
Int J Comput Vis
DOI 10.1007/s11263-007-0051-2

Over-Parameterized Variational Optical Flow

Tal Nir · Alfred M. Bruckstein · Ron Kimmel

Received: 4 August 2006 / Accepted: 5 March 2007
© Springer Science+Business Media, LLC 2007

Abstract A novel optical flow estimation process based on
a spatio-temporal model with varying coefficients multiply-
ing a set of basis functions at each pixel is introduced. Previ-
ous optical flow estimation methodologies did not use such
an over parameterized representation of the flow field as
the problem is ill-posed even without introducing any ad-
ditional parameters: Neighborhood based methods of the
Lucas–Kanade type determine the flow at each pixel by con-
straining the flow to be described by a few parameters in
small neighborhoods. Modern variational methods represent
the optic flow directly via the flow field components at each
pixel. The benefit of over-parametrization becomes evident
in the smoothness term, which instead of directly penalizing
for changes in the optic flow, accumulates a cost of deviating
from the assumed optic flow model. Our proposed method is
very general and the classical variational optical flow tech-
niques are special cases of it, when used in conjunction with
constant basis functions. Experimental results with the novel
flow estimation process yield significant improvements with
respect to the best results published so far.
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1 Introduction

Despite much research effort invested in addressing opti-
cal flow computation it remains a challenging task in the
field of computer vision. It is a necessary step in various
applications like stereo matching, video compression, ob-
ject tracking, depth reconstruction and motion based seg-
mentation. Hence, many approaches have been proposed
for optical flow computation. Most methods assume bright-
ness constancy and introduce additional assumptions on
the optical flow in order to deal with the inherent aper-
ture problem. Lucas and Kanade (1981) tackled the aperture
problem by solving for the parameters of a constant mo-
tion model over image patches. Subsequently, Irani et al.
(1993, 1997) used motion models in a region in conjunc-
tion with Lucas–Kanade in order to recover the camera
ego-motion. Spline based motion models were suggested by
Szeliski and Coughlan (1997).

Horn and Schunck (1981) sought to recover smooth flow
fields and were the first to use functional minimization for
solving optical flow problems employing mathematical tools
from calculus of variations. Their pioneering work put forth
the basic idea for solving dense optical flow fields over the
whole image by introducing a quality functional with two
terms: a data term penalizing for deviations from the bright-
ness constancy equation, and a smoothness term penaliz-
ing for variations in the flow field. Several important im-
provements have been proposed following their work. Nagel
(1990, 1986) proposed an oriented smoothness term that pe-
nalizes anisotropically for variations in the flow field ac-
cording to the direction of the intensity gradients. Ari and
Sochen (2006) recently used a functional with two align-
ment terms composed of the flow and image gradients. Re-
placing quadratic penalty terms by robust statistics inte-
gral measures was proposed in (Black and Anandan 1996;
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Deriche et al. 1995) in order to allow sharp discontinu-
ities in the optical flow solution along motion boundaries.
Extensions to multi-frame formulations of the initial two-
frames formulation allowed the consideration of spatio-
temporal smoothness to replace the original spatial smooth-
ness term (Black and Anandan 1991; Farnebäck 2001; Nagel
1990; Weickert and Schnörr 2001). Brox et al. (2004, 2006)
demonstrated the importance of using the exact brightness
constancy equation instead of its linearized version and
added a gradient constancy to the data term which may be
important if the scene illumination changes in time. Cre-
mers and Soatto (2005) proposed a motion competition al-
gorithm for variational motion segmentation and paramet-
ric motion estimation. Amiaz and Kiryati (2005) followed
by Brox et al. (2006) introduced a variational approach for
joint optical flow computation and motion segmentation. In
Farneback (2000, 2001), a constant and affine motion model
is employed. The motion model is assumed to act on a re-
gion, and optic flow based segmentation is performed by
a region growing algorithm. In a classical contribution to
structure from motion Adiv (1985) used optical flow in or-
der to determine motion and structure of several rigid ob-
jects moving in the scene. Sekkati and Mitiche (2006) used
joint segmentation and optical flow estimation in conjunc-
tion with a single rigid motion in each segmented region.
Vázquez et al. (2006) used joint multi-region segmentation
with high order DCT basis functions representing the optical
flow in each segmented region.

In this paper, we propose to represent the optical flow
vector at each pixel by different coefficients of the same
motion model in a variational framework. Such a grossly
over-parameterized representation has the advantage that
the smoothness term may now penalize deviations from
the motion model instead of directly penalizing the change
of the flow. For example, in an affine motion model, if
the flow in a region can be accurately represented by an
affine model, then in this region there will be no flow
regularization penalty, while in the usual setting there is
a cost resulting from the changes in the flow induced by
the affine model. This over-parameterized model thereby
offers a richer means for optical flow representation. For
segmentation purposes, the over-parametrization has the
benefit of making segmentation decisions in a more appro-
priate space (e.g. the parameters of the affine flow) rather
than in a simple constant motion model space. The work of
Ju et al. (1996) is related to our methodology, they used lo-
cal affine models to describe the motion in image regions
imposing spatial smoothness on the affine parameters be-
tween neighboring patches. The key and conceptually very
important difference is that, in our approach, the model is
represented at the pixel level which makes the problem over-
parameterized while the patch size chosen in (Ju et al. 1996)
makes it under-parameterized and requires the choice of a
neighborhood size.

The paper is organized as follows: Sect. 2 introduces
the over-parameterized optical flow representation model
and the corresponding functional together with the resulting
Euler–Lagrange equations, examples of specific optical flow
models are described. Section 3 discusses numerical solu-
tion considerations. Section 4 describes the parameter set-
tings and the experiments conducted to evaluate our method.
Finally, Sect. 5 concludes the paper.

2 Over-Parametrization Model

We propose to represent the optical flow (u(x, y, t), v(x,

y, t)) by the general over-parameterized space-time model

u(x, y, t) =
n∑

i=1

Ai(x, y, t)φi(x, y, t),

v(x, y, t) =
n∑

i=1

Ai(x, y, t)ηi(x, y, t),

(1)

where, φi(x, y, t) and ηi(x, y, t), i = 1, . . . , n are n basis
functions of the flow model, while the Ai are space and time
varying coefficients of the model. This is an obviously heav-
ily over-parameterized model since for more than two ba-
sis functions, there are typically many ways to express the
same flow at any specific location. This redundancy how-
ever will be adequately resolved by a regularization assump-
tion applied to the coefficients of the model. The coefficients
and basis functions may be general functions of space-time,
however, they play different roles in the functional mini-
mization process: The basis functions are fixed and selected
a priori. The coefficients are the unknown functions we solve
for in the optical flow estimation process. In our model, ap-
propriate basis functions are such that the true flow could be
described by approximately piecewise constant coefficients,
so that most of the local spatio-temporal changes of the flow
are induced by changes in the basis functions and not by
variations of the coefficients. This way, regularization ap-
plied to the coefficients (as will be described later on) be-
comes meaningful since major parts in the optic flow vari-
ations can be described without changes of the coefficients.
For example, rigid body motion has a specific optical flow
structure which can explain the flow using only six parame-
ters at locations with approximately constant depth. Let us
start from conventional optical flow functionals that include
a data term ED(u, v), that measures the deviation from the
brightness constancy assumption, and a regularization (or
smoothness) term ES(u, v) that quantifies the smoothness
of the flow field. The solution is the minimizer of the sum of
the data and smoothness terms

E(u,v) = ED(u, v) + αES(u, v). (2)
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The main difference between the diverse variational meth-
ods is in the choice of data and smoothness terms, and in the
numerical methods used for solving for the minimizing flow
field (u(x, y, t), v(x, y, t)). For the data term we shall use
the functional

ED(u, v) =
∫

Ψ ((I (x + w) − I (x))2)dx, (3)

where, x = (x, y, t)T and w = (u, v,1)T . This is the integral
measure used for example in (Brox et al. 2004) (omitting the
gradient constancy term). The function Ψ (s2) = √

s2 + ε2

that is by now widely used, induces an approximate L1 met-
ric of the data term for a small ε. The smoothness term used
in (Brox et al. 2004) is given by

ES(u, v) =
∫

Ψ (‖∇̃u‖2 + ‖∇̃v‖2)dx, (4)

where ∇̃f ≡ (fx, fy,ωtft )
T denotes the weighted spatio-

temporal gradient. ωt indicates the weight of the temporal
axis relative to the spatial axes in the context of the smooth-
ness term (ωt = 1 is used in (Brox et al. 2004)). Inserting
the over-parameterized model into the data term, we have

ED(Ai) =
∫

Ψ

((
I

(
x +

n∑

i=1

Aiφi, y +
n∑

i=1

Aiηi, t + 1

)

− I (x, y, t)

)2)
dx. (5)

Our proposed smoothness term replaces (4) with a penalty
for spatio-temporal changes in the coefficient functions,

ES(Ai) =
∫

Ψ

(
n∑

i=1

‖∇̃Ai‖2

)
dx. (6)

Notice that in (6), constant parameters of the model can
describe changes of the flow field according to the chosen
model as described in (1) (e.g. Euclidean, affine, etc.) with-
out smoothness penalty, whereas in (4), any change in the
flow field is penalized by the smoothness term. For the sake
of simplicity of the resulting Euler–Lagrange equations, we
have omitted writing explicit relative weights to the different
coefficients in the smoothness term, the weighting is alterna-
tively achieved by scaling the basis functions by appropriate
factors as will be shown in the description of the motion
models. Scaling a basis function by a small factor would
mean that in order to achieve the same overall influence on
the optical flow, the corresponding coefficient would have
to make larger changes (proportional to the inverse of the
factor). These larger changes would be suppressed by the
regularization term. On the other hand, scaling a basis func-
tion by a large factor would scale down the changes required

from the corresponding coefficient in order to achieve the
same overall change and therefore would result in less regu-
larization for this specific term.

2.1 Euler–Lagrange Equations

For an over-parametrization model with n coefficients, there
are n Euler–Lagrange equations, one for each coefficient.
The Euler–Lagrange equation for Aq (q = 1, . . . , n) is given
by

Ψ ′(I 2
z )Iz(I

+
x φq + I+

y ηq)

− α · div

(
Ψ ′

(
n∑

i=1

‖∇̃Ai‖2

)
∇̂Aq

)
= 0. (7)

where ∇̂f ≡ (fx, fy,ω
2
t ft )

T , and

I+
x := Ix

(
x +

n∑

i=1

Aiφi, y +
n∑

i=1

Aiηi, t + 1

)
,

I+
y := Iy

(
x +

n∑

i=1

Aiφi, y +
n∑

i=1

Aiηi, t + 1

)
, (8)

Iz := I

(
x +

n∑

i=1

Aiφi, y +
n∑

i=1

Aiηi, t + 1

)
− I (x, y, t).

2.2 The Affine Over-Parametrization Model

The affine model is a good approximation of the flow in
large regions in many real world scenarios. We therefore
first start with the affine model for our method. Note that we
do not force the affine model over image patches as in pre-
viously considered image registration techniques, and here
each pixel has “its own” independent affine model parame-
ters. The affine model has n = 6 parameters,

φ1 = 1; φ2 = x̂; φ3 = ŷ;
φ4 = 0; φ5 = 0; φ6 = 0;
η1 = 0; η2 = 0; η3 = 0;
η4 = 1; η5 = x̂; η6 = ŷ,

(9)

where,

x̂ = ρ(x − x0)

x0
,

ŷ = ρ(y − y0)

y0
,

(10)

and x0 and y0 are half image width and height respec-
tively. ρ is a constant that has no meaning in an uncon-
strained optimization such as the Lucas–Kanade method. In
our variational formulation, ρ is a parameter which weighs
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the penalty of the x and y coefficients relative to the coef-
ficient of the constant term in the regularization. An equiv-
alent alternative is to add a different weight for each coeffi-
cient in (6).

2.3 The Rigid Motion Model

The optic flow of an object moving in rigid motion or of a
static scene with a moving camera is described by

u = − θ1 + θ3x̂ + Ω1x̂ŷ − Ω2(1 + x̂2) + Ω3ŷ,

v = − θ2 + θ3ŷ + Ω1(1 + ŷ2) − Ω2x̂ŷ − Ω3x̂,
(11)

where (θ1, θ2, θ3)
T is the translation vector divided by the

depth and (Ω1,Ω2,Ω3)
T is the rotation vector. Here too,

the number of coefficients is n = 6. The coefficients Ai

represent the translation and rotation variables, A1 = θ1;
A2 = θ2; A3 = θ3; A4 = Ω1; A5 = Ω2; A6 = Ω3, and the
basis functions are φ1 = −1; φ2 = 0; φ3 = x̂; φ4 = x̂ŷ;
φ5 = −(1 + x̂2); φ6 = ŷ and η1 = 0; η2 = −1; η3 = ŷ;
η4 = 1 + ŷ2; η5 = −x̂ŷ; and η6 = −x̂. Similar constraints
on optical flow of rigid motion were first introduced by Adiv
in (Adiv 1985). However, there the optical flow is a pre-
processing step to be followed by structure and motion esti-
mation, while our formulation uses the rigid motion model
in the optimality criterion of the optical flow estimation
process. Using the rigid motion model directly in the op-
timality criterion was previously suggested by Sekkati and
Mitiche (2003) where the functional is explicitly written in
terms of the model parameters. However, since the data term
in (Sekkati and Mitiche 2003) is quadratic and uses the lin-
earized brightness constancy assumption, it is expected to
be more sensitive to outliers and prone to errors for mo-
tion fields of large magnitudes. Since the optical flow in-
duced by camera rotation is independent of the depth it has
a more global nature and therefore one may wish to penal-
ize more severely for changes in rotation when considering
the smoothness term. This can be done by scaling the ba-
sis functions multiplying the rotation coefficients by a factor
between 0 and 1. Such a factor would require larger changes
in the coefficients in order to achieve the same overall influ-
ence of the rotation on the optical flow. Such larger changes
in the corresponding coefficients would be suppressed by
the regularization term and therefore achieve a more global
effect of the rotation. Note, that assuming rigid motion one
could also extract the depth profile (up to scaling) from the
above coefficients.

2.4 Pure Translation Motion Model

A special case of the rigid motion scenario can be thought of
when we limit the motion to simple translation. In this case
we have,

u = − θ1 + θ3x̂,

v = − θ2 + θ3ŷ.
(12)

The Euler–Lagrange equations of the rigid motion still ap-
plies in this case when considering only the first n = 3 coef-
ficients and corresponding basis functions.

2.5 Constant Motion Model

The constant motion model includes only n = 2 coefficients,
with

φ1 = 1; φ2 = 0,

η1 = 0; η2 = 1,
(13)

as basis functions. For this model there are two coefficients
to solve for A1 and A2 which are the optic flow compo-
nents u and v, respectively. In this case we obtain the fa-
miliar variational formulation where we solve for the u and
v components. This fact can also be seen by substitution of
(13) into (7), that yields the Euler–Lagrange equations used,
for example, in (Brox et al. 2004) (without the gradient con-
stancy term).

3 Numerical Scheme

In our numerical scheme we use a multi-resolution solver,
by down sampling the image data with a standard factor of
0.5 along the x and y axes between the different resolutions.
The solution is interpolated from coarse to fine resolution.
Similar techniques to overcome the intrinsic non-convex na-
ture of the resulting optimization problem were used, for
example, in (Brox et al. 2004).1 At the lowest resolution,
we start with the initial guess of Ai = 0, i = 1, . . . , n. From
this guess, the solution is iteratively refined and the coeffi-
cients are interpolated to become the initial guess at the next
higher resolution and the process is repeated until the solu-
tion at the finest resolution is reached. At each resolution,
three loops of iterations are applied. At the outer loop with
iteration variable k, we freeze the brightness constancy lin-
ear approximation in the Euler–Lagrange equations

1We compare our model and results to (Brox et al. 2004) since, to the
best of our knowledge, that paper reports the most accurate flow field
results for the Yosemite without clouds sequence.
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Ψ ′((I k+1
z )2) · I k+1

z · ((I+
x )kφq + (I+

y )kηq)

− α · div

(
Ψ ′

(
n∑

i=1

‖∇̃Ak+1
i ‖2

)
∇̂Ak+1

q

)
= 0. (14)

Inserting the first terms of the Taylor expansion

I k+1
z ≈ I k

z + (I+
x )k

n∑

i=1

dAk
i φi + (I+

y )k
n∑

i=1

dAk
i ηi, (15)

where Ak+1
i = Ak

i + dAk
i . The second inner loop—fixed

point iteration—deals with the nonlinearity of Ψ with iter-
ation variable l, it uses the expressions of Ψ ′ from the pre-
vious iteration in both the data and smoothness terms, while
the rest of the equation is written with respect to the l + 1
iteration

(Ψ ′)k,l
Datadq

(
I k
z +

n∑

i=1

dA
k,l+1
i di

)

− α · div((Ψ ′)k,l
Smooth∇̂(Ak

q + dAk,l+1
q )) = 0, (16)

where,

dm := (I+
x )kφm + (I+

y )kηm, (17)

(Ψ ′)k,l
Data := Ψ ′

((
I k
z +

n∑

i=1

dA
k,l
i di

)2)
, (18)

and

(Ψ ′)k,l
Smooth := Ψ ′

(
n∑

i=1

‖∇̃(Ak
i + dA

k,l
i )‖2

)
. (19)

At this point, we have for each pixel n linear equations
with n unknowns, the increments of the coefficients of
the model parameters. The linear system of equations is
solved on the sequence volume using Gauss–Seidel itera-
tions. Each Gauss–Seidel iteration involves the solution of
n linear equations for each pixel as described by (16). The
discretization uses two point central difference for the flow
components and four point central difference for the image
derivatives as suggested in (Barron et al. 1994).

4 Experimental Results

In this section we compare our optical flow computation re-
sults to the best published results. For test sequences with
ground truth, we use the standard measures of Average An-
gular Error (AAE) and Standard Deviation (STD). Our re-
sults are measured over all the pixels (100% dense). The
angle is defined as:

θ = arccos

(
uug + vvg + 1

√
(u2 + v2 + 1)(u2

g + v2
g + 1)

)
(20)

Table 1 Parameter settings

Method α ρ ω2
t ε σ

Constant motion (3D) 16.0 – 9.0 0.001 0.8

Affine (2D) 58.3 0.858 0 0.001 0.8

Pure translation (2D) 51.0 0.575 0 0.001 0.8

Affine (3D) 32.9 1.44 0.474 0.001 0.8

Rigid motion (3D) 54.6 1.42 0.429 0.001 0.8

Pure translation (3D) 23.6 1.22 0.688 0.001 0.8

where u and v are the estimated optical flow components,
and ug and vg represent the ground truth optical flow. The
AAE is the average and STD is the standard deviation of θ

over the image domain.

4.1 Parameter Settings

The parameters were set experimentally by an optimization
process which numerically minimizes the weighted sum of
AAE and STD measured on the Yosemite sequence. Such a
parameter optimization or training process is usual in many
other papers, for example (Roth and Black 2005). Brox et al.
(2004), Papenberg et al. (2006) also seem to have an op-
timal parameter setting since in their parameter sensitivity
analysis, each parameter change in any direction results in
an increase of the AAE measure for the Yosemite sequence.
We have found slightly different parameter settings for the
2D and 3D smoothness cases as shown in Table 1, where
2D refers to smoothness term with only spatial derivatives,
while 3D refers to spatio-temporal smoothness term that
couples the solution of the optic flow field at different frames
(also known as the “two frames” versus “multi-frame” for-
mulation). Here σ denotes the standard deviation of the 2D
Gaussian pre-filter used for pre-processing the image se-
quence. We used 60 iterations of the outer loop in the 3D
method and 80 iterations in the 2D method, 5 inner loop it-
erations and 10 Gauss–Seidel iterations.

4.2 Yosemite Sequence

We applied our method to the Yosemite sequence without
clouds (available at http://www.cs.brown.edu/people/black/
images.html), with four resolution levels. Table 2 shows our
results relative to the best published ones. As seen in the
table, our method achieves a better reconstructed solution
compared to all other reported results for this sequence, both
for the 2D and 3D cases. In fact, our result for the 2D case is
good even compared to 3D results from the literature. Fig-
ures 4 and 5 show the solution of the affine parameters from
which one can observe the trends of the flow changes with
respect to the x and y axes. The solution of the pure trans-
lation parameters is shown in Fig. 6. The depth discontinu-
ities in the scene are sharp and evident in all the parameters.
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Figure 1 shows the ground truth optical flow and the results
with the pure translation model. Figure 2 shows the image
of the angular errors. Figure 3 shows both the histogram and
the cumulative probability of the angular errors. Both fig-
ures demonstrating the typically lower angular errors of our
method. Table 3 summarizes the noise sensitivity results of
our method. We also coupled the affine over-parameterized
model with our previous work on joint optic flow computa-
tion and denoising presented in (Nir et al. 2005) by iterating
between optical flow computation on the denoised sequence
and denoising with the current optical flow. A related con-

Table 2 Yosemite sequence without clouds

Method AAE STD

Papenberg et al. 2D smoothness (Papenberg et al. 2006) 1.64° 1.43°

Brox et al. 2D smoothness (Brox et al. 2004) 1.59° 1.39°

Mémin and Pérez (2002) 1.58° 1.21°

Roth and Black (2005) 1.47° 1.54°

Bruhn et al. (2005) 1.46° 1.50°

Amiaz et al. 2D smoothness (Over-fine x4) 1.44° 1.55°

(Amiaz et al. 2007)

Farnebäck (2000) 1.40° 2.57°

Liu et al. (2003) 1.39° 2.83°

Our method affine 2D smoothness 1.18° 1.31°

Govidu (2006) 1.16° 1.17°

Farnebäck (2001) 1.14° 2.14°

Our method constant motion 3D smoothness 1.07° 1.21°

Papenberg et al. 3D smoothness (Papenberg et al. 2006) 0.99° 1.17°

Brox et al. 3D smoothness (Brox et al. 2004) 0.98° 1.17°

Our method rigid motion 3D smoothness 0.96° 1.25°

Our method affine 3D smoothness 0.91° 1.18°

Our method pure translation 3D smoothness 0.85° 1.18°

cept was first introduced by Borzi et al. (2002). This cou-
pling provides a model with robust behavior under noise,
that obtains better AAE measure under all noise levels com-
pared to the best published results.

Our improvement relative to (Brox et al. 2004) results
mostly from the over-parameterization and not by the ad-
ditional smoothness weight parameter ωt . Table 4 shows
the results obtained with equal spatio-temporal smoothness
weights (ωt = 1) as used in Brox et al. (2004). The AAE
measure changes by approximately 1 percent for the pure
translation model and 2 percent for the affine model, where,
the ωt parameter was changed by approximately 21 and 45
percent for the pure translation and affine models respec-
tively.

4.3 Synthetic Piecewise Constant Affine Flow Example

For illustration purposes we also considered the piecewise
affine flow over an image of size 100 × 100 having the
ground truth shown in Fig. 8, and given by

For x < 40,

u = −0.8 − 1.6(x − 50)/50 + 0.8(y − 50)/50,

v = 1.0 + 0.65(x − 50)/50 − 0.35(y − 50)/50.

For x ≥ 40,

u = 0.48 − 0.36(x − 50)/50 − 0.6(y − 50)/50,

v = 0.3 − 0.75(x − 50)/50 − 0.75(y − 50)/50.

The two images used for this test were obtained by sam-
pling a grid of size 100 × 100 from frame 8 of the Yosemite
sequence (denoted Iyosemite). The second image I2(x, y) =
Iyosemite(x + �x,y + �y) and the first image is sampled
at warped locations I1(x, y) = Iyosemite(x + �x + u,y +

Fig. 1 Optic flow of the
Yosemite sequence.
Left—ground truth. Right—our
method with the pure translation
model

Fig. 2 Images of the angular
error, white indicates zero error
and black indicates an error of 3
degrees or above. Left—our
method with the affine model.
Middle—our method with the
pure translation model.
Right—the method of (Brox
et al. 2004), optic flow field
courtesy of the authors
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Fig. 3 Histogram (left) and Cumulative probability (right) of the angular errors. Solid—pure translation model. Dash dot—affine model. Dot-
ted—optic flow obtained in (Brox et al. 2004) courtesy of the authors

Table 3 Yosemite without clouds—noise sensitivity results presented
as AAE ± STD

σn Our method Our method Results reported

(affine) (affine) in (Brox et al. 2004)

coupled with

(Nir et al. 2005)

0 0.91 ± 1.18° 0.93 ± 1.20° 0.98 ± 1.17°

20 1.59 ± 1.67° 1.52 ± 1.48° 1.63 ± 1.39°

40 2.45 ± 2.29° 2.02 ± 1.76° 2.40 ± 1.71°

�y + v) using bilinear interpolation. The constant shift val-
ues are: �x = 79 and �y = 69. The two images obtained
are displayed in Fig. 7. The results exhibited in Table 5
show that our method with the affine over-parametrization
outperforms the method of (Brox et al. 2004). This is to
be expected since the true flow is not piecewise constant
and the smoothness term in (Brox et al. 2004) penalizes for
changes from the constant flow model, whereas, the affine
over-parametrization model solves the optimization problem
in the (correct) affine space in which it accurately finds the
piecewise constant affine parameters solution of the prob-
lem, as shown in Figs. 9 and 10. One can notice that the
discontinuity at pixel x = 40 is very well preserved due to
the effective edge preserving L1 based optimization. The re-

Table 4 Yosemite sequence without clouds—results obtained by us-
ing equal spatio-temporal smoothness weights (ωt = 1)

Method AAE STD

Our method affine 3D smoothness 0.93° 1.20°

Our method pure translation 3D smoothness 0.86° 1.18°

sulting optical flow shown in Fig. 11 accurately matches the
ground truth.

4.4 Flower Garden Sequence

We also applied our method to the real image sequence
“flower garden”. The results obtained by the 2D affine model
are shown in Fig. 12. We have checked our results by manu-
ally marking the coordinates of several corresponding points
on the two images and comparing the motion with the opti-
cal flow results. We have found good match between manual
tracking and the computed flow. The tree moves with a ve-
locity of about −5.7 pixel/frame along the x direction.

The whole scene has low velocity in the y direction (the
computed v is between −0.9 and 1.4 pixel/frame). The y

component of the flow is about 1 pixel/frame in the upper
section of the tree and almost zero in the lower section. In the
area of the garden, the velocity is decreasing as the distance
from the camera increases from about −3 pixel/frame in the
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Fig. 4 Solution of the affine
parameters for the Yosemite
sequence—from left to right
A1,A2,A3

Fig. 5 Solution of the affine
parameters for the Yosemite
sequence—from left to right
A4,A5,A6

Fig. 6 Solution of the pure
translation parameters for the
Yosemite sequence—from left
to right A1,A2,A3

Fig. 7 The two images: Left—first frame. Right—second frame

Table 5 Synthetic piecewise affine flow test

Method AAE STD

Our implementation of the method of 1.48° 2.28

(Brox et al. 2004)

Our method with the affine flow model 0.88° 1.67

right lower section (−2 on the left) to about −1 pixel/frame
in the upper part and in the area of the houses. The com-
puted flow by the pure translation over-parameterized model
shown in Fig. 13 produces similar flow field as the results
with the affine model. The solution of the three pure transla-
tion model parameters is shown in Fig. 14.

Fig. 8 Synthetic piecewise affine flow—ground truth. Left—u com-
ponent. Right—v component

Fig. 9 Solution of the affine parameters—from left to right A1,A2,A3

Fig. 10 Solution of the affine parameters—from left to right
A4,A5,A6
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Fig. 11 Ground truth for the
synthetic test (left) and
computed flow by the affine
over-parametrization model
(right)

Fig. 12 Flower garden
sequence: First image (left).
Optical flow computed by the
2D affine over-parametrization
model, u (middle) and v (right)

Fig. 13 Flower garden sequence: optical flow computed by the 2D
pure translation over-parametrization model, u (left) and v (right)

4.5 Road Sequence

The two frames of this real sequence courtesy of the authors
of (Vázquez et al. 2006) are shown in Fig. 15. The computed
flow by our 2D over-parameterized affine model is shown in
Fig. 16. The motion compensated image difference is shown
in Fig. 17, our motion compensated reconstruction ratio is
PSNR = 38.17 dB (more than 1.13 dB better than the results
reported in (Vázquez et al. 2006) for the affine model and
0.58 dB better than their quadratic model). The measure of
the motion compensated difference might be misleading for
comparing the quality of different optical flow algorithms
since one can generate a globally optimal algorithm for this
measure which produces meaningless optical flow results.
For example: suppose we find for each pixel in one image
a corresponding pixel with the same gray value in the other
image. In this case, the resulting optical flow is perfect in
terms of PSNR, however, it can be arbitrary vectors con-
necting pixels with the same gray level belonging to differ-
ent objects in the scene. For this example there is no ground
truth motion and therefore we use this measure in order to
compare with the results reported in (Vázquez et al. 2006).

5 Summary

We introduced a novel over-parameterized variational
framework for accurately solving the optical flow problem.
The flow field is represented by a general space-time model.
The proposed approach is useful and highly flexible in the
fact that each pixel has the freedom to choose its own set of
model parameters. Subsequently, the decision on the discon-
tinuity locations of the model parameters, is resolved within
the variational framework for each sequence. Many varia-
tional approaches can be regarded as special cases of our
method when one selects a constant motion model. Observe
however that in most scenarios, the optical flow would be
better represented by a piecewise constant affine model or
a rigid motion model rather than a piecewise constant flow.
Therefore, compared to existing variational techniques, the
smoothness penalty term modeled by the proposed over-
parametrization models yields better optic flow recovery
performance as demonstrated by our experiments. In this
paper, the derivation is for general space-time basis func-
tions. We limited our experiments to spatial basis functions.
Future work will focus on experiments with spatio-temporal
basis functions. Incorporating learning of the basis functions
(dictionaries) for specific scenes could be of great interest
and useful for video compression. As a consequence of this
work, motion segmentation based on optical flow should
generally be replaced by segmentation in the higher dimen-
sional parameter space as suggested by our initial results
presented herein for the synthetic sequence. Although the
models suggested in this paper were all over-parameterized,
an under-parameterized model might also be used in this
framework, for example in case one has prior knowledge
regarding constraints between the u and v components (as
in stereo matching or when we know the optic flow to be
radial).



Int J Comput Vis

Fig. 14 Flower garden
sequence: the solution of the
pure translation parameter.
From left to right A1,A2,A3

Fig. 15 Road sequence. Frame
1—Left. Frame 2—Right

Fig. 16 Optical flow of the road
sequence. u is shown on the left
and v on the right

Fig. 17 Difference of the
frames. Left—difference of the
original frames
(PSNR = 23.73 dB).
Right—motion compensated
difference by the estimated
optical flow
(PSNR = 38.17 dB). Both
images are scaled by the same
linear transformation from
errors to graylevels
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Table 6 Yosemite sequence without clouds—results obtained by our
method when using bicubic image interpolation instead of bilinear

Method AAe STD

Our method affine 2D smoothness 1.15° 1.33°

Our method affine 3D smoothness 0.86° 1.17°

Our method pure translation 3D smoothness 0.82° 1.17°

Note added in proof

We further experimented with replacing the bilinear image
interpolation with bicubic interpolation which consistently
improved the results as can be seen in Table 6.
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