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ABSTRACT

Active contours are a widely spread tool for the important task of
image segmentation. An active contour evolves in time on an image,
till it stops on the boundaries of the objects in it. The forces govern-
ing this evolution consist of internal geometric forces and external
forces originating from the image data.

We present the use of active contours for the segmentation of
a more general type of images, i.e., images painted on parametric
manifolds. Good representatives of this kind of images are face
images, where the face manifold is a 2-dimensional manifold em-
bedded in a Euclidean 3-dimensional space. Adding the manifold
data can be most beneficial in various tasks including face recogni-
tion and enables also a better segmentation of face features such as
eyes.

We show that taking into account the geometry of the manifold
boosts the performance of active contours. The inclusion of the
manifold’s geometry is done by evolving the contour on the mani-
fold, instead of on a flat planar image. To keep the contour on the
manifold the geodesic components of the driving forces are used.

Appropriate numerical schemes enable the robust implementa-
tion of these active contours. Added efficiency is gained by evolving
the active contours on the 2-dimensional cartesian parameterization
plane and projecting the result back to the manifold.

1. INTRODUCTION

Active contours for image segmentation (‘snakes’) were introduced
by Kass et. al. [13]. Geometric active contours formulated and
implemented based on the level set method [20] were presented by
Caselless et. al. [3] and Malladi et. al. [19]. The first incorporation
of a geometric (re-parameterization invariant) functional minimiza-
tion was done in the geodesic active contour model of Caselless et.
al. [4] where the functional� L

0
f � c � s ��� ds (1)

using the edge sensitive weighting

f ���∇I � �	� 1

1 
��∇I � 2λ 2  (2)

of the image I is minimized by the Euler-Lagrange equations

Ct ��� κ f ��� ∇ f  N ��� N  (3)

with κ the curvature of the contour C, s its arc length, L its length
and N its normal. The first term on the right hand side of Equation
(3) is the geodesic curvature flow. The second term is geodesic
advection. The level set representation [20] of the equation is

φt � f � div � ∇φ�∇φ ��� �∇φ ��
�� ∇ f  ∇φ ��� (4)

Additional developments followed, including [18, 5, 6, 11, 16, 10].

Our objective is to extend the geodesic active contour model for
images painted on manifolds. Incorporating the manifold’s geome-
try into the active contour can improve the segmentation for images
that originate from their manifolds, such as face images. Since the
driving forces of the geodesic active contour are the curvature flow
and advection, as evident from Equation (3), the extended version
will necessitate an implementation of their geodesic counterparts.

There are two main approaches in the previous work done on
the implementation of these geodesic flows. According to the first
approach [8, 15, 17, 14] the geodesic curvature flow is implemented
for function graphs by projecting the PDEs to � 2 , performing the
numerical calculations there and then mapping back the solutions
to the manifold. A more general approach for the motion of curves
on manifolds was developed by [7, 1]. Their approach is to implic-
itly represent both the manifold and the curve or data on it as level
sets of functions in � N . The level set representing the manifold is
static and the level set representing the curve or the data is moving
according to the PDE. This approach has several drawbacks, see
[21].

We solve the problems of the later approach by following in the
footsteps of the first approach. We back project the flow from the
manifold to the parameterization plane, solve on the plane and then
map the result back to the manifold. The complexity of the calcu-
lations is not affected by the dimension of the space in which the
manifold is embedded and the approach is suited for all manifolds,
including self intersecting ones.

2. DEFINITIONS AND MOTIVATION

We consider a parameterization plane U ��� u1  u2 ��� � 2 . This
plane is mapped by X : � 2 �! "� N to the parametric manifold
X � U �#�$� x1 � u1  u2 �  x2 � u1  u2 �  �����  xN � u1  u2 � �%� � N . Any curve
C � s � � X � U � has an origin C̃ � s̃ � � U , i.e., each point p � C � s � is a
mapping of a corresponding point p̃ � C̃ � s̃ � by p � X � p̃ � . s and s̃ are
the arc length parameterizations of the curves C and C̃ respectively.
The derivatives of X with respect to ui are defined as Xi & ∂X

∂ui . See
Figure 1.
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Figure 1: The curve C � s � on the manifold X � U � and its origin C̃ � s̃ �
on the parameterization plane U .



The distance element on the manifold is

ds � � gi jduidu j � (5)

where we use Einstein’s summation convention, the metric tensor
of the manifold gi j is calculated by�

gi j � ��� g11 g12
g21 g22 � ��� X1 	 X1 X1 	 X2

X2 	 X1 X2 	 X2 � � (6)

and g � det
�
gi j � � g11g22 
 g2

12.
According to the above definitions, the derivative of C

�
s � with

respect to its arc length is Cs, which is the tangent to the curve C.
Similarly, we have C̃s̃, which is the tangent to C̃

�
s̃ � . We denote by

N the normal to the plane tangent to the manifold X
�
U � and in the

direction of X1 � X2. N̂ is the unit vector normal to the curve C
�
s �

lying in that plane. Ñ represents the normal to C̃s̃ in the plane U .

3. TRANSFORMING FLOWS ON MANIFOLDS TO
FLOWS ON THE PARAMETERIZATION PLANE

Any geometric flow of the curve C
�
s � of the form Ct

� FN̂, has a
corresponding geometric flow on U of the form C̃t

� F̃Ñ. If we can
find F̃ as a function of F and the mapping X , we can simplify the
calculation of the flow on X

�
U � by performing the flow on U and

then mapping the result onto X
�
U � . To enable this, we represent

vectors in the N-dimensional space according to the basis � X1
� X2  .

The other components of the vectors, which are perpendicular to X1
and X2, do not affect the flow of the curve C

�
s � on the manifold

X
�
U � .

3.1 Geodesic Curvature Flow

We start with the geodesic curvature flow of C
�
s �

Ct
� κgN̂ � Css 
�� Css

� N � N � (7)

This is the flow of the curve C
�
s � according to the component of its

curvature, tangent to the manifold X
�
U � . Taking only this compo-

nent of the curvature keeps the curve on the manifold.
The derivation of the geodesic curvature flow as a flow on

the parameterization plane was introduced in [21]. Only the main
steps are given here. First, Cs is represented according to the basis� X1
� X2
� N 

Cs
� ui

sXi � (8)

By differentiating this expression with respect to s we get

Css
� ui

ssXi � ui
s
�
Γk

i jXk � bi jN � u j
s
� (9)

with Γk
i j being Christoffel’s symbols and bi j the coefficients of the

second fundamental form [2]. κgN̂ is the component of Css in the
plane tangent to X

�
U �
κgN̂ ��� uk

ss � Γk
i ju

i
su j

s � Xk � (10)

We use the chain rule to compute

Ct
� Xkuk

t (11)

and after a few manipulations we get the flow on the parameteriza-
tion plane

C̃t
� qsCs̃ � q2 � Cs̃s̃ � � Γ1

i ju
i
s̃u j

s̃
� Γ2

i ju
i
s̃u j

s̃  � � (12)

with q � ∂ s̃
∂ s . But the geometric flow depends only on the component

of C̃t in the direction of Ñ, i.e.

� C̃t
� Ñ � � κ̃ � � � Γ1

i ju
i
s̃u j

s̃
� Γ2

i ju
i
s̃u j

s̃  � Ñ �
gi ju

i
s̃u j

s̃

� (13)

where κ̃ is the curvature of C̃.

3.2 Geodesic Advection

The second flow is the geodesic advection of C
�
s �

Ct
� V � (14)

where V is an external vector field, i.e., V is independent of the
curve C

�
s � .

The representation of V according to the basis � X1
� X2  is

V � biXi � (15)

The scalar products between V and the vectors Xi are

vi � � V � Xi � � b jgi j � (16)

A few manipulations yield

b1 � v1g22 
 v2g12
g

� b2 � v2g11 
 v1g12
g

� (17)

The resulting equation for the flow is

C̃t
� � v1g11 � v2g12 � v2g22 � v1g12  � (18)

where gi j are the components of the contravariant metric tensor,
which is the inverse of the metric tensor. This flow is an advection
on the parameterization plane.

4. LEVEL SET REPRESENTATION OF THE FLOWS

We next convert the flow equations we got in the previous section
into level set equations [20]. This formulation enjoys many numer-
ical advantages.

4.1 Geodesic Curvature Flow

For the geodesic curvature flow this means converting Equation (13)
to a level set formulation. We assume that C̃

�
s̃ � � � u1 � s̃ � � u2 � s̃ �  is

the zero set of φ
�
u1 � u2 � . This means

φt
� κ̃ � � � Γ1

i ju
i
s̃u j

s̃
� Γ2

i ju
i
s̃u j

s̃  � Ñ �
gi ju

i
s̃u j

s̃ �∇φ � � (19)

To develop the expressions in the right hand side of Equation
(19) as functions of φ , X , and their spatial derivatives we use the
relation � 
 u2

s̃
� u1

s̃  � Ñ � ∇φ

�∇φ � � (20)

and get

u1
s̃
� φ2�

φ2
1 � φ2

2 � 1
2

� u2
s̃
� 
 φ1�

φ2
1 � φ2

2 � 1
2

(21)

and

κ̃ � div � ∇φ

�∇φ � � �
φ2

1 φ22 
 2φ1φ2φ12 � φ2
2 φ11�

φ2
1 � φ2

2 � 3
2

� (22)

After some work we get

φt
���� � 1 ��� i � j  φiφ jφ � 3 � i  � 3 � j  

g !∇Mφ ! 2 � � � 1 ��� i � j  Γk
i jφ � 3 � i  φ � 3 � j  φk

g !∇Mφ ! 2 (23)

with Christoffel’s symbols calculated by derivatives of the first fun-
damental form

Γk
i j
� 1

2
gkl � ∂igl j � ∂ jgil 
 ∂lgi j � � (24)



4.2 Geodesic Advection

The level set representation of the planar flow equation

C̃t
� Ṽ (25)

is
φt
� �

Ṽ � ∇φ ��� (26)

Therefore, the level set representation of Equation (18) is

φt
��� v1g11 � v2g12 	 φ1

� � v2g22 � v1g12 	 φ2 � (27)

5. THE NUMERICAL SCHEMES

The implementation of the level set equations on the parameter-
ization plane necessitates appropriate numerical schemes. These
schemes are presented in this section.

5.1 Geodesic Curvature Flow

We start with a numerical scheme for Equation (23). The first term
on the right hand side of this equation is diffusive and can be imple-
mented with central differences. The second term is a non-convex
hyperbolic term and needs a special numerical scheme.

We used a fifth order Weighted Essentially Non-Oscillatory
(WENO) scheme with a global Lax-Friedrichs (LF) flux in space
[12] and a third order Total Variation Diminishing Runge-Kutta
(TVD-RK) scheme in time. Non-periodic boundary conditions
were used.

A re-distancing of the level set function was activated every few
iterations, as a regularizing process. The re-distancing was accom-
plished by the Sussman-Fatemi method [23]. This method uses the
equation

φt
� sign 
 φ0 �� 1 ���∇φ � � (28)

to transform the level set function φ0 into a distance map. Also
this equation is implemented by a fifth order WENO-LF, third order
TVD-RK numerical scheme. The zero set of φ0 is maintained by
applying a volume conserving condition of the form

∂t �
Ω

H � φ � � 0 � (29)

with H the Heaviside function and Ω a fixed domain. The condition
is applied by using a gradient projection step.

5.2 Geodesic Advection

For a moving curve represented by the level set function φ , the value
of φ does not change along the curve. If we apply this to the curve
moving on the parameterization plane, we get

0 � dφ
dt

� ∂φ
∂ t

� ∂φ
∂u1

du1

dt�������
v

u1

� ∂φ
∂u2

du2

dt�������
v

u2

� (30)

with vui being the speed of the curve in the direction of the parame-
ter ui. Comparing Equation (30) with Equation (27) yields

vu1
� v1g11 � v2g12 (31)

and
vu2

� v2g22 � v1g12 � (32)

An appropriate upwind numerical scheme for the component in
the ui direction is

vui φui � max 
 vui � 0 � D �ui φ � min 
 vui � 0 � D �ui φ � (33)

with D �ui the backward difference in the ui direction and D �ui the
forward difference in the same direction.

6. GEODESIC ACTIVE CONTOURS ON MANIFOLDS

The geodesic extension of Equation (3) is

Ct
� 
 κg f � �

∇ f � N̂ � � N̂ � (34)

with N̂ the projection of the normal to the contour on the plane tan-
gent to manifold M. The weighting function f stays as in Equation
(2). Replacing κ with κg in Equation (3) and using N̂ instead of N
are necessary in order to keep the active contour on the manifold.

The geodesic curvature flow, which is the first term on the right
hand side of Equation (34), is a curve shortening flow. Its role is
to contract the curve. The weighting function f that multiplies it
stops the contraction at the image edges. The geodesic advection,
which is the second term on the right hand side of Equation (34), is
not active where the amplitude of the image edge � �∇I � � is constant
since there ∇ f � 0. It comes into action in the vicinity of the edge
and pulls the active contour to the maximum of the edge.

This flow is implemented numerically by performing the calcu-
lations on the parameterization plane. For the second term on the
right hand side of Equation (34) we can identify V from Equation
(14) to be

V � ∇ f � (35)

yielding

vi � �
V � Xi � � ��� ∂ f

∂x1 ��������� ∂ f
∂xN  � � ∂x1

∂ui ��������� ∂xN

∂ui  � � ∂ f
∂ui � fi �

(36)
Combining this with Equations (31,32) gives

vu1
� g11 f1

� g12 f2 (37)

and
vu2

� g22 f2
� g12 f1 � (38)

Plugging this into Equation (27) and using Equation (23) for the
first term on the right hand side of Equation (34) gives the following
level set equation on the parameterization plane

φt
�

f !#" � 1 $&% i ' j ( φiφ jφ % 3 ' i ( % 3 ' j (
g )∇Mφ ) 2 � " � 1 $&% i ' j ( Γk

i jφ % 3 ' i ( φ % 3 ' j ( φk

g )∇Mφ ) 2 * �� fmgmm � f " 3 � m $ g12 	 φm � (39)

This equation is solved using the numerical schemes described in
the previous section.

7. SIMULATIONS AND RESULTS

Figure 2 shows the performance of the geodesic active contour
model for an image painted on a Klein bottle. The image of a square
is painted on the parameterization plane and projected to the mani-
fold to create the image appearing on the Klein bottle in the figure.
The original contour is a concentric circle on the parameterization
plane. It contracts till it stops on the edges of the square, thus seg-
menting it from the image’s background.

It can be seen from Figure 2 that the contour does not reach
completely all the edges of the square. The reason is that the sec-
tions of the contour at these locations are geodesics (κg

� 0 locally).
This problem is sometimes solved by itself due to the force applied
on the edge points of the problematic contour section. This can be
seen on the handle of the Klein bottle in the second and third images
of Figure 2.

The problem of the active contour stopping in a local minimum
is a known phenomena of the geodesic active contour model. A
popular remedy for this problem is adding a time dependent con-
stant velocity term in the spirit of the “balloon force” introduced by
Cohen [9].

In real life images the active contour may stop on false edges
caused by noise. Image smoothing is used as a pre-process in these
cases in order to get rid of the excess noise. A suitable method for
smoothing images painted on manifolds is presented in [22].



Figure 2: The performance of the geodesic active contour model for
an image painted on a Klein bottle. The order of the images is from
top to bottom and left to right.

8. CONCLUSIONS AND FUTURE WORK

We have introduced the segmentation of images painted on para-
metric manifolds by using a geodesic active contour model. The im-
plementation of the model requires appropriate numerical schemes
for the geodesic curvature flow and geodesic advection. We have
shown that efficient and robust numerical schemes can be devised
by projecting the flows from the manifold to its parameterization
plane and performing the calculations there. The segmentation was
demonstrated for synthetic manifolds.

This work is a proof of concept. We intend to use the approach
presented here to extend more advanced active contour models to
images painted on manifolds and to use them for real life applica-
tions, such as face image segmentation.
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