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Fast Geodesic Active Contours

Roman Goldenberg, Ron Kimmel, Ehud Rivlin, and Michael Rudzsky

Abstract— We use an unconditionally stable numerical scheme
to implement a fast version of the geodesic active contour model.
The proposed scheme is useful for object segmentation in images,
like tracking moving objects in a sequence of images. The method
is based on the Weickert-Romeney-Viergever (additive operator
splitting) AOS scheme. It is applied at small regions, motivated by
Adalsteinsson-Sethian level set narrow band approach, and uses
Sethian’s fast marching method for re-initialization. Experimental
results demonstrate the power of the new method for tracking in
color movies.

Index Terms— Additive operator splitting, color, geodesic active
contours, level sets, numerical scheme, partial differential equa-
tions, segmentation, tracking.

I. INTRODUCTION

N important problem in image analysis is object segmen-

tation. It involves the isolation of a single object from the
rest of the image that may include other objects and a back-
ground. Here, we focus on boundary detection of one or several
objects by a dynamic model known as the “geodesic active con-
tour” introduced in [4]-[7] (see also [19] and [30]).

Geodesic active contours were introduced as a geometric al-
ternative for “snakes” [18], [32]. Snakes are deformable models
that are based on minimizing an energy along a curve. The
curve, or snake, deforms its shape so as to minimize an “in-
ternal” and “external” energies along its boundary. The internal
part causes the boundary curve to become smooth, while the ex-
ternal part leads the curve toward the edges of the object in the
image.

In [2] and [23], a geometric alternative for the snake model
was introduced, in which an evolving curve was formulated by
the Osher—Sethian level set method [24]. The method works on
a fixed grid, usually the image pixels grid, and automatically
handles changes in the topology of the evolving contour.

The geodesic active contour model was born latter. It is both a
geometric model as well as energy functional minimization. In
[4] and [5], it was shown that the geodesic active contour model
is related to the classical snake model. Actually, a simplified
snake model yields the same result as that of a geodesic active
contour model, up to an arbitrary constant that depends on the
initial parameterization. Unknown constants are an undesirable
property in most automated models.

Although the geodesic active contour model has many ad-
vantages over the snake, its main drawback is its nonlinearity
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that results in inefficient implementations. For example, explicit
Euler schemes for the geodesic active contour limit the numer-
ical step for stability. In order to overcome these speed limita-
tions, a multi-resolution approach was used in [34] and addi-
tional heuristic steps were applied in [25], like computationally
preferring areas of high energy.

In this paper, we introduce a new method that maintains
the numerical consistency and makes the geodesic active
contour model computationally efficient. The efficiency is
achieved by cancelling the limitation on the time step in the
numerical scheme, by limiting the computations to a narrow
band around the the active contour and by applying an efficient
re-initialization technique.

II. FROM SNAKES TO GEODESIC ACTIVE CONTOURS

Snakes were introduced in [18] and [32] as an active contour
model for boundary segmentation. The model is derived by a
variational principle from a nongeometric measure. The model
starts from an energy functional that includes “internal” and “ex-
ternal” terms that are integrated along a curve.

Let the curve C(p) = {z(p),y(p)}, where p € [0,1] is an
arbitrary parameterization. The snake model is defined by the
energy functional

1
sic] = / (ICoI2 + alCy? +269(C)) drdy

where C, = {9,x(p),dpy(p)} and « and 3 are positive con-
stants.

The last term represents an external energy, where g() is
a positive edge indicator function that depends on the image
I(z,y), it gets small values along the edges and higher values
elsewhere. For example g(z,y) = 1/(|VI|? + 1). Taking the
variational derivative with respect to the curve, 6S[C]/6C, we
obtain the Euler—Lagrange equations

—Chp + Cpppp + Vg = 0.

One may start with a curve that is close to a significant local
minimum of S[C] and use the Euler-Lagrange equations as a
gradient descent process that leads the curve to its proper posi-
tion. Formally, we add a time variable ¢ and write the gradient
descent process as 9;C = —85[C]/6C, or explicitly

dc

a Cpp
The snake model is a linear model and thus an efficient and
powerful tool for object segmentation and edge integration, es-
pecially when there is a rough approximation of the boundary
location. There is however an undesirable property that char-
acterizes this model. It depends on the parameterization. The
model is not geometric.

— aCphppp — V4.
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Motivated by the theory of curve evolution, Caselles et al. [2]
and Malladi et al. [23] introduced a geometric flow that includes
internal and external geometric measures. Given an initial curve
Co, the geometric flow is given by the planar curve evolution
equation C; = g(C)(r — v)N, where

N normal to the curve;

/i./\7 curvature vector;

v arbitrary constant;

g0) edge indication scalar function.

This is a geometric flow, that is, it is free of the parameterization.
Yet, as long as g does not vanish along the boundary, the curve
continues its propagation and may skip its desired location. One
remedy, proposed in [23] is a control procedure that monitors
the propagation and sets g to zero as the curve gets closer to the
edge.

The geodesic active contour model was introduced in
[4]-[7](see also [19] and [30]), as a geometric alternative for
the snakes. The model is derived from a geometric functional,
where the arbitrary parameter p is replaced with a Euclidean
arclength ds = |C,|dp. The functional reads

sl = / (a+3(C)) Cyldp.

It may be shown to be equivalent to the arclength parameterized
functional

L)
S[C] = /0 §(C)ds + aL(C)

where L(C) is the total Euclidean length of the curve. One may
equivalently define g(z,vy) = g(x, ) + «, in which case

1.(C)
S[C] = /0 g(C)ds

i.e., minimization of the modulated arclength ¢(C)ds. The
Euler-Lagrange equations as a gradient descent process are

& = (s~ (vo. ) N

Again, internal and external forces are coupled together, yet this
time in a way that leads toward a meaningful minimum, which
is the minimum of the functional.! One may add an additional
force that comes from an area minimization term and motivated
by the balloon force [10]. This way, the contour may be directed
to propagate inwards by minimization of the interior. The func-
tional with the additional area term modulated by an edge indi-
cator function reads

S[c] = /0 " s 1o /Q gda

where da is an area element and €2 is the interior of region en-
closed by the contour C. The Euler Lagrange as steepest descent,
following the development in [36] and [37] is

dC - -

= = (900 = (Vg. ) — ag(@) X
'An early version of a geometric-variational model, in which
S[C] = [g(C)ds/[ds, that deals with open curves was proposed in

[14].
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The connection between classical snakes and the geodesic
active contour model was established in [5] via Maupertuis’
Principle of least action [12]. By Fermat’s Principle, the final
geodesic active contours are geodesics in an isotropic nonho-
mogeneous medium.

Recent applications of the geodesic active contours include
three-dimensional (3-D) shape from multiple views, also known
as shape from stereo [13], segmentation in 3-D movies [21],
tracking in two-dimensional (2-D) movies [25] and refinement
of efficient segmentation in 3-D medical images [22]. The curve
propagation equation is just part of the whole model. Subse-
quently, the geometric evolution is implemented by the Osher-
Sethian level set method [24].

A. Level Set Method

The Osher-Sethian [24] level set method considers evolving
fronts in an implicit form. It is a numerical method that works on
a fixed coordinate system and takes care of topological changes
of the evolving interface.

Consider the general geometric planar curve evolution

dc

dt

where V' is any intrinsic quantity, i.e., V' does not depend on a
specific choice of parameterization. Now, let ¢(z, /) : R? — R
be an implicit representation of C, such that C = {(z,¥) :
¢(x,y) = 0}. One example is a distance function from C de-
fined over the coordinate plane, with negative sign in the inte-
rior and positive in the exterior of the closed curve.

The evolution for ¢ such that its zero set tracks the evolving
contour is given by

VN

dep
— =V|V¢|.
Vvl
This relation is easily proven by applying the chain rule and
using the fact that the normal of any level set, ¢ = constant, is
given by the gradient of ¢
dp

dt

(V6. = (0. VA =V (T 6 ) = VIVl

This formulation enable us to implement curve evolution on
the x, y fixed coordinate system. It automatically handles topo-
logical changes of the evolving curve. The zero level set may
split from a single simple connected curve, into two separate
curves.

Specifically, the corresponding geodesic active contour
model written in its level set formulation is given by

d \Y
% —aiv (st o) 1991

Including a weighted area minimization term that yields a con-
stant velocity, modulated by the edge indication function, we
have

@ _

1 _ <ag(x,y) + div @@,@%)) V.

We have yet to determine a numerical scheme and an appro-
priate edge indication function g. An explicit Euler scheme with
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forward time derivative, introduces a numerical limitation on
the time step needed for stability. Moreover, the whole domain
needs to be updated each step, which is a time consuming op-
eration for a sequential computer. The narrow band approach
overcomes the last difficulty by limiting the computations to a
narrow strip around the zero set. First suggested by Chopp [9],in
the context of the level set method and later developed in [1], the
narrow band idea limits the computation to a tight strip of few
grid points around the zero set. The rest of the domain serves
only as a sign holder. As the curve evolves, the narrow band
changes its shape and serves as a dynamic numerical support
around the location of the zero level set.

B. AOS Scheme

Additive operator splitting (AOS) schemes were introduced
by Weickert et al. [35] as an unconditionally stable numerical
scheme for nonlinear diffusion in image processing. Let us
briefly review its main ingredients and adapt it to our model.

The original AOS model deals with the Perona-Malik
[26], nonlinear image evolution equation of the form
Oy = div(g(|Vu|)Vu) with given initial condition as
the image 1©(0) = wg. Let us rewrite explicitly the right hand
side of the evolution equation

div (g(|Val) V) = Y 8s, (9(|Vul)ds,w)
=1
where [ is an index running over the m dimensions of the
problem, e.g., for a 2-D image m = 2,x1 = x and x2 = y.
As a first step toward discretization consider the operator

Ay(u”) = 80, (9(IVU*)02,)

where the superscript k indicates the iteration number, e.g.,

u® = ug. We can write the explicit scheme

uF = uk

I+7 Z Al(uk)
=1

where 7 is the numerical time step. It requires an upper limit for
7 if one desires to establish convergence to a stable steady state.
Next, the semi-implicit scheme
m -1
uhtt = l[ -7 Z Ay(u®)
=1

U,k

is unconditionally stable, yet inverting the large bandwidth ma-
trix is a computationally expensive operation.

Finally, the consistent, first order, semi-implicit, additive op-
erator splitting scheme

m

‘ 1 -1
Tl = po- ; [1 — mr A (ub)] ok

may be applied to efficiently solve the nonlinear diffusion.
The AOS semi-implicit scheme in 2-D is then given by a
linear tridiagonal system of equations

2
uktl = %Z[I — 27 Ay (uP)] L (1

=1
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where A;(u*) is a matrix corresponding to derivatives along the
I-th coordinate axis. It can be efficiently solved for ©**! by
Thomas’ algorithm (see [35]).

In our case, the geodesic active contour model is given by

91 = div @amn%) vl

where g is the image and ¢ is the implicit representation of the
curve. Since our interest is only at the zero level set of ¢, we
can reset ¢ to be a distance function every numerical iteration.
One nice property of distance maps is it unit gradient magnitude
almost everywhere. Thereby, the short term evolution for the
geodesic active contour given by a distance map, with |V¢| = 1,
is

9 = div (g(|Vuo[) V) .

Note that now A;(¢¥) = A;(ug), which means that the ma-
trices [I — 27 A;(up)] ™t can be computed once for the whole
image. Yet, we need to keep the ¢ function as a distance map.
This is done through re-initialization by Sethian’s fast marching
method every iteration.

It is now simple to introduce a weighted area “balloon” like
force to the scheme. The resulting AOS scheme with the “bal-
loon” then reads

2

P = LS - 2r o) (8 + rag(w)) @)

=1

where « is the weighted area/balloon coefficient.

In order to reduce the computational cost, we use a multiscale
approach [20]. We construct a Gaussian pyramid of the original
image. The algorithm is first applied at the lower resolution.
Next, the zero set is embedded at a higher resolution and the
¢ distance function is computed. Moreover, the computations
are performed only within a limited narrow band around the
zero set. The narrow band automatically modifies its shape as
we re-initiate the distance map.

C. Re-Initialization by the Fast Marching Method

In order to maintain subgrid accuracy, we detect the zero level
set curve with subpixel accuracy. We apply a linear interpolation
in the four pixel cells in which ¢ changes its sign. The grid
points with the exact distance to the zero level set are then used
to initialize the fast marching method.

Sethian’s fast marching method [29], [28], is a computa-
tionally optimal numerical method for distance computation
on rectangular grids. The method keeps a front of updated
points sorted in a heap structure and constructs a numerical
solution iteratively, by fixing the smallest element at the top
of the heap and expanding the solution to its neighboring grid
points. This method enjoys a computational complexity bound
of O(Nlog N), where N is the number of grid points in the
narrow band. See also [8], [33], where consistent O(NN log V)
schemes are used to compute distance maps on rectangular
grids.
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III. EDGE INDICATOR FUNCTIONS FOR COLOR AND MOVIES

What is a proper edge indicator for color images? Several
generalizations for the gradient magnitude of gray level images
were proposed, see e.g., [11], [27], and [31]. In [25], Paragios
and Deriche introduced a probability-based edge indicator func-
tion for movies. In this paper, we have chosen the geometric
philosophy to extract an edge indicator. We consider a measure
suggested by the Beltrami framework in [31], to construct an
edge indicator function.

A. Edges in Color

According to the Beltrami framework, a color image is con-
sidered as a two dimensional surface in the five dimensional
spatial-spectral space. The metric tensor is used to measure dis-
tances on the image manifold. The magnitude of this tensor is
an area element of the color image surface, which can be con-
sidered as a generalization of the gradient magnitude.

Formally, the metric tensor of the 2-D image given by the 2-D
surface {z,y, R(z,y), G(x,y), B(x, )} in the {z,y, R, G, B}
space, is given by (see first equation at the bottom of the page)
where R, = 3, R. Our edge indicator is the largest eigenvalue
of the structure tensor metric. It is the eigenvalue in the direction
of maximal change in dR? + dG? + dB? and it reads

1 72
)\:1+§Z:|Vu|

>

2
1 ) 1
— 7|2 —
+ < 5 Z |V ) 5
where u* = R,u? = G,u® = B. Then, the edge indicator
function ¢ is given by a decreasing function of A, e.g., g =
(14 2271,

[Vt x Vi |?
J

B. Tracking Objects in Movies

Let us explore two possibilities to track objects in movies.
The first, considers the whole movie volume as a Riemannian
space, as done in [7]. In this case the active contour becomes
an active surface. The AOS scheme in the spatial-temporal 3-D
hybrid space is

= 231 = B ()]
i

where A;(uo) is a matrix corresponding to derivatives along the
Ith coordinate axis, where now [ € [x,¥,7].
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Fig. 1. Two arrays of linked lists used for narrow band representation.

The edge indicator function is again derived from the
Beltrami framework, where for color movies we pull-back the
metric (see the second equation at the bottom of the page)
which is the metric for a 3-D volume in the six-dimensional
(6-D) {z,y,7, R, G, B} spatial-temporal-spectral space. Now
we have (det(g;;))Y/%dz dydr as a volume element of the
image and, again, the largest eigenvalue of the structure tensor
metric, A, can be used as an edge indicator. Intuitively, the
larger A gets, the smaller spatial-temporal steps one should
apply in order to cover the same volume.

A different approach uses the contour location in frame n as
an initial condition for the 2-D solution in frame n + 1, see
e.g., [3] and [25]. The above edge indicator is still valid in this
case. Note, that the aspect ratios between the time, the image
space and the intensity, should be determined according to the
application.

The first approach was found to yield accurate results in off
line tracking analysis. While the second approach gives up some
accuracy, that is achieved by temporal smoothing in the first
approach, for efficiency in real-time tracking.

IV. IMPLEMENTATION DETAILS

There are some implementation considerations one should be
aware of. For example, the summation over the two dimensions

1+ R+ G2+ B2

(9i5) = <

R.R,+G.G, + B, B,

R.R, + G,G, + B, B,
1+ Ry + G+ B

)

1+ R+ G2+ B2
(9i3) = :

1+ R+ G, + B

R,R, + G,G. + B,B,
1+ R24+ G2+ B2
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Step 80 Step30

Step 150 Steps8

Fig.2. Curvature flow by the proposed scheme. A nonconvex curve vanishes
in finite time at a circular point by Grayson’s Theorem. The curve evolution is
presented for two different time steps: left: 7 = 20 and right 7 = 50.

in (1) and (2) should be done in such a way that the matrices
Aq(up) and As(up), corresponding to the derivatives along the
x and y axes, respectively, will be tridiagonal. This is achieved
by spanning the matrix ¢* once by rows and once by columns.

Working on the whole domain is fairly straightforward. The
matrix ¢* is represented as vectors ¢¥ corresponding to a single
row/column. The vectors [I — 27 Al ()] "1 ¢, where A} of size
|p¥| x |¢¥| is a matrix corresponding to the derivatives of a
single row/column, are computed using the Thomas algorithm

and summed according to their coordinates to yield the matrix
¢k+1 .
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Curvature Flow — CPU time
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Fig.3. Curvature flow CPU time for the explicit scheme and the implicit AOS

scheme. First, the whole domain is updated, next, the narrow band is used to
increase the efficiency and finally the AOS speeds the whole process. For the
explicit scheme the maximal time step that still maintains stability is choosen.
For the AOS scheme, CPU times for several time steps are presented.

Using the narrow band approach is a bit more tricky. The
question is what is the most efficient representation for the
narrow band that would allow to find for every row/column the
segments that belong to the narrow band? One may suggest to
use the run length encoding, but the standard static run length
implementation is not sufficient. This is due to the fact that the
narrow band is rebuilt every iteration using the fast marching
algorithm, which generates narrow band pixels in arbitrary
order. Creating the run length encoding from such a stream
of pixels can be done either off-line, by first constructing and
then scanning a map of the whole image (which is clearly
inefficient), or online using a dynamic data structure.

In our implementation we use two arrays of linked lists, one
for the rows and one for the columns, where each linked list
corresponds to one row/column and contains segments of ad-
jacent pixels belonging to the narrow band (see Fig. 1). Each
segment is defined by its first and last pixels coordinates. Since
anarrow band is generated as the fast marching algorithm grows
outwards, adding a new pixel usually means just changing one
of the boundaries of an already existing segment. For reasonably
simple contours the number of times a new segment is created or
an existing one is merged with another is relatively low. There-
fore, the number of segments per row/column is always small
and the complexity of adding a new pixel to the narrow band is
practically O(1).

The calculations are performed separately for every
horizontal and vertical segment ¢F and the vectors
[[ — 27AH(uo)] Lok, where Al of size |¢F| x |¢F] is a
matrix corresponding to the derivatives of a single segment, are
summed according to their coordinates to yield the new level
set function ¢*** for the narrow band pixels only.

Another issue requiring a special attention is the value of the
time step. If we choose a relatively large time step, the active
contour may skip over the object boundary. The time step should
thus correspond to the numerical support of the edges (edge
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Fig. 4. Multiple objects segmentation in a static color image.

width). This, in turn, dictates the width of the narrow band that
should be wide enough, so that the contour would not escape it
in one iteration. One way to overcome the time step limitation
is to use a coarse to fine scales of boundary smoothing, with an
appropriate time step for each scale. Finally, since the method is
based on the AOS, which is a first-order approximation scheme,
the numerical error grows linearly with the time step.

V. EXPERIMENTAL RESULTS

As a simple example, the proposed method can be used as a
consistent, unconditionally stable and computationally efficient,
numerical approximation for the curvature flow. The curvature
flow, also known as curve shortening flow or geometric heat
equation, is a well studied equation in the theory of curve evo-
lution. It is proven to bring every simple closed curve into a cir-
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Fig. 5. Gray matter segmentation in a MRI brain image. The white contour
converges to the outer cortical surface and the black contour converges to the
inner cortical surface.

cular point in finite time [15], [17]. Fig. 2 shows an application
of the proposed method for a curve evolving by its curvature
and vanishes at a point. One can see how the number of itera-
tions needed for the curve to converge to a point decreases as
the time step is increased.

We tested several implementations for the curvature flow.
Fig. 3 shows the CPU time it takes the explicit and implicit
schemes to evolve a contour into a circular point. For the ex-
plicit scheme we tested both the narrow band and the naive ap-
proach in which every grid point is updated every iteration. The
tests were performed on an Ultra SPARC 360 MHz machine for
a 256 x 256 resolution image.

It should be noted that when the narrow band approach is
used, the bandwidth should be increased as the 7 grows to ensure
that the curve does not escape the band in one iteration.

Fig. 4 shows multiple objects segmentation for a static color
image. Here we used a balloon force to propagate the contour
through the narrow passages between objects.

Fig. 5 presents an example of medical image application,
where the gray matter segmentation is performed on a single
slice of a human head MRI image. The task is to detect a narrow
layer of the brain bounded by two interfaces—the outer cor-
tical surface (cerebral spinal fluid(CSF)/gray matter interface)
and the inner cortical sfurface (gray matter/white matter inter-
face). The segmentation is performed by two active contours
initialized inside the white matter regions. The negative balloon
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Frame 2

Frae 22

Frame 50

Fig. 6. Tracking a cat in a color movie by the proposed scheme. Top: Segmentation of the cat in a single frame and bottom: tracking the walking cat in the 50

frames sequence.

Frame 2

Frame 21

Frame 38 Frame 59

Fig.7. Tracking two people in a color movie. Top: curve evolution in a single frame and bottom: tracking two walking people in a 60 frame movie.

force coefficient is used to expand the contour toward the region
boundary and the edge indicator functions are chosen to respond
only to the edge points corresponding to the characteristic inten-
sity profiles of the CSF/gray matter and the gray matter/white
matter interfaces respectively. This specific medical problem in-
troduces new challenging difficulties and possible solutions will
be reported elsewhere [16].

Figs. 6 and 7 show segmentation results for color movies with
difficult spatial textures. The tracking is performed at two res-
olutions. At the lower resolution we search for temporal edges
and at the higher resolution we search for strong spatial edges.

The contour found in the coarse grid is used as the initial con-
tour at the fine grid.

It is possible to compute the inverse matrices of the AOS once
for the whole image, or to invert small submatrices as new points
enter or exit the narrow band. There is obviously a trade-off
between the two approaches. For initialization, we have chosen
the first approach, since the initial curve starts at the frame of the
image and has to travel over most of the image until it captures
the moving objects. While for tracking of moving objects in a
movie, we use the local approach, since now the curve has only
to adjust itself to local changes.
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VI. CONCLUDING REMARKS

It was shown that an integration of advanced numerical tech-
niques yield a computationally efficient algorithm that solves
a geometric segmentation model. The numerical algorithm is
consistent with the underlying continuous model. The proposed
“fast geodesic active contour” scheme was applied successfully
for image segmentation and tracking in movie sequences and
color images. It combines the narrow band level set method,
with adaptive operator splitting and the fast marching.
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