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Space-Dependent Color Gamut Mapping:
A Variational Approach

Ron Kimmel, Doron Shaked, Michael Elad, and Irwin Sobel

Abstract—Gamut mapping deals with the need to adjust a
color image to fit into the constrained color gamut of a given
rendering medium. A typical use for this tool is the reproduction
of a color image prior to its printing, such that it exploits best the
given printer/medium color gamut, namely the colors the printer
can produce on the given medium. Most of the classical gamut
mapping methods involve a pixel-by-pixel mapping and ignore the
spatial color configuration. Recently proposed spatial-dependent
approaches for gamut mapping are either based on heuristic
assumptions or involve a high computational cost. In this paper,
we present a new variational approach for space-dependent gamut
mapping. Our treatment starts with the presentation of a new
measure for the problem, closely related to a recent measure
proposed for Retinex. We also link our method to recent measures
that attempt to couple spectral and spatial perceptual measures.
It is shown that the gamut mapping problem leads to a quadratic
programming formulation, guaranteed to have a unique solution
if the gamut of the target device is convex. An efficient numerical
solution is proposed with promising results.

I. INTRODUCTION

THE term “color gamut” stands for the span of all possible
colors of a given image or device. For an image, the color

gamut is simply the set of all the colors found in it. For output
devices, such as printers or screens, the color gamut is the set
of colors the given device can render. A similar definition exists
for input devices.

When a color image is to be rendered on a printer or a screen,
“gamut kmapping” is typically required. This process deals with
the need to adjust the colors of the input image such that they fit
into the constrained color gamut of the output device. The gamut
mapping problem is, thus, a fundamental one in any transfer
of color images from input to output devices. Clearly, in de-
signing such mappings, one should be interested in transforms
that, while fulfilling the basic desire to match the gamuts, pre-
serve the original details as much as possible.

Most of the classical gamut mapping methods involve a
pixel-by-pixel mapping (usually a predefined lookup table) and
ignore the spatial color configuration in the rendered image.
Only recently, spatial-dependent approaches where proposed
[1], [13], [14]. However, these solutions are either based on
heuristic assumptions or involve a high computational cost.
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One of the fundamental motivations of spatial gamut map-
ping is the need to preserve the edge between two out-of-gamut
colors, which would otherwise map individually to the same
in-gamut color. Nonspatial gamut mapping approaches such as
projection or shrinkage would either map the two colors to the
same in-gamut color (projection), thereby eliminating the edge,
or map them to different colors (shrinkage), thereby distorting
at least one of the colors in cases where it appears with no sim-
ilar color in its spatial vicinity.

Spatial gamut mapping approaches will optimally map the
two out-of-gamut colors to the same in-gamut color, when they
appear separate in the image, and to different colors when the
two input colors share an edge. In some algorithms, these re-
quirements constitute a conflict. For example, suppose the two
colors mentioned above share an edge, but extend each in a large
constant tone patch to cover a large part of the image. What
would be the best mapping for a pixel located far from the edge
between the two colors. Should it be mapped as if it were close
to the edge or as if it were disconnected from the edge?

In this paper, we present a new variational approach for space-
dependent gamut mapping. Due to its adaptation to the spa-
tial color configuration behavior, the proposed method is also
image dependent by definition. Our analysis starts by presenting
a new metric between two candidate representations of the same
color image. This measure is shown to be closely related to a
recent measure based on a variational framework proposed for
the Retinex problem [6], [8], [9]. The proposed measure is also
linked to recent work that coupled spectral and spatial percep-
tual distances into one tool [14], [19].

Using the proposed distance measure, it is shown that the
gamut mapping problem translates to a quadratic programming
optimization form. This problem becomes convex if the gamut
of the target device is convex. For such devices the proposed
method is, thus, guaranteed to yield a unique optimal solution.
A highly efficient pyramidal (simplified multigrid) numerical al-
gorithm to find this solution is proposed with promising results.

Gamut mapping is a practical problem, with many technical
aspects and difficulties. In this paper, we chose to restrict our
scope to a mathematical framework addressing spatial consid-
erations in gamut mapping. In doing so, we deliberately deem-
phasized other important issues such as color fidelity and pro-
jection type. The main role of this paper is, therefore, showing
that the spatial considerations can be taken care of by a varia-
tional approach. This effectively minimizes a metric for the dis-
tance between images, taking spatial considerations into effect.
We believe that this concept is flexible, and can be merged with
an arbitrary projection and color-fidelity measure, all in the de-
sire to design a practical end-to-end gamut mapping algorithm.

1057-7149/$20.00 © 2005 IEEE



KIMMEL et al.: SPACE-DEPENDENT COLOR GAMUT MAPPING 797

The structure of the paper is as follows. Section II reviews
recent work on space-dependent gamut mapping and perceptual
measures for the spectral-spatial case. Next, in Section III, we
introduce the proposed framework. We start from the func-
tional definition, derive its Euler–Lagrange (EL) as a gradient
descent process, describe the numerical approximation, com-
ment on uniqueness and convergence, make relation to the
Retinex problem, and, finally, suggest methods to robustify
the algorithm to better treat halos. In Section IV, we present
experimental results comparing the proposed method to non-
spatial gamut mapping on a set of images. We conclude and
summarize in Section V.

II. PREVIOUS WORK

Among the various existing methods for the design of gamut
mapping, the method proposed by McCann [13] is the closest
in spirit to ours. McCann suggests to preserve spatial gradients
in all scales while applying a gamut mapping procedure. The
basic idea is the preservation of the gradients magnitude as in
the original image, while projecting onto the target gamut as
a constraint. The multiscale property is achieved by sampling
the image around each pixel with exponentially decreasing sam-
pling intervals. Sampling in [13] is done along the vertical and
horizontal directions. Generally speaking, McCann’s algorithm
exhibits good performance, both in terms of speed and output
quality. An annoying halo artifact may sometimes appear near
sharp edges.

A different method to pronounce gradients in the gamut map-
ping process is reported by Bala, deQueiroz, Eschbach, and Wu
[1]. They suggest to use nonspatial projection gamut mapping
and compute the difference between the luminance channels of
the result and the original image. A high-pass filtered version
of this difference is then added to the luminance channel of the
mapped result, this way pronouncing edges. Finally, the edge
enhanced image needs to be mapped again to the new gamut.

The above papers take a different approach toward the basic
problem of spatial gamut mapping. The former algorithm by
McCann [13] arbitrates the edge preservation and color fidelity
requirements indirectly via heuristic choice of parameters. A
wrong choice may be reflected in halos near sharp edges. Bala et
al. [1] applies only one cycle of this process, imposing the spa-
tial versus gamut conflicting requirements. Out-of-gamut color
edges affect the output only to the extent of the support of the
high pass filter. While very effective, this approach is analogous
to using edge sharpening to solve contrast problems.

Whereas the above methods are indeed successful in pre-
serving image gradients, they are based mainly on heuristics and
knowhow. As a consequence, it is hard to discuss their implied
metrics, or in other words, what it is that makes two images
different: gradients versus tone differences and those in the lu-
minance versus chrominance channels. Furthermore, it is hard
to analyze general algorithm properties such as convergence to
optimality, choice of parameters, possible improvements, and
more.

The gamut mapping method proposed in this paper is also
directed toward preserving gradients. However, as this new
method starts from an objective measure (a functional), it builds

Fig. 1. Qualitative description of filters modeling the human contrast
sensitivity functions, in the spatial frequency domain, as in [14].

a sound mathematical foundation. This approach gives a good
understanding of the problem and its inherent tradeoffs and,
consequently, leads to an improved practical solution.

While working on this problem, it became clear to us that
the key for obtaining a clear formulation for the gamut mapping
task is the construction of a mathematical model for proximity
between two different representations of the same color image.
A marked progress toward this end was accomplished by Zhang
and Wandell [19]. They suggests a simple spatial-spectral mea-
sure for human color perception, called the S-CIELAB. This
measure defines a spatial-spectral measure for human color per-
ception by a composition of spatial band-pass linear filters in the
opponent color space followed by the CIELAB Euclidean per-
ceptual color measure [19]. We latter link S-CIELAB and our
method.

A similar effort to define such a distance measure is found
in [14]. In this work, Nakauchi, Hatanaka, and Usui, modulate
an measure for image difference by human contrast sen-
sitivity functions. The authors use a model in which the con-
trast sensitivity function is a linear combination of three spatial
band-pass filters given in the spatial-frequency do-
main (or , as their corresponding spatial filters; see
Fig. 1).

For gamut mapping of the image in the CIELAB space,
Nakauchi et al. minimize the functional

(1)

subject to . Here, the symbol denotes convo-
lution, and is the filter corresponding to the spectral channel

and the contrast sensitivity mode.
is the image domain and the target gamut. Note that a total of
nine filters are involved, three for each spectral channel and a
total of three spectral channels.

The filters are modeled by shifted Gaussian functions.
is not shifted, and, thus, is simple Gaussian, whereas and

are a Gaussians modulated by two sine functions with dif-
ferent frequencies. One may argue that these shifted smoothers
approximate the smoothed derivative operator at different
scales. Thus, we maintain that minimization of Nakauchi’s
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functional (1) is similar to minimizing the following functional
for each channel separately

(2)

where and are two smoothed derivatives, replacing
the filtering done by and , respectively. Roughly speaking,
the first term corresponds to the S-CIELAB perceptual mea-
sure, while the next two terms capture the need for matching the
image variations at two selected scales that were determined by
human perception models. One technical difficulty of the spatial
filters corresponding to (1) is their large support, which is prob-
ably the reason for the slow implementation reported in [14].
Next, we show an alternative view of the problem with an effi-
cient numerical solution.

III. PROPOSED SOLUTION

A. Modeling the Problem

A good measure of image deviation captures the perceptual
difference between the initial and final images. This is
modeled by

(3)

where denotes convolution, and is a normal-
ized Gaussian kernel with zero mean and a small variance .
This model is good for small deviations. However, as deviations
become larger, it should be modified to account for possible per-
ceptual feature differences, which may be modeled by the dif-
ference of gradients, which due to linearity, turns out to be the
gradient of (3)

(4)

The proposed proximity measure between and yields the
functional

(5)

which should be minimized subject to . Note that we
deliberately leave the norms involved ( and ) as general and
undefined yet. The choices for the norms lead essentially to the
choice of projection mentioned earlier.

The proposed proximity measure is similar to (2), the prox-
imity measure implied in [14]. It is also a Sobolev space norm
[12]. The expression in (3) reflects our expectation to have
the same colors in the output and input. Indeed, if , the
optimal solution to (5) is nonspatial projection. The projection
type used is determined by the choice of the norm .
For example, if weights the luminance channel much
less than the chrominance channel, the projection will preserve
chrominance. On the other hand, if all components are weighted
equally, the projection is orthogonal in the formulation’s color
space.

The metric implied in (5) reflects our expectation to have the
same color gradients in the output and input. Indeed if
the optimal solution to (5) will tend to move the image in the
color space and fit it into . Assuming that this is impossible,
some edges (primarily the smaller ones) will be shrunken in
order to enable the desired fit. The projection type used for the
resultant shrinkage can be determined by the choice of the norm

. For example, if weights the luminance channel
much less than the chrominance channel, the projection will pre-
serve chrominance (much like what happens in [1] where the
edge enhancement is restricted to the luminance channel). On
the other hand, if all components are weighted equally, the pro-
jection is orthogonal in the formulation’s color space, and, thus,
edges are preserved in both luminance and chrominance.

We are aware that, in practice, one may want to work with a
different metric.1 Nevertheless, we chose to focus on the theo-
retical derivation of our method that and decided to limit it to
separable metrics such as the isotropic norm, in which case,
(5) may be reformulated as

(6)

where is the color plane of .
Taking the first variation of (6) with respect to for each

, we get three EL equations (when discrete functions
are involved, this process parallels the notion of zeroing the first
derivative in order to minimize the function—see [3] for more
details)

(7)

(see Appendix A for this derivation). Reformulating the EL as a
gradient descent flow for , we get the following minimization
scheme:

subject to

(8)

These equations suggest that should be iteratively updated
in the reverse direction of the gradient of the penalty function
defined in (6). This way, each iteration descends on the func-
tional’s surface, going to the minimum point of (6).

In the sequel, we will detail the conditions under which the
optimum is unique. This would assure convergence to the single
optimal solution. Note that (8) is a differential equation with an
additional time parameter. The descretization of this parameter
constitutes the index of iterations required to minimize (6) sub-
ject to as a differential (8).

A direct consequence of the operators involved is the fact that
the proposed functional and the resulting minimization scheme
are both Euclidean invariant in the image plane. They are both
translation and rotation invariant. As the parameter goes to
zero, we approximate the S-CIELAB model, while for effective

1Alternatively, one may want to consider metrics that vary in color space.
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nonzero and positive , we have a proper extension to the per-
ceptual measures proposed in [14].

B. Numerical Implementation

The above description concentrated on the model we use to
force both gamut match and edge preservation. In this section,
we shall describe the details of the numerical method to effi-
ciently minimize (6).

In (8), we added an artificial time parameter to the image
that now reads . Let us discretize the EL gra-

dient descent equation by first taking a simple forward explicit
approximation for the derivative. In the following, we shall
refer to a single color layer ( , or ), as the same is to apply
to all. Thus

where and .
Next, we deal with the spatial derivatives. Assume spatial dis-

crete representation as well, where , and
assuming a uniform spatial spacings in the and directions of
size . We use central derivatives in space

and a similar form for the direction derivatives. We also use
the relation , and compute the
kernels .
The explicit approximation reads

(9)

subject to the constraint . Thus, every iteration consti-
tutes of an update as in (9), followed by a projection onto the
gamut to force the constraint.

In order to speed up convergence, we use a standard coarse to
fine pyramidal approach. Thus, a Gaussian pyramid of the orig-
inal image is composed, and the gamut-mapping problem
is solved for the coarse resolution. Since this stage works with
very small images, the result is obtained very fast. Going to the
next finer resolution layer, we solve again the gamut mapping
problem, using an interpolated version of the previous resolu-
tion layer result as initialization. Again, due to the good initial-
ization, convergence is rapid and the solution is obtained after
only few (2–3) iterations. This process repeats until arrival to
the finest resolution layer.

There are two ways to perceive this pyramidal treatment. One
way is to think of it as a method that constructs a good candidate
initialization to be used to solve the gamut mapping problem
in the original (finest) resolution. Indeed, as we shall see next,
if the gamut is convex and sufficient iterations are applied in
each resolution layer, global optimum solution is guaranteed.
Another, more instructive, way to interpret this pyramidal al-
gorithm is as multiscale regularization. If we deliberately apply

Fig. 2. One-dimensional example of the algorithm’s behavior and the creation
of halos.

only small number of iterations at each resolution layer, a de-
sired smoothing effect is propagated through the pyramid. This
has a lot in common with the the approach McCann advocated
[13]. A third option exists, using a full multigrid method, but we
have chosen not to pursue it in this sequel.

C. Uniqueness and Convergence

The proposed functional has a quadratic programming (QP)
form, since the penalty term is quadratic and the constraint is
linear. If the gamut set is convex, the overall problem is convex
if and only if the Hessian of the functional is positive definite
[3]. In such a case, there is a unique local minimum which is
obviously also the global solution to the problem. In our case,
the Hessian is given by , which is indeed positive
definite and well posed for all . Thus, for a convex target
gamut , there exists a unique solution, and sufficient number
of iterations will recover it. However, as was mentioned before,
using a truncated number of iterations may be thought of as
leading to a desired regularization effect, as is known in image
restoration [11].

D. Relation to Retinex

The gamut mapping problem is related to the Retinex
problem of illumination compensation and dynamic range
compression. The basic Retinex problem deals with the estima-
tion of the reflectance image from the given acquired image. An
optical model of the acquired image asserts that it is a mul-
tiplication of the reflectance and the illumination images,
where the reflectance image is a hypothetic image that would
have been measured if every visible surface would have been
illuminated by a unit valued white illumination source, and the
illumination image is the actual illumination shaded on surfaces
in the scene. In the log domain we get , where , and

are the respective logarithms of , and . Since we know
that the surface patches can not reflect more light than has been
shaded on them, we require , implying . Thus, we
seek an image , which is perceptually similar to . For the
Retinex problem we have an additional physically motivated
constraint, namely, that the illumination image is
smooth, i.e., the gradient is small. But this is
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Fig. 3. Left to right: Original image, gamut mapping by truncation (minimization of the L norm), and the result of the proposed scheme.

just another way of saying that the features of are similar to
those of , since we do not assume that the illumination created
perceptual features in . In the gamut mapping problem, we
have an image , and we want to estimate an image ,
which is not only perceptually similar to , but which also has
perceptual features similar to .

E. Robustifying the Algorithm

The proposed penalty function (5) tends to create halos in the
resulting image. Fig. 2 explains the origin of those halos through
a one-dimensional example. In this figure, we see a signal which
is outside of the gamut (the gamut is between the “high” and
“low” dotted lines, and the signal is strictly above the “high”).
Projecting the signal onto the gamut will result in a constant
value and loss of all detail. The dashed line represents the re-
sult of scaling the signal into the allowed range. All the details
are preserved, but with a smaller contrast. As opposed to these
point operations, our space-dependent approach yields a signal
which preserves the details with high contrast (the solid line).

However, near the strong edges, we get halos, which means that,
near the edge, there is a slow transition from low to high values.

In order to avoid this phenomena, we can modify the penalty
term (5) using robust estimation formulations such as

(10)

which, for , coincides with (6). If the
function grows slower than as , we get an im-
proved behavior near strong edges. Good candidates for
are or (see [7] for more details on
using these functions as replacements to the classic norm).
Note that by this change we have effectively changed the norm
and, thus, the projection implied.

A different simpler (linear) approach with similar robust be-
havior is to solve the original problem (5) twice, with two dif-
ferent values of . We denote the solution with a small as

and the one which corresponds to the high value of
as . The solution has smaller contrast at areas with
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Fig. 4. (Top) Left to right: Original lighthouse image, gamut mapping by the original penalty function with � = 1, and the same with � = 40. (Bottom) Left to
right: The weight image (white = 1, black = 0) and the final weighted average image.

small details, yet has almost no halos. On the other hand,
preserves the small details, but at the expense of strong halo ef-
fects. Therefore, by averaging these two results in a spatially
adaptive way, we can enjoy both worlds. The proposed solution
is, therefore

The weight should be close to one near strong edges, and
close to zero in relatively smooth regions. In our experiments,
we used

and achieved resemblance to robust estimation.
Halo problems have been recently dealt with in relation

to dynamic range compression. Solutions proposed included
anisotropic diffusion [18], robust filtering [4], and bilateral
filtering [5], [17]. See [2] and [7], [15] for a connection be-
tween these approaches and [10] and [16] for the relation to the
Beltrami flow.

IV. RESULTS

The scope of the paper influenced our choice of experiments.
We found that variations in addressing color fidelity and pro-
jection type are usually very dominant in determining the final
image quality. Since our goal in this paper is the advocation of a
systematic spatial modeling via a variational point of view, we
chose accordingly to restrict the underlying projection approach
of the variational method to the simplest (orthogonal) projec-
tion. As a result, this is also the alternative method we compare

against. Thus, the results presented in this section are illustrative
rather than extensive. Accordingly, we chose a toy problem with
very limited gamut, rather than using a realistic one. A side ben-
efit to this choice of gamut is our ability to magnify visual dif-
ferentiation between the spatial and the nonspatial approaches
and bypass possible limitations posed by the journal’s produc-
tion process.

We work in the RGB domain, and map into a toy gamut
restricting the RGB values to the range [40, 100] out of the orig-
inal gamut range [0, 255]. The projection norms we use in (6)
are orthogonal in the RGB space are isotropic, and imply or-
thogonal projections. This is also the nonspatial projection we
compare to.

Fig. 3 shows the result of the proposed mapping compared to
nonspatial orthogonal projection. In this example, we used two
resolution levels with four iterations at each resolution,

, and the support of the Gaussian
kernel is set to 15 15 pixels.2

Next, we present the robust gamut mapping results. The ap-
plied algorithm is the shortcut method of adaptive weighting two
regular results obtained with different values of . The top row
of Fig. 4 presents an original image and the two solutions ob-
tained by the regular variational penalty function with
and . The limited gamut in this case is as before, namely,

, and values in the range [40, 100]. The bottom row in
Fig. 4 shows the weight image as computed by the proposed for-
mula with , and the weighted average result. As can
be seen, the final result is a good tradeoff between halo suppres-
sion and sharpness.

2The size of the images is 384� 256 pixels.
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V. CONCLUDING REMARKS

We presented a variational formulation for the gamut map-
ping as a quadratic programming problem. A simple functional
that measures both the image difference and its derivatives was
shown to be analog to perceptual difference measures. Actually,
this is a similarity measure in Sobolev space in which the prox-
imity of the derivatives capture the small scale and the detailed
information of the difference between the images. We linked our
results to previous methods including solutions to the Retinex
problem, and presented an efficient numerical multiresolution
algorithm for its solution, which can be used for image repro-
duction subject to convex constraints with a unique solution.

One important issue left untreated in this paper is the need to
choose parameters. While being complex in general, we believe
that the choice of the parameters should be partly driven by the
desire to get scale-invariance. When the same image is fed to the
algorithm in different scales, we could assume that the viewer
expects the transition width near edges to be proportional to the
image size. We leave this matter for future work.

APPENDIX A

Let us explore the effect of a convolution operation within the
functional on the EL equation. First, by linearity, it is simple to
show that for a symmetric kernel we have

, or, in shorthand notations,
. Next, given the general functional of

the form

we set , and calculate

Using integration by parts and vanishing boundary values, i.e.,
, we get

The extremum condition is checked in the limit, as , such
that for all . It is given by the EL equation

or, equivalently, . For example, for the
functional

the EL is given by

or, equivalently, .
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