
Efficient Dilation, Erosion, Opening,
and Closing Algorithms

Joseph (Yossi) Gil and Ron Kimmel, Senior Member, IEEE

Abstract—We propose an efficient and deterministic algorithm for computing the one-dimensional dilation and erosion (max and min)

sliding window filters. For a p-element sliding window, our algorithm computes the 1D filter using 1:5þ oð1Þ comparisons per sample

point. Our algorithm constitutes a deterministic improvement over the best previously known such algorithm, independently developed

by van Herk [25] and by Gil and Werman [12] (the HGW algorithm). Also, the results presented in this paper constitute an improvement

over the Gevorkian et al. [9] (GAA) variant of the HGW algorithm. The improvement over the GAA variant is also in the computation

model. The GAA algorithm makes the assumption that the input is independently and identically distributed (the i.i.d. assumption),

whereas our main result is deterministic. We also deal with the problem of computing the dilation and erosion filters simultaneously, as

required, e.g., for computing the unbiased morphological edge. In the case of i.i.d. inputs, we show that this simultaneous computation

can be done more efficiently then separately computing each. We then turn to the opening filter, defined as the application of the min

filter to the max filter and give an efficient algorithm for its computation. Specifically, this algorithm is only slightly slower than the

computation of just the max filter. The improved algorithms are readily generalized to two dimensions (for a rectangular window), as

well as to any higher finite dimension (for a hyperbox window), with the number of comparisons per window remaining constant. For the

sake of concreteness, we also make a few comments on implementation considerations in a contemporary programming language.

Index Terms—Mathematical morphology, running maximum filter, min-max filter, computational efficiency.

æ

1 INTRODUCTION

IN signal and image analysis, one often encounters the
problem of min (or max) computation in a window with

p elements in the one-dimensional (1D) case or p� p elements
in the two-dimensional (2D) case. In mathematical morphol-
ogy [20], the result of such an operator is referred to as the
erosion (or dilation) of the signal with a structuring element
given by a pulse of width p.

The unbiased morphological edge is obtained by subtracting
the filtered min result from the filtered max result. This
filter has numerous applications in image processing and
analysis (see e.g., [15], [18]). To appreciate the visual effect
of the morphological edge detector on actual images,
consider Fig. 1 which gives three examples of edge
detection, using a window sized p� p, for p ¼ 2; 4; 8; 16.1

As can be seen from the figure, edges are accentuated by
the morphological edge detection filter. These “morphologi-
cal gradients” need further processing to provide useful
information, see e.g., [21, pp. 116-119]. It should be
emphasized that even though the larger windows do not
appear to highlight the edges as clearly as the smaller
windows, they are useful as a preprocessing stage for scale-
space analysis of images [2], [3], [8], [16], [19], [24]. Therefore,

we are interested in the problem of computing the min and
max problems for a wide range of window size p.

Filtering out image components smaller than a certain
threshold is carried out relying on themin and max filters with
a suitable window size. The closing (respectively, opening)
filter is obtained by feeding the results of the max (respec-
tively, min) filter to the min (respectively, max) filter. Fig. 2
gives an example of the application of the opening and closing
filters. We see that the closing filter eliminates small dark
image components, while the opening eliminates small white
regions. In both filters, the size of the window determines the
size of the image components that can be removed.

Gevorkian et al. [9] mention other applications of the min
and max filters in pattern analysis, adaptive signal proces-
sing, and morphological analysis. Morphological operations
were found to be useful in 2D and 3D image processing and
analysis. Applications include microchip manufacturing where
machine vision techniques are used by inspection tools for
quality control and fault detection, feature detection for
character recognition, 3D data analysis such as medical images,
graphics applications, and video processing. Also, the above
mentioned basic morphological operations are by now core
technology in many standard software tools such as Matlab.

Recently, a patent that deals with efficient applications of
such operations was filed [7], where a pyramidal morpho-
logical “structuring element” is applied to images by a two
scans procedure. Actually, it can be shown that a pyramidal
and a cone shaped structuring elements operating on an
image can be obtained as the result of a version of
Danielson’s [6] distance map two pass algorithm. Our work
deals with flat “structuring elements” which are more
useful in the general morphological setting.

The one-dimensional version of our most basic problem
can be formulated as follows:

1606 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

. The authors are with the Department of Computer Science, Technion-Israel
Institute of Technology, Technion City, Haifa 32000, Israel.
E-mail: {yogi, ron}@cs.technion.ac.il.

Manuscript received 22 May 2001; revised 6 Feb. 2002; accepted 2 Apr. 2002.
Recommended for acceptance by L. Vincent.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 114182.

1. Note that when p is even the filter is not centered at the pixels of the
original image. Thus, the result of the application of the filters is not, strictly
speaking, translation invariant. The filtered image represents a half a pixel
shift with respect to the original image. Our algorithms are equally
applicable for both odd and even p.

0162-8828/02/$17.00 ß 2002 IEEE
Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

1D MAX-FILTER: Given a sequence x0; . . . ; xnÿ1, and an

integer p > 1, compute

yi ¼ max
0�j<p

xiþj

for i ¼ 0; . . . ; nÿ p.
(Note the above definition does not include the border, i.e.,

i > nÿ p. In actual image processing, the border usually

receives some special treatment, e.g., mirroring, periodic

condition, etc. Since our focus is algorithmic, the border is

tacitly ignored henceforth.)
The 1D MIN-FILTER problem is similarly defined. For the

remainder of this paper, we will devote our attention

mainly to max computations. Clearly, all results are equally

applicable to min computation.

As usual, in filtering, we assume that p� n. As an

efficiency measure of algorithms for this problem we use

the coefficient C1, defined as the number of comparison

operations per sample (or output) point as n goes to infinity.
A trivial algorithm for the 1D MAX-FILTER problem gives

C1 ¼ pÿ 1:

On the other hand, since it is impossible to compute the filter

without examining each input point at least once, there is a

trivial information theoretical lower bound for the problem of

C1 � 1:

We are unaware of any stronger lower bound for this

problem.

GIL AND KIMMEL: EFFICIENT DILATION, EROSION, OPENING, AND CLOSING ALGORITHMS 1607

Fig. 1. The effect of the unbiased morphological edge filter. (Original image is shown on left frame, followed by the filtered image using rectangular

windows sized 2� 2, 4� 4, 8� 8, and 16� 16.)

Fig. 2. The effect of the opening (top) and closing (bottom) filters. (Original image is shown on left frame, followed by the filtered image using
rectangular windows sized 2� 2, 4� 4, 8� 8, and 16� 16.)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

Pitas [17] describes two nontrivial algorithms for the

problem. The first such algorithm achieves C1 ¼ Oðlg pÞ.2
Pitas’s second algorithm achieves C1 ¼ 3þ oð1Þ on the

average for i.i.d. input.3

Note that the worst case performance of both of these
algorithms depends on the window size. In [25], van Herkand
and, later, but independently, Gil and Werman [12] gave an
algorithm (HGW) for computing the max filter whose
performance does not depend on p. Gil and Werman’s
description of the algorithm is slightly more general, showing
that the p sized filter of any semiring operation, �, can be
computed using 3ÿ 4=p applications of � per sample point.
Since max is a semiring operation, we have that

C1 ¼ 3ÿ 4=p:

In the special case that the semiring operation is max and
assuming i.i.d. input signal. Gevorkian et al. [9] gave an
algorithm (GAA) that improves the HGW algorithm,
achieving

EðC1Þ ¼ 2:5ÿ 3:5=p:

The expectation here is with respect to input distribution.
We note that for many applications, such an assumption

is clearly invalid. In many natural signals, the probability
that xiþ > xi is greater than 0:5 if it is given that xi > xiÿ1. In
the worst input case, such as an almost monotonically
increasing signal, the performance of the algorithm of GAA
is the same as the HGW algorithm.

In this paper, we describe an algorithm achieving further
reduction,

C1 ¼ 1:5þ lg p

p
þOð1=pÞ:

This improvement is deterministic and does not make any
assumptions on the input distribution.

The morphological edge detector and other applications
require the simultaneous computation of the min and max in
each window, as summarized in the following problem
definition.

1D MAX-MIN-FILTER: Given a sequence x0; . . . ; xnÿ1, and

an integer p > 1, compute

yi ¼ max
0�j<p

xiþj

zi ¼ min
0�j<p

xiþj

for i ¼ 0; . . . ; nÿ p.
We give an algorithm which solves 1D MAX-MIN-FILTER

problem faster than solving 1D MAX-FILTER and 1D MIN-

FILTER separately. Let Cm
1 be the number of comparisons

per input sample for solving 1D MAX-MIN-FILTER. Then,

our algorithm achieves

EðCm
1 Þ � 2þ 2:3466

lg p

p
;

for the special case of independent input distribution, i.e., the
expectation is with regard to input distribution. In the worst
case, this algorithm does not improve on the independent
computation of the Min and Max filters. However, for natural
images, the algorithm makes such an improvement, although
not to the extent possible for randomized inputs.

The problem posed by the opening filter is similar to 1D
MAX-MIN-FILTER since in both it is required to compute
both a Min-Filter and a Max-Filter. However, the fact that in
the opening filter this filters are computed sequentially,
where the results of one filter are the input of the other,
makes it much easier. Let Co

1 be the number of comparisons
per input sample for computing the opening filter. Then, we
show that

Co
1 � C1 þO

lg2 p

p

� �
:

Clearly, the same result holds for the closing filter.
A 1D max filter can be extended to a rectangular window

2D max filter [12]. The extension is carried out by first
applying the 1D filter along the rows and then feeding the
result to a 1D filter running along the columns. Let C2 be the
number of comparison operations required per input point
for computing the 2D max filter. We have that

C2 ¼ 2C1

and, more generally,

Cd ¼ dC1;

where Cd is defined accordingly for the d-dimensional filter.
We similarly have that

Cm
d ¼ dCm

1

Co
d ¼ dCo

1 :

Outline. The remainder of this paper is organized as
follows: Section 2 reviews the HGW algorithm. Our main
result which improves this algorithm is described in Section
3. This section also makes a few comments on a randomized
version of the algorithm and on an actual implementation of
the algorithms in languages such as C [14]. In Section 4, we
give our algorithm for the 1D MAX-MIN FILTER problem.
The efficient algorithm for computing the opening (and
closing) filter is described in Section 5. Finally, Section 6
gives the conclusions and mentions a few open problems.

2 THE VAN HERK-GIL-WERMAN ALGORITHM

The van Herk-Gil-Werman (HGW) algorithm is based on
splitting the input signal to overlapping segments of size
2pÿ 1, centered at

xpÿ1; x2pÿ1; x3pÿ1; . . . :

Let j be the index of an element at the center of a certain
segment. The maxima of the p windows which include xj
are computed in one batch of the HGW algorithm as follows:
First, define Rk and Sk for k ¼ 0; . . . ; pÿ 1:

Rk ¼ RkðjÞ ¼ maxðxj; xjÿ1; . . . ; xjÿkÞ;
Sk ¼ SkðjÞ ¼ maxðxj; xjþ1; . . . ; xjþkÞ:

ð1Þ

1608 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

2. We use lgð�Þ to denote log2ð�Þ.
3. Here, and henceforth, we use the familiar oðfðpÞÞ notation for the

family of functions gðpÞ, such that limp!1
gðpÞ
fðpÞ ¼ 0. Thus, oð1Þ are those

functions which tend to zero as p tends to infinity.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

Now, the Rks and the Sks can be merged together to

compute the max filter:

tk ¼ maxðxjÿk; . . . ; xj; . . . ; xjþpÿkÿ1Þ ¼ maxðRk; Spÿkÿ1Þ; ð2Þ

for k ¼ 1; . . . ; pÿ 2. In addition, we have

maxðxjÿpÿ1; . . . ; xjÞ ¼ Rpÿ1;

maxðx0; . . . ; xjþpÿ1Þ ¼ Spÿ1:

There are two stages to the HGW algorithm:

Preprocessing. Computing allRk andSk from their definition
(1) and noting that Rk ¼ maxðRkÿ1; xjÿkÞ and Sk ¼
maxðSkÿ1; xjþkÞ for k ¼ 1; . . . ; pÿ 1. This stage is carried
out in 2ðpÿ 1Þ comparisons.

Merge. Merging the Rk and Sk together using (2). This stage
requires another pÿ 2 comparisons. Since this procedure
computes the maximum of p windows in total, we have
that the amortized number of comparisons per window is

2ðpÿ 1Þ þ pÿ 2

p
¼ 3ÿ 4

p
:

For large p, we have that the preprocessing step requires
two comparison operations per element, while the merge
step requires one more such comparison.

3 THE IMPROVED ALGORITHMS FOR THE

MAX-FILTER

In this section, we show how the two steps of the

HGW algorithm can be carried out more efficiently.

3.1 An Efficient Preprocessing Computation

Let us now deal with the preprocessing step of the
HGW algorithm. The observation behind the GAA algo-
rithm is that preprocessing computation can be made more
efficient for randomized input, using the fact that in the
HGW algorithm, the suffixes Sk of one segment overlap
with the prefixes Rk of the following segment. Specifically,
the problem that needs to be solved is

PREFIX-SUFFIX MAX: Given a sequence x0; . . . ; xp, com-

pute all of its prefix maxima:

sk ¼ Skð0Þ ¼ maxðx0; . . . ; xkÞ;

for k ¼ 0; . . . ; pÿ 1, and all its suffix maxima:

rk ¼ RkðpÞ ¼ maxðxk; . . . ; xpÞ;

for k ¼ 1; . . . ; p.
Note that this problem does not call for computing the

overall maximum of the input

sp ¼ r0 ¼ maxðx0; . . . ; xpÞ:

The original HGW algorithm makes 2ðpÿ 1Þ comparisons
in solving the PREFIX-SUFFIX MAX problem. We propose the
following efficient solution for this problem. Let

q ¼ pþ 1

2

� �
¼ p

2
þ p mod 2

2
: ð3Þ

In the first part of the modified implementation, compute all
sk, for k ¼ 0; . . . ; q ÿ 1, using q ÿ 1 comparisons and rk for

k ¼ q; . . . ; p, using pÿ q comparisons. The total number of
comparisons in the first stage is then pÿ 1.

The second part of the modified implementation of the
preprocessing stage begins in comparing sqÿ1 and rq. If
rq � sqÿ1, then we know that the overall maximum falls in one
of xq; . . . ; xp. Therefore, it is unnecessary to further compute
the value of rqÿ1; rqÿ2; . . . ; r1. Instead, the algorithm outputs

rqÿ1 ¼ rqÿ2 ¼ . . . ¼ r1 ¼ rq;

and continues to compute sq; . . . ; spÿ1 in

pÿ q ¼ p
2
ÿ p mod 2

2
ð4Þ

comparisons.
A similar situation occurs if rq � sqÿ1, in which case it is

unnecessary to compute sq; . . . ; spÿ1. In this case, r1; . . . ; rqÿ1

are computed in

q ÿ 1 ¼ p
2
þ p mod 2

2
ÿ 1 ð5Þ

comparisons.
The number of comparisons in the second part is given

by the maximum of (4) and (5)

p

2
ÿ p mod 2

2
:

The total number of comparisons in the more efficient
algorithm for the preprocessing stage of PREFIX-SUFFIX

MAX is

ðpÿ 1Þ þ 1þ p
2
ÿ p bmod 2

2
¼ 1:5pÿ p mod 2

2
: ð6Þ

Consider Algorithm 1 demonstrating the improved
preprocessing stage for p ¼ 9. Again, the implementation
carries no hidden overhead, with the comparisons dom-
inating the computation. Notice also that the assignment
operations in instructions 3, 4, 14, and 20 can be executed in
parallel on suitable architecture.

Algorithm 1. Solving PREFIX-SUFFIX MAX, p ¼ 9 (q ¼ 5)
using 13 comparisons instead of 16.

1: Input: x0; x1; x2; x3; x4; x5; x6; x7; x8; x9.

2: Output: s0; s1; . . . ; s8 and r1; . . . ; r9,

{Initialization}

3: s0; . . . ; s8 x0; . . . ; x8

4: r1; . . . ; r9 x1; . . . ; x9

{First part (pÿ 1 ¼ 8 comparisons)}

5: if s0 > s1 then s1 s0

6: if s1 > s2 then s2 s1

7: if s2 > s3 then s3 s2

8: if s3 > s4 then s4 s3

9: if r9 > r8 then r8 r9

10: if r8 > r7 then r7 r8

11: if r7 > r6 then r6 r7

12: if r6 > r5 then r5 r6

{Second part (5 comparisons)}
13: if r5 > s4 then {maxðx0; . . . ; x9Þ ¼ maxðx5; . . . ; x9Þ}
14: r1; r2; r3; r4 r5

15: if s4 > s5 then s5 s4

16: if s5 > s6 then s6 s5

GIL AND KIMMEL: EFFICIENT DILATION, EROSION, OPENING, AND CLOSING ALGORITHMS 1609

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

17: if s6 > s7 then s7 s6

18: if s7 > s8 then s8 s7

19: else {maxðx0; . . . ; x9Þ ¼ maxðx0; . . . ; x4Þ}
20: s5; s6; s7; s8 s4

21: if r5 > r4 then r4 r5

22: if r4 > r3 then r3 r4

23: if r3 > r2 then r2 r3

24: ifr2 > r1 then r1 r2

25: end if

3.2 An Efficient Merge Procedure

We first show how to improve the merge step, by reducing
the amortized number of comparisons in it from 1 to

lg p

p
þ oð1Þ:

In this step, we compute

maxðRk; Spÿkÿ1Þ; ð7Þ

for k ¼ 1; . . . ; pÿ 2. Observing that

Rpÿ2 � Rpÿ1 � . . . � R1;

Spÿ2 � Spÿ1 � . . . � S1;

we can eliminate most of these comparisons. Suppose that
for some specific i it was found that

Ri � Spÿiÿ1;

then for all k > i, we have that

Rk � Ri � Spÿiÿ1 � Spÿkÿ1;

and, therefore, there is no need to do the comparisons of (7)
for all k > i. Similarly, if it is determined that

Ri � Spÿiÿ1;

then we do not need to do the comparisons of (7) for all k < i.
The optimized procedure for doing the merge step is

therefore by a binary search. We start by setting i ¼
dðpÿ 2Þ=2e and then continue with the remaining half of the
problem size.

Consider, for example, Algorithm 2, demonstrating the
binary search method for the merge stage in the case p ¼ 9.
Instruction 1-13 implement the binary search, which
terminates in a jump to a labelLi, where i is the smallest such
that ti ¼ maxðRi; S8ÿiÞ ¼ Ri. Each such jump is carried out
after exactly three instructions in this case. Instructions 14-21
compute the values of tis by proper assignments to Ris,
without any additional comparisons. The total number of
assignments is any where between 0 and 7.

Notice that the implementation in Algorithm 2 is very
straightforward and carries no additional overhead. In fact,
this implementation can be translated directly to a VLSI
layout, machine code, or higher level programming
language. This efficiency is achieved by unrolling loops
and, more generally, precomputing all values, including
labels, which are dependent solely on p.

Algorithm 2. Efficient merge for p ¼ 9 using 3 comparisons
instead of 7.
Require: R1 � R2 � R3 � R4 � R5 � R6 � R7 and

S1 � S2 � S3 � S4 � S5 � S6 � S7

Ensure: t1 ¼ maxðR1; S7Þ, t2 ¼ maxðR2; S6Þ, t3 ¼ maxðR3; S5Þ,
t4 ¼ maxðR4; S4Þ, t5 ¼ maxðR5; S3Þ, t6 ¼ maxðR6; S2Þ,
and t7 ¼ maxðR7; S1Þ
{Values t1; . . . ; t7 are returned in variables R1; . . . ; R7}

1: if R4 � S4 then
2: if R2 � S6 then
3: if R1 � S7 then jump L1 else jump L2

4: else
5: if R3 � S5 then jump L3 else jump L4

6. end if
7. else {R4 < S4}
8. if R6 � S2 then
9. if R5 � S3 then jump L5 else jump L6

10. else
11. if R7 � S1 then jump L7 else jump L8

12. end if
13. end if
14. L8: R7 S1

15. L7: R6 S2

16. L6: R5 S3

17. L5: R4 S4

18. L4: R3 S5

19. L3: R2 S6

20. L2: R1 S7

21. L1:

In general, we have that binary search method reduces the
number of comparisons frompÿ 2 to lg pþOð1Þ. In fact, it can
be easily checked that the maximal number of comparisons is
exactly dlgðpÿ 1Þe. The amortized contribution of the im-
proved merge step to the complexity is therefore

dlgðpÿ 1Þe
p

: ð8Þ

3.3 Comparison Complexity

In examining Algorithms 1 and 2 together, we conclude that
in the case p ¼ 9, we are able to reduce the number of
comparisons from 23 in the case of the HGW algorithm to
16, i.e., improving the complexity by about 30 percent. The
improvement is even greater for larger values of p.

More generally, we can combine (6) and (8) to compute
the amortized comparison complexity of our improved
algorithm.

Theorem 1. There exists a deterministic algorithm for the
1D MAX-FILTER problem, achieving

C1 ¼ 1:5þ dlgðpÿ 1Þe
p

ÿ p mod 2

2p
� 1:5þ dlgðpÿ 1Þe

p

¼ 1:5þ lg p

p
þO 1

p

� �
:

ð9Þ

Can we improve on this result? An information theoretical
lower bound for the number of comparisons required to solve
PREFIX-SUFFIX MAX, is pþ lg pÿOð1Þ. This bound is derived
as follows: A compact output of an algorithm for the problem
uses pþ lg pÿOð1Þ bits comprised as follows:

1. lg p bits to designate the location of the overall
maximum (for simplicity, we assume that p is a
power of 2),

2. a single bit for each location prior to the maximum,
designating whether the corresponding element
changes the prefix maxima, and

1610 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

3. a single bit for each location following to the
maximum, designating whether the corresponding
element changes the suffix maxima.

Moreover, there are distinct inputs which produce all the bit

combinations of this compact representation. Thus, in order

to make the distinction between these inputs, the algorithm

is forced to make at least

pþ lg pÿOð1Þ ð10Þ

comparisons.
Although we are unable to meet the lower bound (10), we

can come even closer to it in an important special cases.

Suppose that, in an input to the PREFIX-SUFFIX MAX problem,

the overall maximum is located at a random location ‘ in the

input sequence. (This does not necessarily it mean obeys the

input the i.i.d. condition.)
In the first part of the preprocessing stage, we maintain a

record of the index ‘1 at which the value stored at si, i ¼
1; . . . q ÿ 1 was found. Similarly, we keep a record of the index

‘2 at which the value stored at ri, i ¼ pÿ 1; . . . ; q was found.
Then, once the comparison between sqÿ1 and rq is made,

we know whether ‘ ¼ ‘1 or ‘ ¼ ‘2. All that remains is to

proceed to compute outputs sq; sqþ1; . . . ; s‘ÿ1 in the case that

sqÿ1 < rq, or rqÿ1; rqÿ2; . . . ; r‘þ1, otherwise. The expected

number of comparisons in this completion stage is

1

pþ 1

X
j¼qÿ1;...;0

ðq ÿ 1ÿ jÞ þ
X

j¼q;...;p
ðjÿ qÞ

 !

¼
Xqÿ1

i¼0

iþ
Xpÿq
i¼0

i

 !

¼ qðq ÿ 1Þ þ ðpÿ qÞðpÿ q þ 1Þ
2ðpþ 1Þ

¼ p
2 þ 2q2 ÿ 2pq þ pÿ 2q

2ðpþ 1Þ

¼ p
2 ÿ ðpmod 2Þ

4ðpþ 1Þ

¼ p
4
ÿ 1

4
þ 1

4ðpþ 1Þ ÿ
ðpmod 2Þ
4ðpþ 1Þ

� p
4
:

ð11Þ

In general, it cannot be assumed that arbitrary input to

the PREFIX-SUFFIX MAX problem will have its maximum at

a random location. For example, the maximum will always

occur at an end point for monotonic inputs.4 When this

assumption holds, then the amortized expected number of

comparisons in this version of the preprocessing stage is

therefore at most

ðpÿ 1Þ þ 1þ p=4

p
¼ 1:25:

Combining the above with (8), we obtain:

Theorem 2. There exists an algorithm for the 1D MAX-FILTER

problem, achieving

EðC1Þ � 1:25þ dlg pÿ 1e
p

þ � 1:25þ lg p

p

when the input is i.i.d.

3.4 Implementation of the Algorithms

The model of computation we have used here is that of
comparisons. Few words are in place regarding the imple-
mentation of the algorithms in contemporary programming
languages in actual use such as C [14], in machine language,
or even in hardware.

The basic assumption is that p is quite small and is either
fixed or selected from a small set of predetermined values.
Therefore, an implementation should unroll all definite loops
whose number of iterations is dependent solely onp. By doing
so, the comparisons of the loop control variable are elimi-
nated, just as the overhead of manipulating it. This principle
means that the computation of the prefix maxima in the lower
half and the suffix maxima in the upper half of each segment
should be implemented using loop unrolling. An examples of
the output of this loop unrolling is given in Algorithm 1.

The second part of the randomized version of the
preprocessing stage is more difficult to implement without
an explicit loop structure. Specifically, if the overall max-
imum occurs (say) in the upper half, it is required to complete
the computation of the prefix maxima, stopping exactly at the
location of the maximum. One way of implementing this
without checking the location of the maximum in each
iteration is by using “computed goto” of Fortran or functions
pointers in C. There are no more than p=2 possible locations of
the maximum in the upper half of the input. For each such
location, there is a chunk of code which unrolls the loop up to
that point. There are similar chunks of code designed to deal
with the case of the maximum falling in the lower half of the
input. Now, in the first part of the preprocessing, whenever
the maximum is updated as a result of examination of a
certain input value, the algorithm also updates a pointer to
the appropriate chunk to be executed in case the maximum is
found in the current location.

Now, when the maximum of the upper half is found to be
greater than the maximum of the lower half, all that should be
done is to use this pointer in order to make a jump to the
appropriate chunk of code. Admittedly, hand coding of such
an implementation could be tedious. Fortunately, with the
advent of C++ [23], it is possible to employ its rich template
mechanism in order to have such code generated automati-
cally. The techniques of doing so are beyond the scope of this
paper. The interested reader is referred to e.g., [10] and the
references thereof for examples of applying the template
mechanism for nontrivial compile-time computation and
code generation.

In the merge step, the flow of control in the implementa-
tion should follow the comparisons tree implicit in the
binary search. Specifically, each node in the tree should
correspond to an if-then-else construct in the code. These
constructs would have the same nesting as the tree nodes.
Algorithm 2 shows how this is done for a fixed p. Again, the
template mechanism can be used to reduce the bulk of the
burden of generating the code from the implementor.

Finally, it should be noted that, in a highly optimized
implementation of the second part of the preprocessing

GIL AND KIMMEL: EFFICIENT DILATION, EROSION, OPENING, AND CLOSING ALGORITHMS 1611

4. For some inputs, it should be possible to gain better performance by
choosing at random the starting point for segmentation. Segments will be
centered at positions indexed �; � þ p; � þ 2p; . . . , where � is an integer
selected at random in the range ½0; . . . ; pÿ 1�. Such a random selection does
not degrade the overall efficiency due to the assumption that p� n, since
only one random number in the range ½0; ::; pÿ 1� needs to be computed.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

stage, if the overall maximum is found in the lower half, all
prefix maxima of the upper half are equal to this overall
maximum, and there is no need to actually produce or store
them in an auxiliary array. Instead, these values could be
inlined into the code of the merge step.

4 EFFICIENT ALGORITHM FOR SIMULTANEOUSLY

COMPUTING THE MAX- AND MIN-FILTERS

In this section, we deal with the 1D MAX-MIN FILTER

problem and show how computing the min and max filters
simultaneously can be done more efficiently than an
independent computation of both. We start again with the
HGW algorithm. The gain comes from partitioning the input
signal into pairs of consecutive elements, and comparing the
values in each pair. The greater value in each pair carries on
the maximum computation while the lesser one carries one to
the minimum computation.

4.1 The Prefix Max-Min Problem

Let us first consider the following problem:
PREFIX MAX-MIN: Given a sequence x0; . . . ; xqÿ1, compute

Mk ¼ maxðx0; . . . ; xkÞ;
mk ¼ minðx0; . . . ; xkÞ;

for k ¼ 0; . . . ; q ÿ 1.
The straightforward solution for PREFIX MAX-MIN uses a
total of 2ðq ÿ 2Þ þ 1 comparisons. For the sake of simplicity,
we assume that all elements in the input sequence are distinct.
Analyzing this problem from an information theoretical point
of view, the algorithm is tantamount to classifying each
element xi, i > 2, into one of three categories. Element xi may
increase the running prefix maximum, i.e., xi > Mkÿ1 and,
therefore,Mk ¼ xi. If this is not the case, then xi may decrease
the running minimum, i.e., xi < mkÿ1. The third case is that
mkÿ1 � xi < Mkÿ1 and, therefore, no changes are made to be
made to the running prefix minimum or maximum. Also,
there are only two possible cases for x1, while there is exactly
one case for x0. Thus, we obtain

1þ ðq ÿ 2Þ lg 3 � 1:58496q;

as an information theoretic lower bound for the number of
comparisons for the PREFIX MAX-MIN problem.

We do not know of a general way of bringing the amortized
number of comparisons from 2ÿ oð1Þ closer to the lg 3 lower
bound, or alternatively, proving a stronger lower bound.
However, if the distribution of the input elements is
independent, we can do even better than the lower bound
(which obviously holds for worst case inputs). This improve-
ment is carried out as follows. Suppose that Mi and mi were
already computed. Then, to compute Miþ1, Miþ2, miþ1, and
miþ2, we apply the following incorporate-next-input-pair
algorithm.

Algorithm incorporate-next-input-pair. Extend the result of a

solution to PREFIX MAX-MIN to include input elements xiþ1

and xiþ2, using the four following comparisons:

1. Compare xiþ1 and xiþ2. Assume, without loss of

generality, that xiþ1 � xiþ2.

2. Compare Mi with xiþ1 ¼ maxðxiþ1; xiþ2Þ.
3. Compare mi with xiþ2 ¼ minðxiþ1; xiþ2Þ.
4. At this stage, the algorithm has determined both

Miþ2 and miþ2. Specifically,
Miþ2 ¼ maxðxiþ1;MiÞ
miþ2 ¼ minðxiþ2;miÞ.

There are four cases to consider in computing miþ1

and Miþ1.

(a) No changes:

xiþ1 �Mi and xiþ2 � mi

No more comparisons need to be done in this case

and the algorithm simply outputs
Miþ2 ¼Miþ1 ¼Mi

miþ2 ¼ miþ1 ¼ mi.

(b) Changes to both the maximum and the minimum:

xiþ1 �Mi and xiþ2 � mi.

Again, no more comparisons need to be done in

this case, and the algorithm outputs

Miþ2 ¼Miþ1 ¼ xiþ1,

miþ1 ¼ mi,
miþ2 ¼ xiþ2.

(c) Change to the maximum:

xiþ1 �Mi and xiþ2 � mi.

The algorithm outputs

Miþ2 ¼Miþ1 ¼ xiþ1,

miþ2 ¼ miþ1 ¼ mi.

without any additional comparisons.

(d) Possible change to the minimum:
xiþ1 �Mi and xiþ2 � mi.

This is the only case in which an additional

comparison is required: The algorithm first

outputs

Miþ2 ¼Miþ1 ¼Mi,

miþ2 ¼ xiþ2,

and then determines miþ1 by comparing xiþ1

with Mi. If xiþ1 < mi then
miþ1 ¼ xiþ1,

otherwise,

miþ1 ¼ mi.

Thus, in the worst case, the algorithm makes four
comparisons for each pair xiþ1 and xiþ2, where i > 0 is
odd, which does not improve on the two comparisons per
element by the trivial algorithm. The fourth comparison
however is needed only in case

xiþ2 < mi ¼ min
0�j�i
ðxiÞ; ð12Þ

or in the dual case, namely, when the first comparison

yields xiþ1 � xiþ2 and

xiþ2 < Mi ¼ max
0�j�i
ðxiÞ: ð13Þ

With i.i.d. (independent input distribution) the probability

of (12) or (13) holding is 1=ðiþ 3Þ, for all i > 0. Let

u ¼ bq=2c ÿ 1 ¼ ðq ÿ ðq mod 2ÞÞ ÿ 1. Then, in the last appli-

cation of the above algorithm, we deal with the pair x2u and

x2uþ1. In total, Fq, the expected (with regard to input

distribution) number of times the fourth comparison is

made is given by

Fq ¼
1

4
þ 1

6
þ 1

8
þ � � � þ 1

2uþ 2
¼ ðHuþ1 ÿ 1Þ=2; ð14Þ

1612 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

where Hu is the uth harmonic number. It is well known that

lim
u!1

Hu ¼ lnuþ
; ð15Þ

where
 � 0:577216 is Euler’s constant (also called Mascher-
oni’s constant). Combining (14) and (15), we have

Fq ¼
lnðuþ 1Þ

2
þ

2
ÿ 0:5þ oð1Þ

� lnðuþ 1Þ
2

ÿ 0:211392þ oð1Þ:
ð16Þ

It is also known that

lnuþ
 � Hu � lnuþ 1 ð17Þ

from which we obtain

Fq �
lnðuþ 1Þ

2

� ln q ÿ 1

2
:

ð18Þ

Other than these, in solving PREFIX MAX-MIN, there are
u applications of incorporate-next-input-pair, in which 3u
comparisons are made, one comparison in which x0 is
compared with x1 to determine M0, M1, m0, and m1, and
finally, and only if q is odd, two comparisons to determine
Mqÿ1 and mqÿ1. The number of these comparisons is

1þ 3uþ 2ðq mod 2Þ ¼ 3q

2
ÿ 2þ q mod 2

2
: ð19Þ

Adding (18) and (19), we have that the expected total
number of comparisons in our solution to PREFIX MAX-MIN

is at most

3q

2
þ ln q

2
ÿ 2 ð20Þ

and the expected amortized number of comparisons per
element is at most

1:5þ ln q

2q
ÿ 2=q:

It should be noted that one cannot hope to improve much on
this result. The reason is that solving PREFIX MAX-MIN also
yields the maximum and the minimum of the whole input.
However, computing both these values cannot be done in less
than d3p=2e comparisons [5, p. 187] even for randomized
inputs.

4.2 Computing the Min-Max Filter

We now employ algorithm incorporate-next-input-pair in the
preprocessing stage of the modified HGW algorithm
adapted for finding both the minimum and the maximum
filters. Specifically, we are concerned in this stage in finding
an efficient algorithm to the PREFIX-SUFFIX MAX-MIN

problem, defined as computing the maximum and the
minimum of all prefixes and all suffixes of an array of size
pþ 1. Such an efficient algorithm is obtained by partitioning
the input array into two halves. In the lower half, which
comprises q ¼ bðpþ 1Þ=2c ¼ p=2þ ðpmod 2Þ=2 elements, we
repetitively apply incorporate-next-input-pair to compute the
prefix maxima and the prefix minima in this half. A similar
computation is carried out in the upper half with pÿ q þ
1 ¼ dðpþ 1Þ=2e elements of the input array, except that

algorithm incorporate-next-input-pair is mirrored to compute
the suffix minima and the suffix maxima in this half. The
total expected number of comparisons so far can be
computed from (20):

3q

2
þ 3ðpþ 1ÿ qÞ

2
þ ln q

2
þ lnðpþ 1ÿ qÞ

2
ÿ 4

¼ 3p

2
þ lnðbðpþ 1Þ=2cdðpþ 1Þ=2e

2
ÿ 2:5

� 3p

2
þ

ln pþ1
2

ÿ �2

2
ÿ 2:5

¼ 3p

2
þ lnðpþ 1Þ ÿ ln 2ÿ 2:5

� 3p

2
þ ln pÿ 2:5:

ð21Þ

Once this computation is done, we carry on as before to
produce the rest of the required output. In two more
comparisons, we find out where the maximum and the
minimum of the whole array occur. If the maximum occurs
in the lower (respectively, upper) half then, it remains to
compute the suffix (respectively, prefix) maxima from the
mid-point down-to (respectively, up-to) the location of the
maximum. From (11), we have that this computation costs
another 0.25 comparison per input element. A similar
completion stage must be carried out for the minimum
prefixes or suffixes, using another 0.25 amortized compar-
isons. All that remains to do is the merge step which has to
be carried out twice, once for the minimum and once for the
maximum. The number of comparisons for the merge is at
most 2 lg p. Combining this bound with (21) we obtain:

Theorem 3. There exists an algorithm for the 1D MIN-MAX

FILTER problem that, at the worst case, makes twice the number

of comparisons as that of Theorem 2. For i.i.d. input, the

amortized number of comparisons that the algorithm makes is

Cm
1 < 2þ 2

ln pþ lg p

p

¼ 2þ 2þ ln 2

2

� �
lg p

p

� 2þ 2:3466
lg p

p
:

Stated differently, we have that asymptotically for large
p, and for i.i.d. one comparison per element is required to
compute each of the minimum and the maximum filters,
provided they are computed together.

4.3 Performance on Natural Images

Natural images are far from being random inputs. It is
therefore important to check the performance of the
algorithm of Theorem 3 in natural images. The important
factor isKp, the number of times the prefix maximum (or the
prefix minimum) is changed in a window of size p. Clearly,
1 � Kp � p. With randomized input, the expected value ofKp

is Hp � ln pþ
, which gives rise to an asymptotic saving of
0:5 comparison per input value. If, on the other hand, the
input is monotonically increasing thenKp ¼ p. This is a worst
case input in which no savings at all can be made in
computing the min and max filters together. More generally,
the amortized number of comparisons that are saved by the

GIL AND KIMMEL: EFFICIENT DILATION, EROSION, OPENING, AND CLOSING ALGORITHMS 1613

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

iterative application of incorporate-next-input-pair is in the
order of

pÿKp

p
:

Fig. 3 shows the average value of Kp (using max
computation) for p ¼ 2; . . . ; 100 in the lighthouse image. In
this, and all subsequent figures, the average was computed by
examining all one-dimensional row windows in the image.
Only windows which entirely fall in the image were
considered. For comparison purposes, this figure, just as all
the ones to follow, shows the rate at whichHp increases withp.

Fig. 3a shows the average value of Kp for the red, green,
and blue components of each pixel. It is interesting to note
that these three channels behave quite similarly and as we
shall see next, very much like the behavior of the
illumination in gray-level images. For small values of p,
Kp, and Hp are close and Kp appears to increase in a
logarithmic rate. For larger values of p, Kp appears to
increase at a linear rate, with

9 � K100 � 12:

It is also interesting to note that the rate of increase ofKp is the
fastest in the red channel and slowest in the blue channel.

Fig. 3b is similar to Fig. 3a except that it depicts the rate
of increase of Kp for minimum computation.

We witness again the same phenomena: The rate of
increase inKp is faster than that ofHp, it is slowest to change
in the blue and fastest in the red. Curiously, we have a slightly
better ratio for Kp=p for the minimum computation

8 � K100 � 10:

To gain better understanding of the rate of increase of Kp

in natural images, we run similar experiments for six gray-
level images. The results are depicted in Fig. 4a for the
maximum computation, and in Fig. 4b for the minimum
computation. The experiments were conducted this time
only for the green channel. It was our experience that, in all

these images, Kp increased slightly faster for red and
slightly slower for blue.

As can be seen from these two figures, Kp is always
faster to increase than Hp. Still, even for large windows we
have that Kp is only a small fraction of p. A slower rate of
increase in Kp for minimum rather than for maximum could
not be observed. For example, Kp of the “Sails” image
increases at the slowest rate for minimum prefix and at the
fastest rate for maximum prefix.

One may conjecture that the rate of increase of Kp is
logarithmic, but with a base of logarithm less than e. To check
this Fig. 4 is redrawn in semilogarithmic scale in Fig. 5. This
conjecture is false as can easily be seen from these two frames.

In conclusion, we find that for natural images the
algorithm behind Theorem 3 gives rise to an amortized
saving of about 0:9 comparison compared to the indepen-
dent computation of the min and max filters.

5 AN EFFICIENT ALGORITHM FOR THE OPENING

AND CLOSING FILTERS

In this penultimate section of the paper, we turn to
describing how the opening (and closing) filter can be
computed more efficiently than a mere sequential applica-
tion of the Max-Filter and then the Min-Filter.

To understand the improvement, consider for a moment
the problem of computing the prefix-minimum, in the case
that the input of length p is given as a sequence of L
monotonically increasing or decreasing segments. Suppose
that the prefix-minimum has been computed up to a point i,
i.e., that the value of mi ¼ minðx0; . . . ; xiÞ is known and that
xiþ1; . . . ; xiþk is a monotonically decreasing segment of the
input of length k. Then, in order to compute miþ1; . . . ;miþk,
all that is required is to find the smallest ‘ such that
m‘ < mi. This ‘ can be easily found using a binary search in
dlg ke comparisons. We then have

miþj ¼
mi if j < ‘
xiþj if ‘ � j � k:

�

1614 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

Fig. 3. (a) Average number of times the prefix maximum is changed in the lighthouse image versus window size. (b) Average number of times the
prefix minimum is changed in the lighthouse image versus window size.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

If on the other hand, xiþ1; . . . ; xiþk is a monotonically

increasing sequence, all that is required in order to compute

miþ1; . . . ;miþk is to compare xiþ1 and mi. In this case, we

have that

miþ1 ¼ miþ2 ¼ � � � ¼ mjþk ¼ minðxiþ1; miÞ:

Using Lagrange multipliers we obtain that the number of

comparisons is bounded above by

L lg
p

L

l m
: ð22Þ

Recall now the improved merge step described in

Section 3.2. Each iteration of the binary search algorithm

generates about half of the outputs of the max-filter that

remained to be computed. Note that all values generated in
one such iteration are consecutive in the output. Further,
since these values are obtained from computing either Ri or
Si, they are either monotonically increasing or monotonically
decreasing. Thus, an application of the modified max filter
algorithm also partitions each stretch of p outputs into no
more than dlg pemonotonic segments.

The improved opening filter algorithm is thus obtained
by first applying the modified HGW max-filter algorithm,
while preserving this partitioning of the output. Then, the
results are feed into the modified HGW min-filter algo-
rithm. The partitioning information is then used for an
efficient implementation of the preprocessing stage in
which prefix- and suffix-minima are computed. It follows
from (22) that the preprocessing stage can be done in

GIL AND KIMMEL: EFFICIENT DILATION, EROSION, OPENING, AND CLOSING ALGORITHMS 1615

Fig. 4. (a) Average number of times the prefix maximum is changed in seven different natural images versus window size. (b) Average number of

times the prefix minimum is changed in seven different natural images versus window size.

Fig. 5. (a) Average number of times the prefix maximum is changed in seven different natural images versus window size (semilogarithmic scale).

(b) Average number of times the prefix minimum is changed in seven different natural images versus window size (semilogarithmic scale).

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

Oðlg2 pÞ comparisons. Since the merge step can be done in
Oðlg pÞ comparisons, we obtain:

Theorem 4. There exists an algorithm which computes the
opening filter, achieving

Co
1 ¼ C1 þO

lg2 p

p

� �
:

In other words, asymptotically computing the opening
filter is not more expensive than computing just the max-
filter. When going to more than one dimension, unlike the
erosion and dilation, the opening and closing operations are
not separable and, thus, do not enjoy the same computa-
tional efficiency as the one-dimensional opening and and
closing. Nevertheless, one could still use the one-dimen-
sional efficiency to accelerate these operations. The order of
operations in this case could be the following:

. Apply the MAX FILTER on the rows. For non-i.i.d.
signals, this operation takes C1 comparisons.

. Apply the MIN-MAX FILTER on the columns of the
result of the previous step. For non-i.i.d. signals, this
operation takes C1 þ oð1Þ comparisons.

. Apply the MIN FILTER on the rows of the result of
the the previous step. For non-i.i.d., it takes C1

comparisons.

That is, for two-dimensional images, instead of using 4C1 ¼
6 comparisons per element, we spend only 3C1 ¼ 4:5
comparisons per element (or 3:75 comparisons instead of 5
for i.i.d. signals). For the general n-dimensional case, we
spend ðnÿ 1ÞC1 comparisons, exploiting the fact that at
least for one dimension we can enjoy the efficiency of the
1D MIN-MAX FILTER.

6 CONCLUSIONS AND OPEN PROBLEMS

We presented improvements of the HGW algorithm for
running min and max filters. The average computational
complexity was shown to be 1:25þ oð1Þ per element for
randomized input, and 1:5þ oð1Þ for a deterministic algo-
rithm (worst case input). These improvements, which come
close to the best-known lower bound for the problem, were
enabled by careful examination of the redundancies in the
preprocessing and the merge steps of the HGW algorithm.

We continued to study a related problem, namely the
computation of the min and the max filter together. We found
that for i.i.d. input, it is possible to compute the minimum and
the maximum filters together in 2þ oð1Þ comparisons per
data point. This is less than 2:5þ oð1Þ comparisons required
by applying twice the best max filter algorithm.

The opening and closing filters which are similar to the
problem of computing the min- and max-filters together, can
be computed much more efficiently. We found algorithms for
these filters using 1:5þ oð1Þ comparisons deterministically,
or 1:25þ oð1Þ comparisons when the input is i.i.d.

All separable algorithms like erosion and dilation are
readily extendible to higher dimensions.

We leave the following open questions for further
research:

1. In image processing, the selection of a coordinate
system is usually arbitrary and unrelated to the

geometry of the objects being presented. Therefore, it
seems more natural to use a circle rather than a
square as the shape of the window. However, the
extension of the 1D algorithm for a 2D circle case
needs further thought. By using a heap data
structure to represent a sliding window in the shape
of a circle of radius p, we can compute the filter in

Oðp lg pÞ

comparisons per window; in each move of the center
of the circle, the data structure is updated by adding
OðpÞ points and removing OðpÞ points. If pixel values
are drawn from some small finite domain, then it is
possible to use a dynamic moving histogram [13], [4]
data structure supporting insertions and deletions in
Oð1Þ time. The amortized cost is then reduced toOðpÞ.
It is interesting and important to find more efficient
accurate algorithms for this problem, with and without
assuming that pixel values are bounded. (Previous
results [1], [22] give approximations to this problem.)

2. We know of no deterministic or randomized algo-
rithm which computes for worst case input the MAX-

MIN FILTER more efficiently than computing the
min and max separately. However, there is an
interesting property of algorithm incorporate-next-
input-pair which might be used in trying to meet this
challenge: The fourth comparison is only required
for the computation of the interim Miþ1 and miþ1

output values. Thus, a repetitive application of this
algorithm can carry on to its next iteration, while
delaying the fourth comparison of the current
iteration for later. It might be possible to use this
observation to obtain an efficient algorithm for the
MAX-MIN FILTER problem which does not presume
any input distribution. For example, in the prepro-
cessing stage, one may apply incorporate-next-input-
pair to compute the prefix maxima of the greater
elements of each pair in the lower half as well as the
prefix minimum of the lesser elements of these pairs.
A similar computation is carried out in the upper
half of the input array, except that algorithm
incorporate-next-input-pair is mirrored to compute
the suffix minima (respectively, maxima) of the
lesser (respectively, greater) elements of each pair in
the upper half. The computation of the skipped
values could be done later on and only if necessary.

3. A related algorithmic problem is that of solving
PREFIX MAX-MIN problem in less than 2pþOð1Þ
comparisons. We find this problem fascinating since
it is possible to solve either the PREFIX MAX (or the
PREFIX MIN) problem in the same number of
comparisons it takes to compute just the overall
maximum (minimum). On the other hand, comput-
ing both the overall maximum and the overall
minimum can be done in a smaller number of
comparisons than what is required for computing
them independently. Our inability to make similar
saving for the problem of computing the PREFIX

MAX together with PREFIX MIN leads us to suspect
that there is an 2pþOð1Þ lower bound for the PREFIX

MAX-MIN problem. It might be possible to derive

1616 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

such a bound using a technique similar to that of the
proof that computing the maximum and minimum
of p values requires d3p=2e comparisons.

4. As mentioned above, the Max-Filter algorithms do
not assume any input distribution. For some
applications it could be useful to produce an
algorithm for this problem which works better in
the case of i.i.d. input.

Our results do not seem to be directly applicable to the
more difficult problem of computing the median filter.
However, it might similar techniques might be used to
improve the constants, or even the asymptotic complexity
of the currently best median filter algorithm [12] which runs
in Oðlog2 pÞ time per filtered point.

ACKNOWLEDGMENTS

Stimulating discussions of both authors with Reuven Bar-
Yehuda of the Technion during the writeup of this paper are
gratefully acknowledged. The authors also thank the re-
viewers for their detailed comments that help us enhance the
clarity of the paper. R. Kimmel is grateful to Renato Keshet
from HP Labs. Israel, for intriguing discussions on efficient
morphological operators. A preliminary version of this paper
was published in the proceedings of ISMM ’00 [11].

REFERENCES

[1] E. Breen and P. Soille, “Generalization of van Herk Recursive
Erosion/Dilation Algorithm to Lines at Arbitrary Angles,” Proc.
DICTA ’93: Digital Image Computing: Techniques and Applications,
Dec. 1993.

[2] R.W. Brockett and P. Maragos, “Evolution Equations for Con-
tinuous-Scale Morphology,” Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, pp. 1-4, Mar. 1992.

[3] R.W. Brockett and P. Maragos, “Evolution Equations for Con-
tinuous-Scale Morphological Filtering,” IEEE Trans. Signal Proces-
sing, vol. 42, no. 12, pp. 3377-3386, 1994.

[4] B. Chaudhuri, “An Efficient Algorithm for Running Window Pixel
Gray Level Ranking in 2D Images,” Pattern Recognition Letters,
vol. 11, no. 2, pp. 77-80, 1990.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: MIT Press, 1990.

[6] P. Danielson, “Euclidean Distance Mapping,” Computer Graphics
and Image Processing, vol. 14, pp. 227-248, 1980.

[7] M. Davis, “Efficient Methods of Performing Morphological
Operations,” US patent US5960127, 1999.

[8] L. Dorst and R. Boomgaard, “Morphological Signal Processing and
the Slope Transform,” Signal Processing, vol. 38, pp. 79-98, 1994.

[9] D.Z. Gevorkian, J.T. Astola, and S.M. Atourian, “Improving Gil-
Werman Algorithm for Running Min and Max Filters,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 526-529,
May 1997.

[10] J.Y. Gil and Z. Gutterman, “Compile Time Symbolic Derivation
with C++ Templates,” Proc. Fourth Conf. Object-Oriented Technol-
ogies and Systems (COOTS ’98), May 1998.

[11] J.Y. Gil and R. Kimmel, “Efficient Dilation, Erosion, Opening and
Closing Algorithms,” Mathematical Morphology and Its Applications
to Image and Signal Processing, J. Goutsias, L. Vincent, and
D.S. Bloomberg, eds., pp. 301-310, Boston: Kluwer Academic, 2000.

[12] J.Y. Gil and M. Werman, “Computing 2-D Min, Median, and Max
Filters,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, no. 5, pp. 504-507, May 1993.

[13] T. Huang, G. Yang, and G. Tang, “A Fast Two-Dimensional
Median Filtering Algorithm,” IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. 27, no. 1, pp. 13-18, 1979.

[14] B.W. Kernighan and D.M. Ritchie, The C Programming Language,
Software Series, second ed., Prentice-Hall, 1988.

[15] J. Lee, R. Haralick, and L. Shapiro, “Morphologic Edge Detection,”
IEEE J. Robotics and Automation, vol. 3, no. 3, pp. 142-156, 1987.

[16] P. Maragos, “Slope Transforms: Theory and Application to
Nonlinear Signal Processing,” IEEE Trans. Signal Processing,
vol. 43, no. 4, pp. 864-877, 1995.

[17] I. Pitas, “Fast Algorithms for Running Ordering and Max/Min
Recalculations,” IEEE Trans. Circuits and Systems, vol. 36, no. 6,
pp. 795-804, June 1989.

[18] J. Rivest, P. Soille, and S. Beucher, “Morphological Gradients,”
J. Electronic Imaging, vol. 2, no. no. 4, pp. 326-336, 1993.

[19] G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A.M. Bruckstein,
“Implementing Continuous-Scale Morphology via Curve Evolu-
tion,” Pattern Recognition, vol. 26, no. 9, pp. 1363-1372, 1993.

[20] J. Serra, Image Analysis and Mathematical Morphology. New York:
Academic Press, 1982.

[21] P. Soille, Morphological Image Analysis. Berlin, Heidelberg, New
York: Springer-Verlag, 1999.

[22] P. Soille, E. Breen, and R. Jones, “Recursive Implementation of
Erosions and Dilations Along Discrete Lines at Arbitrary Angles,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 5,
May 1996.

[23] B. Stroustrup, The C++ Programming Language, third ed., Addison
Wesley, 1997.

[24] Geometric-Driven Diffusion in Computer Vision, B.M. ter Haar
Romeny, ed., The Netherlands: Kluwer Academic, 1994.

[25] M. van Herk, “A Fast Algorithm for Local Minimum and
Maximum Filters on Rectangular and Octagonal Kernels,” Pattern
Recognition Letters, vol. 13, pp. 517-521, 1992.

Joseph (Yossi) Gil received the BSc degree in physics, mathematics,
and computer science in 1983, the MSc degree in 1986 in computer
science, and the PhD degree in 1990 from the Hebrew University of
Jerusalem. During the years 1990-1992, he was a visiting researcher, at
the University of British Columbia. Since 1992, he has been a faculty
member of the Computer Science Department at the Technion, Israel,
where he is currently a senior lecturer. His research interests are in
software engineering, in particular, aspects related to the object-oriented
paradigm, programming languages, and parsing. In 1995, Dr. Gil was
awarded the Henry Taub prize for excellence in research.

Ron Kimmel received the BSc degree (with
honors) in computer engineering in 1986, the
MS degree in 1993 in electrical engineering, and
the DSc degree in 1995 from the Technion—Is-
rael Institute of Technology. During the years
1986-1991, he served as an R&D officer in the
Israeli Air Force. During the years 1995-1998, he
has been a postdoctoral fellow at the Computer
Science Division of Berkeley Labs, and the
Mathematics Department, University of Califor-
nia, Berkeley. Since 1998, he has been a faculty

member of the Computer Science Department at the Technion, Israel,
where he is currently an associate professor. His research interests are
in computational methods and their applications in: Differential
geometry, numerical analysis, image processing and analysis, computer
aided design, robotic navigation, and computer graphics. Dr. Kimmel
was awarded the Hershel Rich Technion innovation award, the Henry
Taub Prize for excellence in research, Alon Fellowship, the HTI
Postdoctoral Fellowship, and the Wolf, Gutwirth, Ollendorff, and Jury
fellowships. He has been a consultant of HP Research Lab in image
processing and analysis during the years 1998-2000, and to Net2Wire-
less/Jigami research group during 2000-2001. He is a senior member of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

GIL AND KIMMEL: EFFICIENT DILATION, EROSION, OPENING, AND CLOSING ALGORITHMS 1617

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 12,2010 at 12:15:36 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

