase the overall accuracy by a factor of more than 1000. The derived expres-
sion allows one to review several results, revealing that the accuracy is defined primarily by the optics. We also
provide guidelines for the design of new depth-from-defocus systems in compliance with predefined specifica-
tions by choosing the appropriate optics. © 2007 Optical Society of America

OCIS codes: 110.6880, 150.5670, 150.6910.
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. INTRODUCTION
econstruction of the geometric structure (3D) from 2D

mages is an important task in computer vision. Among
ther approaches for 3D reconstruction—commonly re-
erred to as “depth-from-X,” where X stands for stereo,
hading, motion, structured light, etc.—depth-from-
efocus and closely related depth-from-focus approaches
ave attracted substantial attention.1–12 These ap-
roaches are based on the limited depth of view of the
ens. When the lens is focused on a certain object, objects
ocated closer to or farther from the object in focus appear
lurred. The blur increases with the distance from the ob-
ect in focus. This phenomenon allows one to estimate the
eometry of a scene by measuring the amount of blur in
n image. In a depth-from-defocus approach, two images
ith different defocus levels are used. The depth-from-

ocus approach relies on multiple images, focused at dif-
erent distances evenly distributed through the depth
ange. This gives the depth-from-focus approach some ad-
antage in accuracy over depth from defocus at the ex-
ense of a larger number of the acquired images. The
erivations we present here are relevant to both ap-
roaches.
An important characteristic of depth from defocus is

he reconstruction accuracy, which depends on many fac-
ors, such as camera settings,13 number of observations,14

mage noise,15 and spatial frequencies.16 Numerous algo-
ithmic ways to improve the reconstruction accuracy have
een proposed.17–23

Among the papers tackling the role of optics, most rel-
vant to our discussion are Refs. 18 and 24. Subbarao and
urya in Ref. 18 used a thin lens formula to derive a qua-
ratic dependence of the reconstruction error on the dis-
ance L to the object. However, they did not estimate the
agnitude of the error. Nayar et al. in Ref. 24 decomposed
1084-7529/07/040967-6/$15.00 © 2
n image blur into separate defocus, sensor, and optical
ransfer function blurs. However, the blurring model was
sed to design a linear operator for computing the rela-
ive blur of the two images and not for the accuracy analy-
is.

Here, we follow Ref. 24 and decompose the blur into de-
ocus, sensor, and optics blur. We extend the analysis by
xpressing the blur in terms of basic optical parameters
nd use the resulting model in order to estimate the sys-
em accuracy. The expression for the system accuracy con-
rms the quadratic dependence of the error on L, derived

n Ref. 18.
The main contribution of this paper is an estimation of

he system accuracy as a function of its optical param-
ters. We show that the system optics actually defines the
econstruction accuracy. For example, we show how the
hange of the lens focal length and the aperture by a fac-
or of 10 can result in a change of depth resolution by a
actor of more than 1000. Review of the published results
rom the perspective of this estimation confirms the fun-
amental role of the optics on the system accuracy.

. ROLE OF OPTICS IN DEPTH ACCURACY
. Spatial Domain Analysis
n image i�x� captured by an image sensor is formed from
sharp preimage s�x�, blurred by the optics, the defocus,

nd the finite size of the pixels. It also includes some
oise. Formally, the image can be described via the con-
olution of s�x� with the point spread function h�x�, as

i�x� = h�x� � s�x� + ��x�, �1�

here x= �x ,y� is a coordinate in the 2D image and ��x�
escribes an additive noise.
007 Optical Society of America
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h�x� can be considered as a convolution of the optical
lur ��x�, the defocus blur ��x�, and the sampling blur
�x� kernels24:

h�x� =�� ��x − s���s − t���t�dsdt. �2�

ccurate modeling of ��x�, ��x�, ��x� is technically diffi-
ult and requires a special software and a detailed physi-
al model of the lens and the sensor,25 which are usually
navailable.
The popular measure of lens quality is the modulation

ransfer function, which is defined as the ratio of relative
mage contrast divided by relative object contrast, where
he object is the sinusoidally varying brightness at some
patial frequency. The MTF depends on the location on
he image plane and decreases with increase of the spa-
ial frequency. Despite the relation of MTF to the lens
esolution, the blur kernel ��x� cannot be derived from it.
sually, as the F number of the lens increases from low to
igh, the blur of the lens first decreases due to the im-
rovement of the optical wavefront, and then increases
ue to increasing diffraction blur.26 The blur for the lower
nd of the F-number range varies among different lenses,
hile the blur for the higher end of the F-number range of
ost decent lenses approaches the diffraction limit,26,27

��x� = �2J1���

�
�2

. �3�

ere, �= ���x�D� / ��l�, J1 is a Bessel function,28 �=0.7
10−6 m is the wavelength of the light, l is the distance

rom the lens to the image plane, and D is the lens diam-
ter (see Fig. 1). In practical cases l	 f, where f is the fo-
al length of the lens. Using the definition of the F num-
er, F
 f /D, we can write �	���x�� / ��F�.
The defocus kernel has a cylindrical shape given by

��x� = �
1

�rd
2 , �x� 	 rd

0, �x� 
 rd
� , �4�

Refs. 29 and 30) where the radius of the cylinder (see Fig.
) is given by

rd = �l

l

D

2  =  �l

�L

�L

l

D

2  =  f2

L2

�LD

l  	  f2

L2

�L

F  .

�5�

ere, the derivative �l /�L, is obtained from the thin lens
ormula,29 connecting the focal length f, the distance L to
he object, and the distance l to the focused image of the
bject:

Fig. 1. Defocus spot size.
1

l
+

1

L
=

1

f
. �6�

inally, the sampling kernel describes averaging over a
quare pixel of size �x:

��x� = �
1

�x2 , max��x1�, �x2�� 	
�x

2

0, otherwise
� . �7�

ow consider an image in focus I�x�=����s�x� and a de-
ocused image J�x�=������s�x�. (See Fig. 2.) The mini-

al depth resolution �L is the depth change, at which the
ifference between the image in focus and the defocused
mage becomes distinguishable.

Figure 3 presents results of computer simulation of the
iffraction and defocus blurs. The sharp preimage s�x�
as a steplike profile, shown as a dashed curves. The fo-
used image of this profile, blurred only by the optics dif-
raction with �F=1 is shown by a solid curve I
��1��s�x�. The dotted curves show the defocused im-
ges, blurred by defocuses with rd=1 and rd=2; J1
��1����1��s�x�, and J2=��2����1��s�x�.
Arbitrary small defocus blur will result in some differ-

nce between the focused and defocused blurs. In practi-
al cases, such difference is obscured by the image quan-
ization and noise. The difference between the images
hould exceed the quantization and noise level, in order to
e reliably detectable. The defocus might be detectable
lso when the difference between the images is below the
oise level. However, rigorous analysis of the minimum
istinguishable difference between two noisy images
eems to be a somewhat unrelated task. Actually the field
f image denoising in image processing introduces many
olutions, each one tailored for a specific scenario. Noise
nalysis requires assumptions about the nature of the
oise and the image contents and is beyond the scope of
his paper.13,15

ig. 2. Overall blur kernel is formed by convolution of the opti-
al, defocus, and sampling kernels.

ig. 3. (Color online) Step on the sharp preimage, smoothed by
he optics blur and further smoothed by defocus.



c
d
t
p
n
m
a
q
s

f
b
w
f
s

l
s
i
s

B
T
t
a
a
a
s
t
k
h
t
r
a

f

w
x
=

(
g

N
fi
T
+

T
t
i
b
a
	
t
F
E
b
p
r
c
s
c
a
b
f
q
t
b

a
i
c

w

F
n
�
t

a

F
t

Blayvas et al. Vol. 24, No. 4 /April 2007 /J. Opt. Soc. Am. A 969
For the sake of simplicity, we assume that the noise ex-
eeds the image quantization level and that the minimal
etectable difference between the images must be equal
o the noise level. Furthermore, we assume that the sharp
reimage has features equivalent to a step with the mag-
itude 10% of the full intensity range. These assumptions
ay seem too pessimistic or the contrary, but even if they

re false, all the further conclusions would still remain
ualitatively the same, although the numbers will be off-
et by a constant factor.

The maximum difference between the focused and de-
ocused images, shown in Fig. 3 are 0.0113 for an image
lurred with ��rd=1� and 0.0264, for an image blurred
ith ��rd=1�. They will become distinguishable from the

ocused image at the S /N=15.8 dB and S /N=19.5 dB, re-
pectively.

For any ratio rd / ��F� there is a corresponding noise
evel at which the defocus becomes detectable. Figure 4
hows rd / ��F� as a function of the signal to noise of the
mage. The simulation was performed for an image with a
tep of 10% of the intensity range.

. Fourier Domain Analysis
o take into account the sampling blur (image pixeliza-
ion) and derive an analytical estimate for the resolution
s a function of optical parameters, we proceed to the
nalysis in the Fourier domain. In the Fourier domain,
ny blur is a low-pass filter, that cuts off or significantly
uppresses high frequencies, starting from some charac-
eristic frequency �	1/, where  is the scale of the blur
ernel in the spatial domain. In the previous section, we
ave seen that at the reasonable signal-to-noise ratios,
he scales of defocus and optical blurs must be compa-
able. This implies that in the Fourier domain their char-
cteristic frequencies must be comparable.
In the Fourier domain, the diffraction blur is trans-

ormed into

F���x�� = �F2�� − sin ��, �u2 + v2 	
2

�F

0, �u2 + v2 

2

�F
� , �8�

here u and v denote spatial-frequency parameters in the
and y directions, respectively, and �

2 arccos��F�u2+v2 /2�.24 The defocus blur then reads

ig. 4. Ratio between the distinguishable defocus spot rd and
he optics blur �F as a function of the signal-to-noise ratio.
F���x�� =
L2F

2�f2�L�u2 + v2
J1�2�f2�L

L2F
�u2 + v2� �9�

Refs. 24 and 27). Finally, the sampling kernel blur is
iven by

F���x�� =
1

2�

1

�x2 sinc
u�x

2
sinc

v�x

2
. �10�

ow, consider two images I and J. Let us assume that the
rst image is in focus, and the second one is out of focus.
hen, I�x�=h�x ,L�� �s�x�+�1�x�� and J�x�=h�x ,L
�L�� �s�x�+�2�x��. In the Fourier domain, we have

F�I� = F���x��F���x��F�s�x� + �1�x��,

F�J� = F���x��F���x��F���x��F�s�x� + �2�x��.

�11�

he minimal depth resolution �Lmin is the value, at which
he difference between F�I� and F�J� is detectable. The
mages I and J are blurred, and therefore they have a
and-limited spectrum with characteristic frequencies �I
nd �J. We can say that �I	min��� ,�� ,�s�, �J
min��� ,�� ,�� ,�s�, where ��,�,�,s denotes the characteris-

ic frequencies of the band-limited kernels �, �, �, and s.
or the image in focus I, the defocus kernel �, given by
q. (4) approaches a delta function, and does not limit the
andwidth of I, which is defined by diffraction and sam-
ling blurs. As the image J gets out of focus, the defocus
adius rd increases, and the defocus blur first becomes
omparable and then even exceeds the diffraction and
ampling blurs. At this moment, the second image be-
omes more blurred than the first one. Therefore, the im-
ges I and J become distinguishable when the defocus
lur exceeds the diffraction and sampling blurs. In the
requency domain, this means that the characteristic fre-
uency of the band-limited defocus kernel becomes lower
han characteristic frequencies of diffraction and defocus
lurs: ��	min��� ,�� ,�s�.
Here, we assume that the resolution is optically limited

nd not limited by the absence of high spatial frequencies
n the image: �s
 ��� ,���. In this case, the defocus blur be-
omes distinguishable when

�� 	 min���,���, �12�

hich can be rewritten as

1

��

	 max� 1

��

,
1

��
� ⇒

1

��

	� 1

��
2 +

1

��
2 . �13�

rom Eqs. (8)–(10), describing the spectrums of the ker-
els, we can estimate their characteristic frequencies as
�=L2F / �2�f2�Lmin�, ��=2/ ��x�, and ��=2/ ��F�. Substi-
uting into Eq. (13), we obtain

2�f2�Lmin

L2F
	���x

2 �2

+ ��F

2 �2

, �14�

nd thereby
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�Lmin 	
L2F

2�f2���x

2 �2

+ ��F

2 �2

. �15�

gain, we would like to stress that �Lmin measures the
epth shift at which the defocus blur becomes comparable
o the diffraction and sampling blurs. �Lmin can serve
nly as an estimate for the resolution of the system. In
he case of low image noise, feature rich image, and effi-
ient processing algorithm, the resolution can, in prin-
iple, exceed �Lmin. In the case of noisy and textureless
mage, the resolution can be lower than �Lmin.

Substituting some typical numbers into Eq. (15), such
s {f=20 mm, F=16, L=1 m, �x=5 �m}, we obtain
Lmin=39 mm. Replacing the lens for one with ten times

onger focus and opening the aperture by a factor of 10,
uch as {f=200 mm, F=1.6, L=1 m, �x=5 �m}, we obtain
Lmin=0.016 mm. Thus, we have shown that the change
f the lens can improve the accuracy by a factor of �2500.

In the literature, the popular figure of merit of an algo-
ithm is the relative error �Lmin/L. We can see from Eq.
15) that

�Lmin

L
=

LF

2�f2���x

2 �2

+ ��F

2 �2

�16�

epends on L, f, F, and �x—the optical parameters of the
ystem, and therefore the measure �Lmin/L, often used in
ublications that explore the depth-from-defocus problem,
oes not provide an optics-invariant comparison between
he algorithms.

. Depth from Defocus versus Depth from Focus
he above analysis refers to the case where one image is

ocused, and the second one is defocused, which is a
epth-from-focus approach. In depth from defocus, both
mages are defocused. In that case, the achievable accu-
acy degrades. Figure 5 shows a step profile, blurred by
ifferent defocuses, with rd� �0.2,20�. Figure 6 shows the
aximum derivative between adjacent profiles,
ax���rd+�rd���1�s�x�−��rd���1�s�x�� /�rd. One can see

hat after a prompt increase, near rd	0, the difference
ecays from its maximum value of 0.02, near rd	2 to
0.005 and below near rd�20 and beyond. This figure il-

ustrates, that the resolution of the depth-from-defocus
pproach gradually degades with increasing defocus, but
emains proportional to the resolution of the depth-from-
ocus approach.

ig. 5. (Color online) Steplike profile with different defocus
. REVISITING DEPTH RECONSTRUCTION
ROM DEFOCUS
ost of the depth-from-defocus publications evaluate

heir accuracy as an rms error divided by the distance
ange. As one can see from Eq. (16), this measure depends
n the optics. We would like to compare reported results
n an optics-invariant way, by dividing each reported ac-
uracy by its corresponding �Lmin, derived from the re-
orted optical parameters of the system. The ratio be-
ween the reported accuracy �Lrep and its optical limit
Lmin will be referred to as the accuracy factor, �
�Lrep/�Lmin. Estimation of �Lmin requires knowledge of
, f, F, and �x. Unfortunately, some of these parameters
re sometimes missing from the reports.
Among the relevant publications that we could not

valuate here due to the missing optical parameters are24

ith microscopic depth from defocus, where L, f, �x are
issing31; where L, �L, and �x are missing18; and32

here L, f, and �x are missing; and 23 where �x is miss-
ng. Actually the pixel size �x is not reported in most of
he papers, but in some cases it can be recovered from the
ocumentation of the camera.
Subbarao and Choi in Ref. 17 proposed to use the fo-

used image surface in order to reconstruct the 3D shape
f an object. They derived and experimentally confirmed
hat �L�L2, in compliance with Eq. (15). The optical pa-
ameters were f=35 mm, F=4, L=1 m, and �x=13 �m,
hile �Lrep=3 cm. Substituting the optical parameters

nto Eq. (15), we obtain �Lmin=3.5 mm. Therefore, for
his algorithm, the accuracy factor is �=8.6.

Subbarao and Surya in Ref. 18 apply a spatial domain
ransform to extract the depth information from two im-
ges, each with different camera parameters. In their sys-
em, f=35 mm, F=4, L=2 m, �x=13 �m, and �Lrep
0.1 m. Substituting these figures into Eq. (15), we obtain
Lmin=13.8 mm, thereby �=7.24.
Ens and Lawrence in Ref. 19 calculate the depth infor-
ation from two defocused images, acquired with two dif-

erent F numbers. Defocusing by change of the F number
reserves l and allows one to exclude an unwanted scal-
ng of the image. The blur is treated as a convolution of a
harp image s�x ,y� with a low-pass filter h�x ,y�. A less
lurred image i1�x ,y�=s�x ,y��h1�x ,y� is acquired with a
efocused system with higher F number F1 and a more
lurred image i2�x ,y�=s�x ,y��h2�x ,y� with F2�F1. Then,
he inverse problem is solved to find a blurring function

�x ,y�, which transforms i �x ,y� into i �x ,y�, i �x ,y�

ig. 6. Difference between adjacent defocused images, as a
unction of defocus.
3 1 2 2

lurs.
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i1�x ,y��h3�x ,y�. In the Fourier domain, this deconvolu-
ion problem translates into a simple division:

F�h3�x,y�� =
F�i2�x,y��

F�i1�x,y��
. �17�

he one-to-one relation between h3�x ,y� and the depth is
erived from the geometric optics or found from a look-up
able, evaluated on a calibration object.

A Javelin JE2062 CCD camera was used with a focal
ength of f=50 mm. The pixel size �x was not reported.

e could not recover the sensor type used in this camera,
ut from the camera focal length, field of view, and num-
er of pixels, the pixel size can be estimated to be �x
50 �m. The two different F numbers were F1=1.3 and

2=2.0. The distance to the object was in the range of
0–95 cm, where we use an average of L=87.5 cm. Sub-
tituting these figures into Eq. (15), we obtain �Lmin
1.8 mm.
The authors present several solutions to the inverse fil-

ering problem (17), obtaining an rms error of 6.8% for
onsistent inverse filtering, 1.7% for iterative matrix so-
ution, and 1.3% using experimentally measured blurring
perators. For the average distance L=87.5 cm this trans-
ates into �Lrep=60, 15, 11 mm, respectively. Thus, for the
est case, the accuracy factor is �=11 mm/1.8 mm=6.1.
Watanabe and Nayar in Ref. 20 used a near- and far-

ocused images to extract the depth information. Let us
enote by Inear and Ifar a nonzero frequency of the images
n the spatial-frequency domain. Then, the expression
Inear−Ifar� / �Inear+Ifar� is a monotonic function of distance
n between the focused range of near-focused image [Lnear
nd the focused range of the far-focused image Lfar]. To in-
rease the processing speed, a small set of broadband fil-
ers derived by precisely modeling an image blur was
sed.
A Sony XC-77 camera was used with Cosmicar

1214D-2 lens. The optical parameters were f=25 mm,
=70 cm, �x=11 �m, and F=8.3. For this optical setup
Lmin=9.2 mm, while �Lrep=5 mm. Thus, the algorithm
ccuracy factor was �=5/9.2=0.54, which means that the
he algorithm detects the defocus blur when it is still be-
ow the diffraction and sampling blurs. Such good accu-
acy can be explained by the fact that for each of the two
ocus settings, 256 images were averaged to reduce noise.
veraging over 256 images before the linear processing of
epth reconstruction is equivalent to reconstructing first
nd then averaging of 256 depth maps, which increases
he reconstruction accuracy.

Xiong and Shafer in Ref. 21 used a depth from focus ap-
roach, when the distance to the point is estimated by fo-

Table 1. Summary of Reviewed Depth-from

Reference f L F

17 35 1000 4
18 35 2000 4
19 50 875 1.3
20 25 700 8.3
21 130 1200 1.7
22 70 3000 1.8
using on it. They used a flat black–white step edge as an
rtificial target to measure the depth resolution. Combi-
ation of the Fibbonacci search and curve fitting was used
o detect the focus peak. The focal length was f=130 mm,
he distance to the object L	1.2 m, the F number F
1.7, and the pixel size �x=23 �m. �Lrep=1.18 mm,
hile the accuracy estimated by Eq. (15) for this system is
Lmin=0.22 mm. Therefore, �=1.18/0.22=5.36.
Baba et al.22 estimated the depth accounting for zoom,

ocus, F number, and the lens center transition. The au-
hors used SONY XC-007 camera with the pixel size �x
50 �m and a Canon J16x9.5B4RAS lens. The focal

engths were f=9.5–152 mm, used at the 40–130 mm
ange, the F=1.8, L� �1,1.5,2,2.5,3� m. The depth accu-
acy was �Lrep� �22,45,71,93,112� mm, respectively,
hile the corresponding accuracies predicted by Eq. (15)

or this system, with F=70 mm, are �Lmin
�1.5,3.3,5.8,9.1,13.2� mm. The corresponding accuracy

actors are �i= �15,13.7,12.1,10.2,8.5�, respectively.
Table 1 summarizes the results reported in the re-

iewed papers, with focal length f, distance to the object
, F number F, sensor pixel size �x, and the reported ac-
uracy of depth estimation �Lrep, all lengths in millime-
ers. The two right columns are the corresponding accu-
acy bound �Lmin and the algorithm accuracy factor �
��Lrep� / ��Lmin�.

. SUMMARY
e have shown that the optical parameters of a depth-

rom-defocus system—the focal length, the distance to the
bject, the F number, and the sensor pixel size—have a
rucial role in the accuracy. A change of the focal length
nd the F number by a factor of 10 each can increase the
ystem depth resolution by a factor of more than 1000.

Thus, comparing the published methods by reported ac-
uracy does not allow separating between the role of op-
ics and the algorithm. For example, the absolute resolu-
ion of five out of the six published results reviewed in
his paper varied by a factor of 95 from 1.18 to 112 mm,
heir relative accuracies �Lrep/L varied by a factor of 37
rom 0.1% to 3.7%, while the resolution relative to the cor-
esponding accuracy estimate varied only by a factor of
.5. Therefore, normalization of the system resolution by
he accuracy estimate �Lmin, given in Eq. (15), reveals a
elatively modest role of the reconstruction algorithm on
he system performance. Equation (15) estimating the
ystem accuracy as a function of optical parameters can
elp to design depth-from-defocus systems in compliance
ith a given accuracy specification.

cus Publications (Lengths in Millimeters)

�x �Lrep �Lmin �

0.013 30 3.5 8.6
0.013 100 13.8 7.24
0.050 11 1.8 6.1
0.011 5 9.2 0.54
0.023 1.18 0.22 5.36
0.050 112 13.2 8.5
-Defo
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