
1172
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.7 JULY 2003

INVITED PAPER Special Issue on Multiresolution Analysis

Machine Learning via Multiresolution Approximation

Ilya BLAYVAS† and Ron KIMMEL†, Nonmembers

SUMMARY We consider the classification problem as a
problem of approximation of a given training set. This approxi-
mation is constructed in a multiresolution framework, and orga-
nized in a tree-structure. It allows efficient training and query,
both in constant time per training point. The proposed method
is efficient for low-dimensional classification and regression esti-
mation problems with large data sets.
key words: multiresolution approximation, machine learning,
classification, regression estimation

1. Introduction

In this work we study the utilization of multiresolution
analysis for machine learning. Therefore we briefly re-
view the milestones of both machine learning and mul-
tiresolution analysis.

1.1 Machine Learning

Consider two dependent random variables �X and
Y with a joint probability distribution function
f �X,Y (�x, y). Then, for any given �x ∈ �X there is a distri-
bution of y: P (y|�x). Therefore the dependence of y on
�x can not be fully described by a single valued function
M(�x). A possible measure of the accuracy of such a
description is the Risk Functional, defined as

R(M) =
∫∫

�X,Y

|y −M(�x)|f �X,Y (�x, y)d�xdy. (1)

Consider a finite set T drawn from a process with the
distribution f �X,Y (�x, y)

T = {�xi, yi}mi=1. (2)

Suppose that T is the only information available about
f �X,Y . The Machine Learning Problem can be defined
as the problem of searching for a functionMopt(�x) that
minimizes the risk functional R(M)

Mopt = argmin
M
R(M). (3)

This problem is ill-posed since the same T can be a re-
sult of different f �X,Y with different respectiveMopt(�x).

The regression estimation problem is the problem

Manuscript received November 5, 2002.
Manuscript revised April 4, 2003.

†The authors are with the Computer Science Faculty of
Israel Institute of Technology, Israel.

(1-3) where y obtains continuous values, while in the
classification problem it obtains discrete values. In the
rest of this work we will consider only the classification
problem, although the presented method can be also
applied for regression estimation. It can be shown that
M(�x), minimizing (1) is given by the Bayesian Classi-
fier [17] which decision at point �x is the class with the
highest posterior probability.

For simplicity, consider the two-class classification
problem. Let the value y = 1 correspond to the first
class and the value y = −1 to the second. Denote the
probability of the first class P (y = 1|�x) by w1(�x), and
the probability of the second class P (y = −1|�x) by
w2(�x). Then, the classification decision of the Bayesian
classifier will be as follows:

MBayes(�x) =
{

1 if w1(�x) ≥ w2(�x)
−1 if w1(�x) < w2(�x).

(4)

Therefore, the classification decision at �x can be ob-
tained from estimating of the probability density of
each class and choosing the class with the highest prob-
ability.

1.2 Multiresolution Analysis

In multiresolution analysis [5], [13] the signal process-
ing is started from low-resolution, and then the resolu-
tion can be selectively increased, when necessary. A se-
quence of spaces {Vl}l∈Z is called a multiresolution [13],
if the following properties are satisfied:

(I) . . . ⊂ V−1 ⊂ V0 ⊂ V1 . . . ⊂ L2(R)
(II)

⋂
l Vl = {0},

⋃
l Vl = L

2(R)
(III) f(x) ∈ Vl ⇐⇒ f(2x) ∈ Vl+1

(IV) f(x) ∈ V0 =⇒ f(x− k) ∈ V0, k ∈ Z

(V) ∃φ(x), called scaling function, such that
{φ(x− k), k ∈ Z} is an orthonormal basis of V0

(5)

Consider the space Wl, which is an orthogonal com-
plement of Vl in Vl+1: Vl+1 = Vl

⊕
Wl. Consider the

function ψ(�x), called wavelet, forming an orthonormal
basis {ψ(x−k)} inW0. Then, ψlk(x) = {2l/2ψ(2lx−k)}
is an orthonormal basis in Wl, and thus the basis

{φ(x−k), 2l/2ψ(2lx−k); l∈{0, . . . , Lmax}, k∈Z}
(6)

BLAYVAS and KIMMEL: MACHINE LEARNING VIA MULTIRESOLUTION APPROXIMATION
1173

spans the space VL:

V0

⊕
W0︸ ︷︷ ︸

V1

⊕
W1

⊕
. . .

⊕
WL−1 = VL. (7)

Therefore, the projection of f(x) on a space VL (called
an approximation at resolution level L) can be written
as

fL(x) =
+∞∑

k=−∞
〈f(x), φ0k(x)〉φ0k(x)

+
L∑

l=0

+∞∑
k=−∞

〈f(x), ψlk(x)〉ψlk(x). (8)

The scalar products 〈f(x), ψlk(x)〉 are called decompo-
sition coefficients and denoted by clk. If f(x) has a
bounded support x ∈ [0, 1], the sums over k are trun-
cated:

fL(x) = c0φ0(x) +
L∑

l=0

2l−1∑
k=0

clkψlk(x) (9)

Multi-resolution analysis is usually applied to one or
two dimensional signals for compression, denoising or
feature extraction. The scaling function and wavelet
are constructed to provide fast decay of the coefficients
with increasing l.

It can be proved [13], that if the wavelet ψ has p
vanishing moments∫ +∞

−∞
xkψ(x)dx = 0 for 0 ≤ k < p, (10)

and the function f(x) is α times continuously differen-
tiable f(x) ∈ Cα, α < p then the magnitude of decom-
position coefficients decay with the rate l−α;

∃A : |clk| < Al−α. (11)

This is the reason for choosing wavelets with greater
p. Wavelets of the same resolution level l that corre-
spond to different spatial positions k can overlap. If
the wavelet ψ(x) has a compact support K, then for an
arbitrary point x0 at each scale l, there are K wavelets
ψlk+1, . . . , ψlk+K , whose support includes x0. It can be
shown [6], that the wavelet having p vanishing moments
will have a support of size at least K ≥ 2p− 1.

In common applications of multiresolution analy-
sis, wavelets with 2-3 or more vanishing moments (and
therefore support of size 3-5 or more) are usually used.
In Sect. 2 we will argue that this choice is inappropri-
ate for machine learning, since a support of size K > 1
results in bad generalization and computational prop-
erties.

The wavelet basis can be extended into two or more
dimensions in the following way. Let {V 2

l }l∈Z be a two
space multiresolution, defined by V 2

l = Vl
⊗
Vl, where

Vl is defined in (5). Let W 2
l be an orthogonal comple-

ment of V 2
l in V 2

l+1;

V 2
l+1 = V

2
l

⊕
W 2

l . (12)

Let φ and ψ be the scaling function and wavelet in V0.
Then, the functions

ψ1 = φ(x1)ψ(x2),
ψ2 = ψ(x1)φ(x2), (13)
ψ3 = ψ(x1)ψ(x2);

scaled as

ψi
l,�k

= 2lD/2ψi
(
2lx1 − k1, 2lx2 − k2

)
, (14)

where D = 2 is the space dimensionality, form an or-
thonormal basis in W 2

l .

2. Multiresolution Approximation for Machine
Learning

Wavelet analysis is often used for compression, denois-
ing and feature extraction in image processing. In Im-
age processing the wavelet analysis is applied to two
dimensional signal, known in every point of a regular
grid.

In machine learning problem, contrary to image
processing, the dimensionality D of the feature space
is usually higher D > 2 and the function y = f(�x) is
not known, but has to be constructed from the finite
sample T of distribution f �X,Y (�x, y).

This difference has dramatic consequences. One
can see, from generalization of (13-14) to D dimen-
sional space, that there are 2D − 1 different wavelet
functions at the same spatial position �k. Moreover,
if a 1D wavelet has a support of size K, then in D
dimensions each feature vector �x0 falls within the sup-
port of (K + 1)D − 1 different wavelets. In order to
find the decomposition coefficients, there must be other
(K + 1)D − 1 training points at appropriate locations
around �x0.

In order to have the complete information for cal-
culation of the coefficients at resolution level l, there
must be (K+1)lD−1 training points at the appropriate
locations. It is impractical to expect that T will con-
tain this amount of homogeneously distributed training
points.

2.1 Prior Work

Bernard, Mallat and Slotine apply wavelets to Machine
Learning in [2]. Due to geometric reasons, they use the
3-band (tryadic) version of Deslauriers-Dubuc interpo-
lation process and the wavelet system

ψlk = 3l/2ψ(3lx− k) for x ∈ [0, 1]. (15)

1174
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.7 JULY 2003

The multi-dimensional basis is constructed as a gener-
alization of (13-14).

The number of the candidate wavelets is main-
tained equal to the number of the training points by
applying the allocation procedure that adds the single
additional wavelet for each new training point. The al-
location procedure favors wavelets with centers closest
to training point and lowest resolution level. Then, a
system of linear equations is solved to obtain the de-
composition coefficients interpolating the training set.

Due to spacial locality of wavelets, the obtained
linear system is sparse, and using previous solution for
N−1 training points, the update for Nth point is done
in O(log2N) time.

The generalization ability of this method is limited,
due to the arguments presented in the beginning of this
section, fortified by the faster scale decrease at rate 3−l

instead of 2−l.
For example, such an interpolation for the training

set of 2 points equidistant from the center will partite
the feature space into unequal volumes 1− 1

3

D and 1
3

D,
while the correct partition should result equal volumes
of 1

2 each. This limits the dimensionality of applica-
tion of this method. The examples, presented in [2] are
limited to D = 2.

2.2 Our Approach

In the rest of this paper, we assume that the training
set is prescaled into the unit cube �x ∈ [0, 1]D. This can
be done in time linearly proportional to the size of the
training set.

Due to the reasons, discussed at the beginning of
this section, we choose the simplest scaling function,
with the smallest possible support K = 1;

φ0(�x) =
{

1 if �x ∈ [0, 1]
0 if �x /∈ [0, 1]. (16)

The wavelet function, corresponding to this scaling
function is the Haar wavelet [10];

ψ0(�x) =

1 if �x ∈ [0, 1
2]

−1 if �x ∈ (1
2 , 1],

0 if �x /∈ [0, 1].
(17)

For this choice, a new training point falls within the
support of a single scaling function φ at every level
l. However, there are still 2D − 1 wavelets (13) and
therefore the system of equations, defining the wavelet
decomposition coefficients is still (severely) undeter-
mined.

The scaling functions

φlk(�x) = 2l/2φ(2lx− k), k ∈ Z (18)

form an orthonormal basis in Vl (5). This allows to use
only the basis of φlk(�x), without ψlk(�x) to represent a

function f(�x) at any resolution level l. Such a repre-
sentation is somewhat excessive, since the information
about approximation of f(�x) at level l derivable from
an approximation of f(�x) at level l + 1. However, this
overhead of order 2−D is justified by the generalization
properties and computational efficiency. Therefore, in
our approach, the approximations fl(�x) are constructed
at several resolution levels l = 0, . . . , L, using the basis
of scaling functions {φlk(�x)}.

In the case of two class classification, let the first
class have the values y1 = 1, while the second y2 =
−1. The decomposition coefficients are calculated to
approximate the training set values:

clk =
1
n

∑
�xi∈Clk

yi. (19)

Where �xi ∈ Clk means that the training point belongs
to the cell Clk, and n is the total number of the points
in that cell. One can see, that in the limit of infinite
number of the points within the cell and infinitely small
cell size (l → ∞), the cell value corresponds to the
probability density of the classes:

lim
n,l→∞

sign(clk) =
{

1 if w1(�x) ≥ w2(�x)
−1 if w1(�x) < w2(�x).

(20)

Here, w1(�x) and w2(�x) denote respectively the prob-
ability density of the first and second classes. This
coincides with the decision of the Bayesian Classifier
(4).

However, in practice, there is neither need nor the
data for the resolution level l beyond Lmax = 5 − 10,
what is confirmed by experiments presented in Sect. 3.
This is explained by the observation that, for example,
in ten dimensional feature space (D = 10), at fifth res-
olution level (l = 5) there are 2l·D = 250 cells, spanning
the unit cube [0, 1]D.

The classification consists of training and query
phases, which can be arbitrarily interleaved. At the
training phase the decomposition coefficients are up-
dated to interpolate (approximate) the training set. If
there are cells at l = Lmax, containing the training
points of different values, the training set is approxi-
mated by the average in these cells, otherwise it is in-
terpolated exactly. There are Lmax+1 coefficients that
are updated by each new training point, since there is
one cell at each resolution level l = 0, . . . , Lmax, con-
taining that point.

The classification decision y(�x0) for a query �x0 is
calculated as the sign of the value of the smallest avail-
able cell, containing �x0. This cell can be at l < Lmax.

The structural risk minimization principle [20] can
be embedded into the classification decision, when
among the available values of the cells from 0 ≤ l ≤
Lmax, the sign of the cell with the minimum structural
risk yields the classification decision. Here, the em-
pirical risk is the ratio n1

n1+n2
between the number of

BLAYVAS and KIMMEL: MACHINE LEARNING VIA MULTIRESOLUTION APPROXIMATION
1175

points of dominating class within the cell n1 and the
total number of points n1 + n2. The VC dimension of
a single cell is one, since it can be in one of the two
states: clk ≥ 0 or clk < 0.

The support of φlk(�x) forms a rectangular grid of
cells of size 2−l. Most of these cells at high resolution
levels will be empty. These empty cells are identical
zeros and need not to be stored. The cell at level l is
divided into 2D cells at level l+1. Only non-empty cells
at level l can have inside non-empty cells at level l+1.
This allows efficient organization of the non-empty cells
into a tree structure, where non-zero cells point to their
non-zero sons. The search or addition of a new cell in
this structure requires O(D · Lmax) operations.

The classifier is implemented by two procedures:
LearnPoint() and Query(). The first procedure imple-
ments learning of a single training point by updating
the decomposition coefficients. The second procedure
implements query, calculating the function value at a
query point from the decomposition coefficients.

2.2.1 Tree Structure of the Decomposition Coeffi-
cients

In order to efficiently access the sparse coefficients, they
are organized in a tree-structure T . Each node in the
tree corresponds to the cell at level l and includes point-
ers to the non-empty son cells at level l+ 1; the height
of the tree is Lmax. The root of the tree corresponds
to the largest cell C0. Each node stores the number of
points inside its cell pnum, the average value of these
points val, the resolution level l, and the tree sonpntrs
of pointers to its non-empty sons at level l + 1:
struct treenode {float val ; int pnum, level ; sonstree
*sonpntrs;}

Figure 1 shows a two dimensional feature space

Fig. 1 Multiresolution representation of a 2-dimensional
feature space.

Fig. 2 Tree structure of the cells of a 2-dimensional feature
space.

divided into cells at the first three resolution levels (l =
0, 1, 2). Figure 2 shows the organization of these cells
into a tree structure.

2.2.2 Learning and Query Algorithms

The learning algorithm runs as follows:
Procedure LearnPoint(tn, �x, y) receives three argu-
ments. The structure tn is a vertex of the tree T . Items
�x and y are the coordinate and the value of the training
point to be learned. The value of the cell tn → val is
updated to be the average of all the points in the cell
including the new one.

If the resolution level tn→ level is lower than the
maximum Lmax, then the procedure GetSon1(tn, �x)
(not described here) returns a pointer to the corre-
sponding son cell. If the cell does not exist in the tree
it is created. The procedure is repeated for the son cell.

Procedure LearnPoint(tn, �x, y)
% Increment number of points in the cell

(tn → pnum) = (tn → pnum) + 1
% Update the cell value

(tn → val) = (tn → val) + y−(tn→val)
(tn→pnum)

if ((tn → level) < Lmax)
% Find or create the son cell

sn = GetSon1(tn, �x)
% Update the son cell

LearnPoint(sn, �x, y)
endif

return

The query algorithm returns the value of the smallest
non-empty cell that contains the query.

Procedure Query(tn, �x)
sn = GetSon2(tn, �x)
if (sn �= NULL) then

% Repeat the Query for son cell
return Query(sn, �x)

else
% Return the value

return tn → val
endif

return

2.3 Analysis

Training time. The procedure GetSon1() returns a
pointer to the unique son (among up to 2D cells), that
contains the training point, in O(lg(2D)) = O(D) op-
erations. There are Lmax recursive iterations for Lmax

resolution levels, therefore, the overall complexity of the
training is O(Lmax ·D) operations per training point.
Memory requirement. In the worst case, every
training point occupies Lmax − 1 independent cells. In
this case, the memory needed for storage of the tree
is O(Lmax · |T |) = O(|T |), where |T | is the size of the
training set. In the case of a redundant training set it
can be essentially lower. A pruning algorithm can be

1176
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.7 JULY 2003

implemented, to control the size of the tree.
Query time. Query() calls the GetSon2() procedure
up to Lmax times, GetSon2() (not described here) re-
turns a pointer to the relevant cell in O(D) operations.
Therefore, the Query() complexity is O(Lmax ·D).

Due to simplicity of the algorithms and the data
structures, all constants in the complexity analysis are
small, which results in training and testing speeds of
tens of thousands points per second, actually limited
by the hard-drive I/O speed.
Application Domains: Our classification method is
based on the construction of the interpolation (or ap-
proximation, if Lmax was insufficient to distinguish be-
tween training points of different values) function over
the domain [0, 1]D. For adequate sampling of this do-
main, at least |T | = O(2D) training points are re-
quired. Yet, the informative sampling of [0, 1]D requires
|T | = Ω(2D). This requirement naturally limits the di-
mensionality of the problems toD � 20. Problems with
larger dimensionality require preliminary dimensional-
ity reduction.
Generalization Performance: In cases, where the
goal is to obtain the highest classification performance
from a small training set, the proposed classifier is def-
initely not the best choice. The reason for this is that
in the proposed classifier, the boundaries between dif-
ferent classes can pass only along the cell edges, with
the coordinates defined by the rectangular grid at some
resolution 2−l.

In popular classifiers like k−nearest neighbors,
most of the decision trees, SVM, Neural Networks, and
some others the boundaries are adaptive and continu-
ously depend on the positions of the training points.
This allows fine tuning to the training set and con-
sequently better performance for small training sets.
However, in cases where large amount of data is avail-
able or processing time is limited, the speed advantage
of multiresolution approximation can transform into
the advantage in classification performance, as demon-
strated in Sect. 3.

In order to quantify the advantage in speed vs. dis-
advantage in classification performance, the expected
error of a classifier as a function of its training time
must be estimated. Unfortunately, both theoretical and
experimental investigations of this question are subjec-
tive. Given two different classifiers, it is often easy to
construct an example for which one or the other has
better performance.

For example our classifier would be probably un-
beatable on the D-dimensional chess-board patterned
data of size (2l)D. At the appropriate resolution level,
the black and white fields will coincide with the cells.
However, for linearly separable training set the linear
Perceptron [18] will be the better choice etc.

3. Experimental Results

The proposed method was implemented in VC++ 6.0
and run on ‘IBM PC 300 PL’ with 600MHz Pentium III
processor and 256MB RAM for the first two examples,
and 1.8GHz Pentium 4(m) and 512 MB RAM for the
Forset Covertype example.

Although the classification problems with huge
training sets seems to be important family of prob-
lems, it was hard to find such training sets in public
databases.

Our method was tested on the Pima Indians Di-
abetes dataset [4], a large artificial dataset generated
with the DatGen program [14] and the Forest Cover
Type data set. The results were compared to [3], [8],
[9], [11], [12].

3.1 Pima Indians Dataset

This is an eight dimensional dataset consisting of 768
training points. The training set was re-scaled into
a unit cube by linear transformation: fki

′ = (fki −
fkmin)/(f

k
max−fkmin), here i runs on 768 training points

and k over 8 dimensions. The classification perfor-
mance was tested with ‘leave-one-out’ cross-validation.
The results for this dataset are shown in Table 1.

This training set is relatively small and cannot re-
ally benefit from the speed and memory efficiency of the
proposed method. The training set size |T | = 768−1 =
767 is comparable to the number of the cells at the first
resolution level 2D = 256 (T ∼ 2D). For such sparse
cases we have developed a modified query procedure,
SmoothQuery().

The idea behind the SmoothQuery() is very sim-
ple: in the case when there are no training points within
the cell Cl�k at level l, the values of the neighbor cells
at level l give more information about Cl�k than the
value of the parent cell at level l− 1. Use of the neigh-
bor values is equivalent to use of the overlapping basis
functions at the query phase. The values of the neigh-
bors are taken with weight factor w(|�xlk − �xlk′ |). Here,
�xlk is the center of the cell containing the query and
�xlk′ is the center of its neighbor. The weight factor
w(r) can be empirically chosen, similarly to the choice
of kernel in SVM. There are 3D − 1 neighbor cells, of
which only a fraction is non-empty. These cells can be
found efficiently due to the tree-structure organization
of the non-empty cells.

Table 1 Experimental results for the Pima Indians dataset.

Option Interpolation Approximation
Training time (sec) 24.80 · 10−6 24.80 · 10−6

Query time (sec) 11.62 · 10−6 16.35 · 10−3

Memory required, (kbyte) 20 20
Train performance (%) 100.00 77.60
Query performance (%) 70.5 76.16

BLAYVAS and KIMMEL: MACHINE LEARNING VIA MULTIRESOLUTION APPROXIMATION
1177

Table 1 presents classification performance for
training and test, the training and query times (per
training point) and the memory required for the stor-
age of the tree of coefficients. The first column presents
the results for the interpolation algorithm (procedure
Query()), while the second column for the modified ap-
proximation algorithm (procedure SmoothQuery()).

The SmoothQuery() procedure, adapted for the
small training sets, returns the value based not only
on the cell containing the query, but also on the values
of the neighbor cells. One can see that approximation
takes 103 longer, since in the function evaluation not
only the cells, containing the training point but also
their neighbor cells are taken into account.

The classification performance of 76.16% (with
standard deviation 2%) was achieved by Smooth
Query() with the training time of 24.8 · 10−6 · 768 =
1.9 · 10−2 sec. This can be compared to 77.3% perfor-
mance and ∼ 4 sec equivalent training time for C4.5
with Rules [16], which was the best performing accord-
ing to [12].

3.2 Large Synthetic Dataset in 6D

Another example is the large artificially generated
dataset in 6-dimensional feature space with up to 500
thousand training points. This dataset was gener-
ated with the DatGen program [14] using the same
call as in Sect. 3.2.2 of [9]: datgen -r1 -X0/100,R,O:0/100,R,

O:0/100,R,O:0/100,R,O:0/100,R,O:0/200,R,O:0/200 -R2 -C2/4 -

D2/5 -T10/60 -O5020000 -p -e0.15.
We have chosen this Dataset, since it was presented

in [9]. This work is relevant to us, since it also treats
the classification problem as problem of constructing
an approximation function, and also demonstrates the
training time linearly scalable with the training set and
capability to digest training sets of millions of points.

The classifier is constructed as

MSpGr(�x) =
N∑
i=1

αiφi(�x), (21)

where the functions φi are from the Schauder basis.
The one-dimensional Schauder basis is defined as

ψ(x) =
{

1− |x| if x ∈ [−1, 1],
0 if x /∈ [−1, 1] (22)

With the basis functions constructed by

ψlk = 2l/2ψ(2lx− k) for x ∈ [0, 1], (23)

The multi-dimensional Schauder basis is constructed as
generalization of (13-14).

The decomposition coefficients {αi} of MSpGr(�x)
are found to minimize the functional

R(MSpGr) =
1
m

m∑
i=1

(MSpGr(�xi)− yi)2

+ λ‖∂�xMSpGr‖L2 , (24)

where m = |T | denotes the size of the training set,
the first term corresponds to the interpolation of the
training set and the second to the smoothness of the
function, in accordance with classical regularization ap-
proach [19]. In order to compute the decomposition
coefficients, the function representation (21) is substi-
tuted into (24), and since {αi} correspond to the min-
imum, the derivative of the obtained system with re-
spect to αi is set to zero. Thus, the following matrix
equation is obtained

(αC +B ·BT)�α = B�y, (25)

where C is N × N matrix with entries Cj,k = m ·
(∂�xφj , ∂�xφk)L2 , indices j, k = 1, . . . , N , and B is a
rectangular N × m matrix with entries Bj,i = φj�xi,
i = 1, . . . ,m; j = 1, . . . , N . The vector �y contains the
data yi and is of length m. The vector �α contains the
unknown coefficients {αi} and is of length N .

The value of �α satisfying (25) is found by iterative
method. Sparse Grids Classifier suffers from the curse
of dimensionality, which is the exponential rise of the
complexity with increase of the dimension d. For exam-
ple parsing the feature space with a grid with edge size
2−n results in 2nd grid cells. Employing the sparse grids
reduces the complexity to dnd−12n = d2n+(d−1)log2n.
The overall computation complexity for a training set
of size M is O(Md2n+(d−1)log2n), which is still very de-
manding even at d = 6, as can be seen in Table 2.

Table 2 shows the results of [9] and the correspond-
ing results obtained by our method. The results of [9]
are shown in the upper part, while our results appear
at the lower part of the table.

The ∼ 1% disadvantage in classification perfor-
mance of our method has low statistical significance,
since the training sets were independently generated,
and we have found about ∼ 1% standard deviation
between different batches. The essential advantage in
run-time of our method can be explained by absence
of (explicit) regularization procedure. The cells, av-
eraging the values of the training points inside them
actually serve as a regularization, without additional
computational burden.

3.3 Covertype Data

The Forest Covertype data is one of the largest data
sets from UCI repository [4]. This data set contains
581012 examples with 54 attributes and 7 target classes
and represents the forest cover type for 30 × 30 meter
cells [3]. The 54 attributes of this data set actually rep-
resent 12 features. First 10 are numeric cartographic at-
tributes. Last 44 attributes represent two features: the
soil type, one out of 40 different types, is represented
by a single non-zero bit among 40 bits; the wilderness
area, one out of four, is represented by a non-zero bit
out of 4 bits.

The reported classification performance for this

1178
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.7 JULY 2003

Table 2 Experimental results for a 6D dataset, comparison of [9] and this work.

Ref. # of points training testing runtime, memory
[9] correctness correctness sec used

Level 1 5 · 104 90.8 90.8 158
5 · 105 90.7 90.8 1570

Level 2 5 · 104 91.9 91.5 1155
5 · 105 91.5 91.6 11219 250MB

This # of points training testing train test memory
Work train & test correctness correctness time,sec time,sec used

(stdev) (stdev) time,sec time,sec used
Level 1 5 · 104 86.2 86.2 0.35 0.25 3.1k

5 · 105 86.4 86.5 3.4 2.4 3.1k
Level 2 5 · 104 90.7 89.3 0.75 0.45 163k

5 · 105 91.6 90.5 9.5 4.5 197k
Level 3 5 · 104 95.4 88.8 1.55 0.85 1.53M

5 · 105 98.2 90.6 16.5 9.5 5.40M

Table 3 Forest cover type. Classification Matrix from [3], Network 54-120-7, Overall
performance 70.58%.

Predicted Observed total
c1 c2 c3 c4 c5 c6 c7 Quantity %

Observed ↓ 201 928 226 378 33 258 3 094 41 606 27 546 32 085 565 892 100
c1 150 397 39 435 440 0 6 683 481 12 244 209 680 37.05
c2 50 871 186 035 5 697 73 27 391 8 796 2 263 281 141 49.68
c3 2 258 25 295 2 012 625 5 402 0 33 594 5.94
c4 0 0 15 563 0 9 0 587 0.10
c5 20 381 138 0 6 737 56 1 7 333 1.30
c6 0 126 1672 446 161 12 802 0 15 207 2.69
c7 638 128 1 0 6 0 17 577 18 350 3.24

Rate % 74.48 82.19 76.06 18.20 16.19 46.47 54.78

data set was 70.58% in [3] and ∼ 72% in [11]. This
relatively low performance can be partially explained
by the fact that this large training set was not utilized
completely: In [3], only 11340 examples were used as
a training set. Even for this training set the training
time was as much as 45 hours (‘UNIX Sun Sparc work-
station’ of unreported configuration), and choice of the
best network architecture required 56 such runs. In
[11], the training set contained up to 65536 examples,
while the run time was not reported.

In [3] the fully connected network with one hidden
layer and backpropagation training was used. After
experimental search for optimal network architecture
and training parameters, the network with 120 hid-
den nodes (network 54-120-7), learning rate 0.05 and
momentum rate of 0.9 was chosen. The training was
stopped when one of the following three criteria was
satisfied (1) MSE on the validation set decreased below
0.05; (2) insignificant decrease rate of the validation
MSE; (3) 1000 training epochs were done.

Table 3 presents the details of the classification re-
sults of [3]. The columns correspond to the predicted
classes, while the rows correspond two the classes that
the test points actually belonged to. Thus, 33 258
points were predicted to be class 3, from them 25 295
(76.06%) indeed were class 3, and 5697 were class 2, etc.
33 594 points out of 565 892 test points were points of
class 3, what constituted 5.94%. The overall classifi-
cation performance (70.58%) is the number of the cor-

rectly classified points from all the classes, divided by
the size of the test set.

Since our method can not deal with 54 dimensional
feature space, the last 44 dimensions, corresponding to
the soil type and wilderness area were reduced into
2 numerical features. It was done by simple map-
ping of 40 × 4 = 160 possibilities into first 160 cells
of 16 × 16 array. Such a crude dimensionality reduc-
tion probably reduces the classification performance,
however the obtained results are still superior to the
reported state of the art [3], [11]. The feature vectors
were re-scaled into a unit cube by linear transforma-
tion: fki

′ = (fki − fkmin)/(f
k
max − fkmin).

The applied algorithm was a basic interpolation al-
gorithm described above, with the only difference: Each
cell contained 7 counters, each counting the number of
training points of the corresponding class within the
cell. The classification decision was done in favor of
the class with the maximum number of points. There
were NO empirical tuning parameters except the prede-
fined maximum resolution level Lmax. Therefore, our
algorithm can be considered as multiresolution density
estimator, with the classification decision in favor of the
class with the highest local density.

Table 4 shows the overall classification perfor-
mance as a function of the training set size and the
maximum resolution level. The training and query time
are measured without the loading time from the hard
drive, which was 18.4 sec for 581 012 points.

BLAYVAS and KIMMEL: MACHINE LEARNING VIA MULTIRESOLUTION APPROXIMATION
1179

Table 4 Forest cover type. Training, Test times and Classification Performance and its
standard deviation for different training set sizes and values of maximum resolution level.

Training set size / Test set size
Lmax 1000 2000 8000 32 000 128 000 256 000 512 000

580 012 579 012 573 012 549 012 453 012 325 012 69 012
Training, sec 0.005 0.01 0.05 0.18 0.75 1.41 2.8

1 Test, sec 5.68 5.55 5.61 5.39 4.50 3.20 0.603
Perf(Std), % 54.4(1) 57.5(.5) 58.0(.2) 58.70(.15) 58.8(.1) 58.9(.1) 58.9(.15)
Training, sec 0.015 0.025 0.100 0.370 1.46 2.81 5.6

2 Test, sec 6.84 7.30 8.20 8.3 7.15 5.1 0.95
Perf(Std), % 55.9(.5) 58.9(.5) 63.9(.3) 69.8(.2) 72.8(.1) 73.8(.1) 73.8(.1)
Training, sec 0.020 0.040 0.165 0.61 2.27 4.4 8.6

3 Test, sec 5.6 7.0 8.15 8.9 8.3 6.1 1.19
Perf(Std), % 56.2(1) 59.0(.5) 65.2(.2) 73.6(.1) 80.7(.1) 83.5(.05) 85.1(0.1)
Training, sec 0.030 0.060 0.235 0.895 3.37 6.6 12.5

4 Test, sec 6.55 6.8 8.27 9.15 8.83 6.8 1.35
Perf(Std), % 56.7(1) 59.3(.5) 65.5(.2) 73.7(.2) 81.5(.1) 85.0(.05) 87.6(.05)
Training, sec 0.040 0.080 0.300 1.18 4.50 8.8 17.5

5 Test, sec 6.75 7.05 8.4 9.30 9.1 6.95 1.45
Perf(Std), % 56.2(1) 59.1(.7) 65.5(.15) 73.62(.05) 81.45(.05) 84.95(.05) 87.85(.05)

Table 5 Forest cover type. Classification Matrix for MA. Training set of size 512 000,
Maximum resolution level 5. Overall performance 87.85%.

Predicted Observed
c1 c2 c3 c4 c5 c6 c7 total

Observed ↓ 25 497 33 896 4 298 294 932 1 843 2 252 %
c1 22 425 2 716 5 0 29 8 169 25 352 36.74
c2 2 768 30 263 205 1 175 139 31 33 582 48.66
c3 5 286 3 583 48 21 271 0 4 214 6.11
c4 0 11 85 218 0 25 0 339 0.49
c5 55 302 15 0 697 4 0 1 073 1.55
c6 13 261 405 27 9 1 369 0 2 111 3.06
c7 231 57 0 0 1 0 2 052 2 341 3.39

Rate % 87.95 89.28 83.36 74.15 74.79 75.75 91.12 69 012

The distribution of the classes varies throughout
the data set. Therefore, the training and test sets
were formed by homogeneous (with respect to the point
number) split of the data set.

The expected standard deviation, proportional to
1/

√
N , where N is the size of the data sets is low.

The standard deviation for 10 runs (different random
partitions of the data set into training and test) at
MaxLev=5, Training set size 256 000 was measured to
be 0.2%. The method was implemented in C (MSDN
VC++ 6.0, no special compiler options) and run un-
der Windows XP on 1.8GHz Pentium 4 (mobile) with
512MB RAM.

Table 5 shows our results for MaxLev=5 and Train-
ing set size of 512 000. The meaning of the cells is same
as in Table 3.

4. Discussion

We proposed a new classification method, based on
multiresolution density estimation of the classes in the
training set. We proved that the classification decision
of this method converges to the decision of the Bayesian
Classifier. The method provides efficient training and
query. The training and query speeds are actually lim-
ited by the hard drive I/O speed. The experiments

show, that such advantage in training speed can result
in higher classification performance for prohibitively
large training sets.

The proposed classification method has similarities
to Tree Classifiers, Nearest Neighbor k−d trees, Parzen
Windows, and Wavelet Interpolation Networks.

It differs from the Tree Classifiers [7], [8] or the
Nearest Neigbirs organized in k-d trees [1] in that these
classifiers have data-driven partitioning of the feature
space, what prohibits or complicates the on-line learn-
ing and often penalizes the training time. Our classifier
uses multiresolution basis functions, which can be con-
sidered as the a partitioning of space, however, since the
geometry of the partitioning is defined by the basis, the
online learning is done via simple and straightforward
change of few decomposition coefficients.

Parzen windows [15] prescribe the classification de-
cision according to the majority of training points in a
cell. However, a Parzen window classifier does not con-
verge to the Bayesian classifier due to the fixed window
size. Moreover, the fixed window can be too large for
some regions of the feature space and at the same time
too small for others. Our classifier uses multiresolution
windows, which automatically span the feature space
densely in densely populated regions, and uses the ap-
propriate larger size cells to calculate the value in re-

1180
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.7 JULY 2003

gions where the training points are sparse. Therefore,
the proposed method can be considered as ‘Multireso-
lution Parzen Windows.’

Wavelet Interpolation Networks [2] is a closely re-
lated approach. However, due to limitations described
in Sect. 2.1 the applications are limited to at most 3
dimensions.

References

[1] J.L. Bentley, “Multidimensional binary search trees used
for associative searching,” Commun. ACM, vol.18, no.9,
pp.509–517, 1975.

[2] C. Bernard, S. Mallat, and J.J. Slotine, “Wavelet interpo-
lation networks for hierarchical approximation,” SPIE 44th
Annual Meeting, Denver, CO, 1999.

[3] J.A. Blackard and D.J. Dean, “Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables,”
Computers and Electronics in Agriculture, vol.24, no.3,
pp.131–151, 1999.

[4] C.L. Blake and C.J. Merz, UCI repository of machine learn-
ing databases. http://www.ics.uci.edu/∼mlearn/
/MLRepository.html, 1998.

[5] P.J. Burt and E.H. Adelson, “The laplacian pyramid as a
compact image code,” IEEE Trans. Commun., vol.COM-31,
no.4, pp.532–540, 1983.

[6] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
[7] L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic The-

ory of Pattern Recognition, Springer, 1996.
[8] P. Eklund and A. Hoang, A performance survey of

public domain supervised machine learning algorithms,
http://citeseer.nj.nec.com/142129.html.

[9] J. Garcke, M. Griebel, and M. Thess, “Data mining with
sparse grids,” Computing, vol.67, pp.225–253, 2001.

[10] A. Haar, “Zur theorie der orthogonalen funktionensys-
teme,” Math. Annal., vol.69, pp.331–371, 1910.

[11] A. Lazarevich and Z. Obradovich, “Data reduction using
multiple models integration,” LNAI 2168 (subseries of Lec-
ture Notes in Computer Science), pp.301–313, Freiburg,
Germany, 2001.

[12] T.S. Lim and W.Y. Loh, “A comparison of prediction accu-
racy, complexity, and training time of thirty-three old and
new classification algorithms,” Machine Learning, vol.40,
pp.203–228, Kluwer, 2000.

[13] S.G. Mallat, A Wavelet Tour of Signal Processing, Aca-
demic Press, 1999.

[14] G. Melli, Datgen: A program that creates structured data.
http://www.datgen.com.

[15] E. Parzen, “On estimation of a probability density dunction
and mode,” Annals of Mathematical Statistics, vol.33, no.3,
pp.1065–1076, 1962.

[16] J.R. Quinlan, “Improved use of the continuous attributes
in c4.5,” J. Artificial Intelligence Research, vol.4, pp.77–90,
1996.

[17] D.S.R. Duda and P. Hart, Pattern Classification, John
Wiley & Sons, 2000.

[18] F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, vol.65, pp.386–408, 1958.

[19] A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed
Problems. John Wiley & Sons, Washington D.C., 1977.

[20] V.N. Vapnik, Statistical Learning Theory. John Wiley &
Sons, 1998.

Ilya Blayvas is a Ph.D. Student at
Computer Science Dept. of Technion - Is-
rael Institute of Technology, Haifa, Israel.

Ron Kimmel is an Assoc. Prof. at
Computer Science Dept. of Technion - Is-
rael Institute of Technology, Haifa, Israel.

