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A practical method for finding correspondences between nonrigid isometric shapes is pre-
sented. It utilizes both pointwise surface descriptors, and metric structures defined on
the shapes to perform the matching task, which is formulated as a quadratic minimiza-
tion problem. Further, the paper explores the correspondence ambiguity problem arising
when matching intrinsically symmetric shapes using only intrinsic surface properties. It
is shown that when using isometry invariant surface descriptors based on eigendecom-
position of the Laplace—Beltrami operator, it is possible to construct distinctive sets
of surface descriptors for different possible correspondences. When used in a proper
minimization problem, those descriptors allow us to explore number of possible corre-
spondences between two given shapes.
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1. Introduction

Correspondence detection is an important part of many three dimensional (3D)
shape-processing applications, such as shape retrieval, registration—either as a
stand-alone task, or as an initialization for deformation and morphing algorithms,
symmetry, self-similarity detection, etc. Unlike rigid shape correspondence, where
the transformation connecting the two shapes can be modeled using six parame-
ters, detecting nonrigid shape correspondence is a far more challenging task. In this
paper we assume that the two shapes we try to match are approximately isometric
in terms of corresponding geodesic distances measured between matched surface
points.

We suggest a framework for an unsupervised nonrigid isometric shape cor-
respondence detection, based on matching isometry invariant surface descrip-
tors, and the metric structures of the shapes. We formulate the matching task
as a problem of minimizing a quadratic dissimilarity objective function, using
the surface properties mentioned above, and solve it to find the correspondence.
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The suggested framework is general, and can be used with any type of descrip-
tors and metric. As in this paper we consider the problem of matching isomet-
ric shapes, we employ isometry invariant surface descriptors based on eigende-
composition of the Laplace-Beltrami operator [Reuter et al. (2006); Levy (2006);
Levy and Zhang (2009)], and isometry invariant geodesic distance metric.

We also explore the correspondence ambiguity problem that arises when match-
ing a pair of intrinsically symmetric shapes using only intrinsic surface properties.
In this case, there exist more than one correspondence between the shapes. We show
that when using the proposed isometry invariant surface descriptors, it is possible
to find several alignments of two symmetric shapes. Specifically, we employ the pro-
posed approach to detect correspondences between shapes belonging to the large
class of shapes with one intrinsic symmetry, such as human and animal shapes. To
the best of our knowledge, this is the first attempt to deal with this correspondence
ambiguity problem.

Thus, the two main contributions of the paper can be summarized as follows.

e We suggest a general framework for matching nonrigid shapes that utilizes
pointwise surface descriptors and metric information. The matching is cast to
a quadratic optimization problem, that can be minimized to find the optimal
correspondence. We show empirical evidence that the proposed approach, which
combines the two surface properties mentioned above, is superior to using each
of them separately.

e We describe the correspondence ambiguity problem that arises when matching
intrinsically symmetric shapes, and suggest a method for dealing with that ambi-
guity. We propose to use surface descriptors based on eigendecomposition of the
Laplace-Beltrami operator, and show how they can be used to find several pos-
sible correspondences between the shapes.

The work presented in this paper expands the concepts earlier presented in
[Dubrovina and Kimmel (2010)].

The rest of the paper is organized as follows: we start with a review of related
efforts in the field of nonrigid shape matching, presented in Sec. 2. In Sec. 3 we
present the correspondence detection problem, and in Sec. 4 we show how it can
be formulated as an optimization problem. In Sec. 5 we describe isometry invariant
surface descriptors, and an algorithm for constructing distinct sets of descriptors
corresponding to each possible alignment. In Sec. 6 we discuss the complexity of
the proposed algorithm, present the matching results obtained with it, and show
empirical evidence that minimizing the combined measure provides better results
than using each of its parts separately. Section 7 concludes the paper.

2. Previous Work

Feature-based surface matching algorithms are an active research area. Zhang et al.
[2008] found features by examining extremities of the geodesic distance field defined
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on the mesh. Zaharescu et al. [2009] proposed an extension of an existing method for
salient feature detection in 2D images. Hu and Hua [2009] and Sun et al. [2009] used
the eigenfunctions of the Laplace-Beltrami operator and the heat kernel operator,
respectively, to find the feature points. d’Amico et al. [2006] suggested a theoretical
analysis of descriptor-based matching (denoted there as measuring functions), and
applied it for planar shape comparison.

A different approach to nonrigid shape matching is based on embedding the
shapes into some canonical domain, where the matching can be easily performed.
Elad and Kimmel [2003] embedded the shapes into a (flat) Euclidean domain using
the multidimensional scaling (MDS) method [Borg and Groenen (2005)], and per-
formed rigid matching. Different embedding domains spanned by eigenfunctions
of either affinity matrix or a graph Laplacian operator defined on triangulated
shapes were suggested by Jain et al. [2007], Mateus et al. [2008], and Knossow
et al. [2009]. Rustamov [2007] suggested using eigendecomposition of the Laplace—
Beltrami operator, which is more consistent with the shape’s intrinsic geometry.
Recently, Lipman and Funkhouser [2009] suggested conformal surface flattening to
a complex plane, and matched the shapes based on their corresponding conformal
factors, thereby simplifying the set of nonrigid isometric deformations to the Mobius
group.

Memoli and Sapiro [2005], and Memoli [2007] suggested using the Gromov—
Hausdorf distance [Gromov (1981)] to compare the metric structures of the shapes.
Bronstein et al. [2006] formulated the metric comparison as a problem of embedding
one shape into another with minimal geodesic distance dissimilarity by introduc-
ing the generalized MDS (GMDS). Thorstensen and Keriven [2009] extended the
GMDS to textured shapes. Tevs et al. [2009] suggested randomized geodesic dis-
tance preserving matching algorithm. Anguelov et al. [2004] proposed matching
shapes by minimizing a probabilistic model based on geodesic distances between
all pairs of corresponding points. Leordeanu and Hebert [2005] employed both local
descriptors and global pairwise similarity for the matching. Chang and Zwicker
[2008], and Huang et al. [2008] approximated nonrigid transformations that align
the two shapes by a finite set of rigid transformations, which were claimed to be sim-
ple to calculate. Self-similarity detection is a particular case of the shape-matching
problem. Algorithms for detecting intrinsic symmetries of nonrigid isometric shapes
were proposed in [Raviv et al. (2007); Ovsjanikov et al. (2008); Raviv et al. (2009);
Lipman et al (2010); Kim et al (2010)].

Many of the above algorithms share a common denominator, namely the cor-
respondence detection is performed by minimization of a certain shape dissim-
ilarity measure. The definition of the dissimilarity is usually based on surfaces
properties that remain approximately invariant under possible transformations
of the shapes. Roughly speaking, descriptor-based methods [Zaharescu et al.
(2009); Sun et al. (2009)] measure the dissimilarity between some local signa-
tures (or, descriptors) associated with the shapes, while metric based approaches
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[Memoli and Sapiro (2005); Bronstein et al. (2006); Memoli (2007); Bronstein
et al. (2009); Tevs et al. (2009)] find correspondences by minimizing the dif-
ference between the metric structures of the two shapes. There is also a fam-
ily of methods that measure dissimilarity using a mixture of several common
quantities, e.g. [Leordeanu and Hebert (2005); Hu and Hua (2009); Thorstensen
and Keriven (2009)]. The approach we present in this paper belongs to the
latter group. That is, we try to match both pointwise surface descriptors,
and the metric structures of the shapes, and define a dissimilarity measure
accordingly.

3. Problem Formulation

Let us denote by X and Y the two shapes we would like to match. We represent the
correspondence between X and Y by a bijective mapping ¢ : X — Y, such that for
each point z € X its corresponding point is ¢(x) € Y. We seek for correspondence
that preserves both pointwise surface properties, and global pairwise relationships
between corresponding points — those that remain approximately invariant under
a given class of transformations. In order to measure the pointwise dissimilarity
between X and Y we associate with each point x € X a surface descriptor f*(z),
and, correspondingly, with each point y € Y — a descriptor f¥ (y). The pointwise
dissimilarity measure is defined as a sum of distances between the descriptors of all
pairs of corresponding points

Disi(p) = Y dr (f¥(2), /¥ (#())) - (1)

zeX

The distance measure dp is defined in the descriptor space. It is chosen according
to the type of the descriptors fX(z), f¥ (y).

In order to compare the pairwise relationships between the corresponding points
we adopt the metric space shape representation approach, along the line of [Elad
and Kimmel (2003); Memoli and Sapiro (2005); Bronstein et al. (2006); Bronstein
et al. (2008)]. According to it, the shape is represented by a pair (X, dx), where
X is a smooth compact connected Riemannian manifold, with associated distance
measure dx : X x X — Ry [J{0}.

Next, following [Memoli and Sapiro (2005); Bronstein et al. (2006), and Bron-
stein et al. (2008)], we measure the metric dissimilarity induced by the correspon-
dence given by ¢. Specifically, given two pairs of matched points (z,¢(x)) and
(Z,(Z)), we can compare the corresponding distances measured on X and Y by
|dx (x,Z) — dy (p(x), (Z))|. Thus, the overall pairwise dissimilarity induced by the
correspondence set , is given by

Disg(p) = Y ldx (@, &) — dy (p(), o(&))]- (2)

z,zeX
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The overall cost of the correspondence is a combination of the dissimilarity
measures (1) and (2):

Dis() = Y dr(f¥(2), ¥ (p(@)) + A~ Y ldx(z,%) = dy (o(2), 0(2))].  (3)

reX x,zeX

The scalar parameter A\ determines the relative weight of the second term in
the overall dissimilarity measure. The optimal correspondence ¢* would minimize
Dis(¢p).

The above formulation is general and can be used with any choice of descrip-
tors and distance measures, and with different minimization techniques. Here, we
would like to match surfaces that differ by approximately isometric transforma-
tions, that is nonrigid transformations that do not stretch or tear the surfaces.
Figure 1 shows several instances of a human body differing by approximately iso-
metric transformations.

The descriptors and the metric chosen for this application have to be an isom-
etry invariant as possible. In Sec. 5, we describe such a descriptor based on the
eigendecomposition of the Laplace—Beltrami operator. It is related to the global
point signature (GPS) proposed by Rustamov [2007]. Other descriptors that can
be employed in the proposed framework include the Gaussian curvature of the sur-
face, histograms of geodesic distances like those used by [Raviv et al. (2009)] and
[Ruggeri and Saupe (2008)], Gaussian curvature of the surface, or the heat kernel
based descriptors proposed in [Bronstein and Kokkinos (2010)].

For nonrigid isometric transformation that does not tear or stretch the surface, a
good choice of a metric is based on geodesic distance. Given the points x1, z2 on X,
the geodesic distance between them, denoted by dx (x1, x2), is equal to the length of
the shortest path on the surface X connecting the points x; and 2. In the presence
of topological changes, a better choice for the metric would be the diffusion distance
[Bérard et al. (1994); Coifman and Lafon (2006)], or the commute time distance
[Qiu and Hancock (2007)], that are less sensitive to these kind of transformations.

TR

Fig. 1. Isometric transformations example.
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4. Correspondence Detection as a Quadratic
Optimization Problem

In order to express the correspondence detection as an optimization problem we
need to redefine the correspondence between X and Y. Consider the set of all
possible mappings P over the space of all pairs (x,y), where z € X, and y € Y,
such that

1, z corresponds to y,
P(z,y) = (4)

0, otherwise

The correspondence cost presented in Eq. (3) can be written equivalently in
terms of P as

Dis(P) = > dp(f*(x),f¥ (y))Plx.y)
rxeX
yey

+A- Y ldx (@, &) — dy (y,9) | P(e,y) P(Z, §), (5)
z,2€X
Y,ye€Y
where P* that minimizes Dis(P) represents the optimal correspondence between
the shapes X and Y.

Next, we would like to define the optimization problem for the discrete setting,
i.e. when X and Y are both discretized and are given either as triangulated meshes,
or clouds of points. The mapping P could be approximated as a binary matrix. The
correspondence between some z; € X and y; € Y is given by the (4, j) entry of P,
namely P; = P(z;,y;) € {0,1}.

The cost (5) can then be discretized as follows

Dis(P) = ZdF(fX(xi)» Y wi) Py

+ A Z lldx (@i, Tm) — dy (Y5, Yn)|| Pij Prn- (6)

1,7, m,n

To avoid a trivial solution, we add constraints on P to Eq. (6). Those constraints
are subject to the type of correspondence we look for. We briefly review several of
them here. For an in-depth discussion on related constraint optimization the reader
is referred to [Maciel and Costeira (2003)].

When a bijective (one-to-one and onto) correspondence is required, the con-

straints are given by
i J

In this case, the solution P is a permutation matrix.
This constraint may be too restrictive. If the shapes have different number of
points, or significantly different triangulations, the optimal correspondence is not
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necessarily a bijection. In this case, we may fix the points on X, and for each =z € X
look for a correspondence y € Y that minimizes the dissimilarity measure

d Py=1, Vi (8)

Each x € X may have one or more corresponding points according to this constraint.
Finally, we rewrite the dissimilarity measure (6) in matrix form, as a quadratic
function of the correspondence P. We denote each double index (i, j), as in (z;,y;)
(or 4 in Pj;) by a single index k. The pairwise dissimilarity term is converted into
a vector with entries

b = dp(f* (i), f¥ (y30): (9)

and the metric dissimilarity term — into a matrix with entries

Qrl = ”dX(ximxmk) - dY(yjzvynz))”' (10)
We readily obtain the following quadratic optimization problem

P* = argmin{b" P+ \- PTQP} st. SP=1, (11)
P

where the sparse matrix S represents the matrix form of the chosen constraints;
1 is a vector with all entries equal to 1, of an appropriate size. Implementation
details: in our experiments we normalized the pairwise and the metric dissimilarity
terms by their maximal values, in order to obtain meaningful contributions of the
two terms to the cost function, and used X in the range of [0.1,0.5].

5. Isometry Invariant Surface Descriptors

In this section, we describe a method for construction of isometry invariant sur-
face descriptors based on eigendecomposition of the Laplace-Beltrami operator.
We start with a brief review of the Laplace-Beltrami operator, and the associated
eigendecomposition theory, and then describe the proposed descriptor.

5.1. Laplace—Beltram: operator

The Laplace—Beltrami operator is a generalization of the Laplacian operator from
flat domain to compact Riemannian manifolds. Given a manifold M, its Laplace—
Beltrami operator Ay is given by

Ay f=—divar(Var f), (12)

for any function f: M — R. The divergence and the gradient operators, divy; and
Vur, respectively, are defined by the intrinsic geometry of the manifold M. Hence,
the operator Ay, is invariant to isometric transformations of the manifold M.
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Consider the Laplace-Beltrami operator eigenvalue problem given by
Apnrop = Ao (13)

¢ is the eigenfunction of Ay, corresponding to the eigenvalue A. The spectrum of
the Laplace-Beltrami operator consists of positive eigenvalues (see, e.g. [Rosenberg
(1997)]). When M is a connected manifold without boundary, then Ay, has addi-
tional eigenvalue equal to zero, with corresponding constant eigenfunction. We can
order the eigenvalues as follows

02)\0<)\1S/\2S/\3§"' (14)
The set of corresponding eigenfunctions given by

{#1, 02,93, ...} (15)

forms an orthonormal basis of functions defined on M (see [Rosenberg (1997)]).

5.2. Surface descriptors

Like the Laplace—Beltrami operator, the eigenvalues and the eigenfunctions are
defined by the intrinsic geometry of the manifold, and thus remain invariant under
its isometric transformations. This fact has been exploited for nonrigid isometric
shape recognition [Reuter et al. (2006); Rustamov (2007)] and registration [Zhang
et al. (2008); Mateus et al. (2008); Knossow et al. (2009)].

Let us consider a candidate surface descriptor constructed from the values of
the eigenfunctions of Ay

M) ={61"(0), 5" (@), oK (@)}, q€ M. (16)

#M (q) is the value of the kth eigenfunction at point ¢ € M.

Here, we choose the dimension K of the descriptor to be small. As we
have already mentioned, the eigenfunction corresponding to the zero eigenvalue
is a constant function. As we increase the value of the eigenvalue, the corre-
sponding eigenfunction (or eigenfunctions) varies more rapidly over the manifold.
Eigenfunctions corresponding to large eigenvalues are therefore more sensitive
to the discretization. On the other hand, too small K would reduce the dis-
criminative power of the descriptor. In our experiments we used K in the
range of 5-10.

The descriptor f*(q) is defined only by the intrinsic properties of M and is thus
suitable for isometry invariant matching. The descriptor f(q) can be viewed as
an embedding of the point ¢ into a K-dimensional Euclidean space spanned by the
eigenfunctions {¢1, ¢o, ..., ¢k }. Hence, we can measure the dissimilarity between
the descriptors in this space using Ly-norm (in our experiments we used p = 2).

Now, given two isometric shapes X and Y, we denote the sets of eigenvalues
and eigenfunctions of their Laplace-Beltrami operators by

e {on i (17)
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and

respectively. Despite the isometry invariancy of the Laplace—Beltrami operator,
the sets {¢X HS | and {¢) }5 | are not necessarily identical (up to a perturba-
tion defined by Eorrespondencg). There are several factors that explain this loss of
identity.

(1) The eigenvalues of the Laplace—Beltrami operator may have multiplicity
greater than one, with several eigenfunctions corresponding to each such eigenvalue.
Each set of eigenfunctions corresponding to the eigenvalue with multiplicity greater
than one spans a subspace of the space of functions defined on the manifold M, or
an N-dimensional Euclidean space in case of triangulated surface with N vertices.
Thus, in order to measure the distance between two such sets calculated for X and
Y we need some distance measure between two subspaces, other than an L,-norm.
Additionally, since we work with shapes represented by discrete triangular meshes,
the calculation of the Laplace-Beltrami operator and its eigendecomposition suffers
from approximation and numerical errors. This sometimes leads to switching of
eigenfunctions corresponding to eigenvalues with similar values.

(2) In addition, the eigenfunctions of the Laplace-Beltrami operator correspond-
ing to eigenvalues without multiplicity are defined up to a sign. Therefore, the sets
{7 k>1 and {@) }r>1, restricted to eigenfunctions corresponding to eigenvalues
without multiplicity, are connected by some arbitrary sign sequence, that has to be
estimated prior to the matching. Figure 2 presents an example of this sign ambi-
guity. It shows two articulations of a human body, colored according to the values
of the first four eigenfunctions of their corresponding Laplace-Beltrami operators.
In order to obtain coherent eigenfunctions for the two shapes, we need to multiply
the first eigenfunction of the lower shape by —1.

(3) An additional problem of eigenfunction sign ambiguity arises when matching
intrinsically symmetric shapes (for the definition of intrinsic symmetry the reader
is referred to [Raviv et al. (2007), (2009)]), such as the two shapes of the human
body in Fig. 2. It was observed by Ovsjanikov et al. [2008] that eigenfunctions of
the Laplace—Beltrami operator of an intrinsically symmetric shape M are symmet-
ric functions as well, with respect to the intrinsic symmetry of M (Theorem 3.1
in [Ovsjanikov et al. (2008)]). Eigenfunctions corresponding to eigenvalues without
multiplicity exhibit reflection symmetries, whereas eigenfunctions corresponding to
eigenvalues with multiplicity greater than one may also exhibit rotation symme-
tries. That is, for two intrinsically symmetric points p,q € M, the eigenfunctions
corresponding to eigenvalues without multiplicity are related by

o (p) = op' (@) or o (p) = -1 (q). (19)

In case of eigenfunctions corresponding to eigenvalues with multiplicity greater than
one, the connection between the eigenfunctions is more complex (see [Ovsjanikov



212 A. Dubrovina & R. Kimmel

Fig. 2. Two articulations of a human shape, colored according to the values of the first five eigen-

functions of their Laplace—Beltrami operators, from left to right. The two possible sign sequence
relating the two groups of the eigenfunctions are [—,+, +, +] and [—, —, —, +].

et al. (2008)]). In this paper, we limit the discussion only to eigenfunctions corre-
sponding to eigenvalues without multiplicity.

We would like to note that there may exist nontrivial intrinsic symmetries that
necessarily imply appearance of repeated eigenvalues, as described in Sec. 3.4 of
[Ovsjanikov et al. (2008)]), and the above restriction to non-repeating eigenvalues
can rule out these symmetries (e.g., continuous rotational symmetries discussed
in [Ben-Chen et al. (2010)]). In particular, with the proposed method we can
find only those intrinsic symmetries that result in reflection symmetries of the
eigenfunctions of the Laplace-Beltrami operator, and not their rotation symme-
tries. This is a major limitation to the proposed method, and further research
is required to determine whether it is possible to employ eigenvectors corre-
sponding to these eigenvalues, to detect all possible symmetries and symmetrical
correspondences.

We would like to display how the intrinsic symmetry of the matched shapes
affects the matching problem using the example in Fig. 2. As we have already
mentioned, we need to multiply the eigenfunctions of the lower shape by the sign
sequence [—, +, 4+, +] in order to align the two sets of eigenfunctions. We call the
resulting alignment a primary alignment, or a primary correspondence. But, since
the shapes are intrinsically symmetric, there exists another sign sequence that pro-
duces matching with the same dissimilarity value (calculated according to Eq. (1)).
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It is [, —, —, +], and results in what we call a symmetric correspondence. Roughly
speaking, it matches each point on the first shape not to its corresponding point
on the second shape, but to a point intrinsically symmetric to it. When the shape
has more than one intrinsic symmetry, the number of the possible symmetric cor-
respondences equals the number of the symmetries. Moreover, it is impossible to
distinguish between the different correspondences, since they result in equal dis-
similarity value, according to Eq. (1).

From the discussion above it follows that we must preprocess the candidate
descriptors fX(x), f¥ (y) before we can actually use them for matching. Two of
the above problems — eigenfunction ordering and sign ambiguity, were previously
addressed with respect to the spectral decomposition-based shape matching. Several
authors, among them Shapiro and Brady [1992], and Jain et al. [2007], proposed
using either exhaustive search or greedy approach for the eigenvalue ordering and
sign detection. Umeyama [1988] proposed using a combination of the absolute values
of the eigenfunctions and an exhaustive search. Mateus et al. [2007] expressed the
connection between the eigenfunctions of the two shapes by an orthogonal matrix.
They formulated the matching as a global optimization problem, optimizing over
the space of orthogonal matrices, and solved it using the expectation minimization
approach. Later, Mateus et al. [2008] and Knossow et al. [2009] suggested using
histograms of eigenfunction values to detect their ordering and signs.

In this paper, we suggest an algorithm that, in the presence of intrinsic sym-
metries, aims to estimate several possible sign sequences connecting the two sets of
eigenfunctions, and not only the sign sequence corresponding to the primary corre-
spondence. To make this estimation possible we suggest constructing the descriptor
M (p) using the values of K eigenfunctions of the Laplace-Beltrami operator cor-
responding to the first K eigenvalues with no multiplicity, similar to [Ovsjanikov
et al. (2008)]. In practice, we used the eigenfunctions corresponding to all the K first
eigenvalues of the Laplace—Beltrami operator, assuming them to be of unit multi-
plicity. This assumption held true for most of the shapes we tested the algorithm on,
and did not cause the algorithm to miss major primary or symmetrical correspon-
dences. We did not find the scheme employing relative difference between eigenval-
ues to eliminate repeating eigenvalues, as suggested by [Ovsjanikov et al. (2008)],
or the eigenfunction histogram-based method for eigenfunction order detection sug-
gested in [Knossow et al. (2009)], to be efficient enough for our test cases. Currently
this inability to cope with eigenvalue multiplicity and eigenfunction switching prob-
lems poses the main limitation on the proposed method, and must be eliminated
in the future research.

5.3. Multiple sign sequence estimation

In order to estimate the sign sequences relating the two sets of eigenfunctions we
suggest using a coarse matching based on absolute values of eigenfunctions together
with geodesic distances measured on the two shapes.
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It follows from Eq. (19) that the absolute values of the eigenfunction ¢ at two
symmetric points p,q € M are equal, for all k

o' ()] = lon" (a)]- (20)
Equivalently, the absolute values of the descriptors f(p), f™(q) are equal
M) = 1Y () (21)

In order to find the coarse matching between X and Y we minimize the pointwise
dissimilarity cost, similar to Eq. (1), but using the absolute values of the descriptors

TR
" = min oK@ =1 (@), (22)

zeX

*

" is the optimal coarse correspondence, and is less accurate than the correct cor-
respondence. In order to simplify the problem, we fix the points on the first shape,
X, and search for their corresponding points on Y’

¢*(z) = argmin [[| f* ()| - [fY @), VzeX (23)
gey

The sign sequence relating the two sets of descriptors can be calculated using the
above correspondence set as follows

Sk = a?gmin SO @) = Skl (@ @), 1<k<K, (24)
+.— zeX

where by Sy we denote the kth entry of the sign sequence. Somewhat similar
approach to the sign sequence estimation was used by Ovsjanikov et al. [2008].

Now, let us analyze the coarse correspondence set. If the shapes are intrinsically
symmetric, for each z € X there may exist several (symmetrical) points on Y, with
descriptors equal up to signs, that minimize the expression

£ @) =1 @)I- (25)

Thus, the set ¢* would include both primary and symmetrical correspondences. In
practice, as we work with sampled surfaces, the minimizer of Eq. (25) is usually
unique, and may correspond to either primary or symmetrical alignment. We would
like to estimate the sign sequences induced by all these alignments using Eq. (24).
In order to do that we have to cluster the correspondences into groups according
to the alignment they correspond to, and perform the sign sequence estimation for
each group separately. The clustering procedure we suggest is based on comparing
geodesic distances between pairs of corresponding points. Suppose we are given two
such pairs, (z,y) and (Z,9). If (z,y) and (Z,y) represent the same alignment of X
and Y, the corresponding geodesic distances dx (z, Z) and dy (y, ) must be similar.
Otherwise, the geodesic distance error |dx (z, %) — dy (y, §)| could be large.
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We construct a matrix of the geodesic distance errors of all pairs of correspond-
ing points: for all (,, P*(xm)), (Xn, P*(xn))

Apn = |dX(xm7$n) - dy(@*(l'm), 95*(5571))' (26)

The matrix A is used to cluster the correspondences, so that the sum of geodesic
distance errors of all pair of corresponding points belonging to the same cluster is
maintained low. In order to find the clusters we apply a dimensionality reduction
algorithm, namely multidimensional scaling [Borg and Groenen (2005)], to A to
obtain a set of points in Euclidean space, and cluster them using the K-means
algorithm [Macqueen (1967)]. Given the clusters, we detect the corresponding sign
sequences using Eq. (24). Moreover, we suggest clustering the correspondence into a
large number of clusters, greater than the expected number of intrinsic symmetries.
Thus, each sign sequence is supported by several clusters, improving the robustness
to imprecise coarse correspondences and clustering errors. If the number of intrinsic
symmetries of the shapes is known a priori, we choose a suitable number of sign
sequences among sequences that were induced by the highest number of clusters.
Alternatively, if we do not know the number of the intrinsic symmetries, we can
choose the sign sequences supported by sufficiently high number of clusters. In our
experiments, we clustered a set of 1,000 initial correspondences into 50 clusters.
Figure 3 presents an example of two correspondence clusters obtained for a cat
model. Note that, knowing the exact number of intrinsic symmetries, it is also
possible to cluster the correspondences into the number of the symmetries plus
one cluster. The sign sequences induced by those clusters will reflect the possible
alignments of the two shapes.
The sign sequence estimation algorithm is summarized below.

(1) Coarse correspondence detection: for each z € X, find its corresponding point
using

y = argmin [[[f* ()] = [F* @)l (27)
yey

Primary correspondence Symmetrical correspondence

Fig. 3. Correspondence clustering example.
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(2) Clustering: construct a matrix A

Apin = |dx (T, xn) — dy (@™ (Xm), ™ (x0))], Vam,z, € X. (28)

Apply to A MDS and K-means clustering to obtain J clusters of correspon-
dences. We denote the set of clusters by {C;}7_;.

(3) Sign sequence estimation: for each cluster, estimate the sign sequence S7 it
induces by

Si=argmin Y [ f¥(@) - S fy W], 1<k<K. (29)
=t @yec

Select the sign sequences induced by the highest number of clusters, according
to the number of the intrinsic symmetries of the shape.

5.4. Discretization of the Laplace—Beltrami operator

In this work we used the cotangent weight scheme for the Laplace-Beltrami oper-
ator discretization, proposed by [Pinkall and Polthier (1993); Meyer et al. (2002)],
with Neumann boundary conditions, to better account for small holes in some of
the shapes we worked with. As was noted by Reuter et al. [2006], the Laplace-
Beltrami operator calculated with Neumann boundary conditions is less altered by
insertion of small holes than when Dirichlet boundary conditions are used. In order
to calculate the eigendecomposition of the Laplace—Beltrami operator we solved the
generalized eigendecomposition problem, as suggested by Rustamov [2007]. Differ-
ent methods for discretization of the Laplace-Beltrami operator can be found in
[Xu (2004); Reuter et al. (2006)].

6. Complexity Analysis and Results

The proposed algorithm was implemented in C++ and MATLAB®, and tested
on various nonrigid isometric shapes from the TOSCA high resolution database
[Bronstein et al. (2008)].

6.1. Complexity analysis

The algorithm consists of the following stages:

(1) Descriptors calculation. This part requires the calculation of the Laplace—
Beltrami operator with complexity O(N), where N is the number of vertices
of the shape. The high-resolution shapes we tested the algorithm on had 27K
to 52K vertices. The eigendecomposition of the Laplace—Beltrami operator was
efficiently performed using the ARPACK package (available within MATLAB).
The worst performance complexity is O(N?).

(2) Sign sequence estimation. First, we subsample the shapes at N7 = 1000 vertices,
using the farthest point sampling algorithm [Gonzalez (1985); Hochbaum and
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Shmoys (1985)], and estimated the geodesic distances between them using the
fast marching method [Kimmel and Sethian (1998)]. The overall complexity of
the subsampling is therefore O(N; N log N). In order to reduce the calculation
time, we could simplify the meshes prior to the subsampling [Garland (1999)],
or approximate the distances using a fast approximation method that exploits
parallel architectures [Weber et al. (2008)]. Since the subsampling is not a part
of the proposed matching algorithm, we did not include it in the calculation
times presented in Table 1. The coarse correspondence detection, the clustering
using MDS and K-means, and the sigh sequence calculation can be performed
in O(JN?), where J is the number of clusters.

The highest complexity stage of the algorithm is solving the quadratic program-
ming problem. It has been shown in [Pardalos et al. (1994)] that the quadratic
assignment problem, or integer quadratic problem , is N P-hard. Hence, there
exists no algorithm that can calculate the exact solution for the above optimiza-
tion problem in polynomial time, unless we exploit some additional properties
of the shapes’ structure, e.g., as suggested in [Wang et al. (2010), and Raviv
et al. (2011)]. We leave the discussion of possible approximation techniques
to future research. In this work we used the mixed integer quadratic program-
ming (MIQP) solver to approximate the solution of the quadratic problem. The
MIQP solver is distributed as a part of the hybrid toolbox by Bemporad [2004].
Its calculation time is exponential in the number of variables, due to branch-
and-bound method it employs. Therefore, the number of correspondences we
were able to find was relatively small (it was chosen so that it would be pos-
sible to solve the IQP problem in reasonable time). We subsampled 20 points
from one shape, and 40 candidate corresponding points from the second shape,
using farthest point sampling with random seed point, and solved the optimiza-
tion problem (11) with constraints given by Eq. (8), thus obtaining a total of
20 correspondences. As we consider all possible correspondences between the
20 and 40 points sampled from the two shapes, respectively, the order of the
points in the two sets is not important. This subsampling, however, affects
the accuracy of the matching, in terms of proximity of the matched points
and the true correspondences — the denser the subsampling is the more accu-
rate the obtained correspondences potentially are. According to [Memoli and
Sapiro (2005)], the Loo-norm of the geodesic distance differences converges to

Table 1. Calculation time, in seconds, for different mod-
els from the TOSCA database, on a laptop with Intel Core
2 Duo T7500 processor and 2 G Bytes memory.

Model #tvertices Total 1QP 1QP (%)
Human 53K 256.7 222.3 86.6
Horse 19K 241.9 222.5 92.0
Cat 28K 241.3 222.0 92.0

Hand K 142.3 110.9 78.0
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the Gromov—Hausdorff distance as the sampling is refined, with an approxima-
tion error bounded by the sampling rate. In the future research we would like
to extend their result for the problem we formulated.

Other optimization techniques can be used to approximate the solution
of the above IQP, for instance GMDS-like continuous optimization tech-
niques, or discrete optimization algorithms developed for labeling problems,
e.g. [Torresani et al. (2008)]. In particular, the GMDS algorithm requires good
initialization, and thus it can be used for refinement of correspondences found
by the proposed method, or for adding more correspondences. In this work we
used the general integer quadratic solver, as described above, and we intend to
experiment with different solvers in the future.

Table 1 presents typical algorithm calculation times. The column named “Total”
presents the total computation time, and the column “IQP” — computation time of
the IQP solver. The rightmost column, named “IQP (%)”, presents the computation
time of the IQP solver, as a fraction of the total calculation time. Note that the
first three results in Table 1 correspond to shapes with two intrinsic symmetries,
therefore two quadratic problems were solved for each. Future attempts to improve
the algorithm must include a thoughtful analysis of the quadratic optimization
problem, and suggestions for reducing its complexity.

6.2. Correspondence detection

We tested the proposed algorithm on shapes that underwent different types of
transformations.

Rigid transformations: both the Laplace-Beltrami operator and the geodesic
distances remain constant under rigid transformations, therefore in this case the
matching accuracy is determined by the subsampling and by the accuracy of
the approximation of the quadratic problem solution. We empirically examined
the effect of the sampling on the correspondence accuracy by matching two shapes
differing by rigid transformations, and sampled using the farthest point sampling
algorithm with random initial sample choice. Figure 4 presents the correspondence
obtained with the proposed method. The sampled points are shown with small
spheres. The shape on the right was subsampled denser than the left shape, and
the matched points were connected by lines. It can be seen that the algorithm
converged to a local minimum, which is due to both the subsampling and the
approximation of the IQP solution. Note that the subsampling affects the accuracy
of our matching algorithm in all the following settings as well.

Different sampling and triangulation: the algorithm succeeded to match models
with different number of vertices and different triangulations. It can be explained
by the fact that both geodesic distances and eigenfunctions of the Laplace—
Beltrami operator approximations that we used remain approximately constant
under this kind of change in shape representation. Figures 5(a) and 5(b) show the
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Fig. 4. Correspondence results obtained for two shapes differing by rigid transformation, and
sampled using the farthest point sampling algorithm with random initialization.

correspondence detected between the shapes having vertex number ratio of approx-
imately 1:2 and 1:10, respectively.

The correspondence obtained for pairs of isometric shapes from the TOSCA
database are shown in Figs. 6-10. Figures 6-8 and 10 show both primary and
symmetrical correspondence results, as all these shapes have exactly one intrinsic
symmetry. The results presented in Fig. 10 were calculated using the commute time

(a) (b)

Fig. 5. Correspondence results obtained with the proposed method for a human body with
different number of vertices and triangulations. (a) A model with 25K vertices vs. original model
(53K vertices) and (b) A model with 5K vertices vs. original model.
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distances [Qiu and Hancock (2007)], and are similar to those obtained with geodesic
distances (Fig. 7). Figure 9 shows two examples of correspondences obtained for
hand shapes.

In order to be able to match shapes that differ by scaling, we normalized the ver-
tices of the two shapes to obtain equal maximal geodesic distances for both shapes.
Other descriptors and metric can be employed here as well: e.g., the Global Point
Signature [Rustamov (2007)], which is invariant to uniform scaling of the surface,
and diffusion scale-space distance described in [Bronstein and Bronstein (2010)],
respectively. Figure 11 presents the correspondence detected between shapes that
differ by both isometric transformation and scaling.

Primary correspondence Symmetrical correspondence

Fig. 6. Correspondence results obtained with the proposed method for a cat shape.

Primary correspondence Symmetrical correspondence

Fig. 7. Correspondence results obtained with the proposed method for a human shape.
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Primary correspondence Symmetrical correspondence

Fig. 8. Correspondence results obtained with the proposed method for a horse shape.

Primary correspondence Symmetrical correspondence

Fig. 10. Correspondence results obtained with the proposed method, using commute time dis-
tances to calculate the pairwise dissimilarity.
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Primary correspondence Symmetrical correspondence

Fig. 11. Two correspondence result obtained for shapes at different scales.

Algorithm evaluation on the SHREC’10 benchmark: additional results of
the algorithm performance can be found in [Bronstein et al. (2010)], presenting
the algorithm evaluation on the SHREC’10 robust correspondence benchmark. The
benchmark included shapes that underwent various types of transformations: iso-
metric and topological transformations, insertion of microholes and big holes, scal-
ing, local scaling, additive Gaussian noise, shot noise, and down sampling. Each
one of the transformations was presented at five different strengths. The algorithm
performance was evaluated based on the quality of the correspondence it provided.
That is, for each pair of shapes, denoted here by X and Y, the algorithm provided
a set of M < |Y| correspondences C(X,Y) = {(zk,yx) }}.,. Those correspondence
were compared to the groundtruth correspondence set as Co(X,Y) = {(z},, yk)}‘,g;ll,
in the following manner

M
1 Z /
D(C»CO) = M dX (xkta xk)? (30)
k=1

where dx is the geodesic distances measured on the shape X . The results (see Tables
3 and 4 in [Bronstein et al. (2010)]) indicate that the proposed method is robust
to isometric transformations, holes, global scaling, sampling (the cotangent weight
scheme), and moderate noise. As expected, since neither the Laplace-Beltrami oper-
ator nor the geodesic distance measure is invariant to changes of topology or local
scale, the algorithm performs poorly for those transformations.

To compare the performance of the proposed method with the GMDS algo-
rithm (used with geodesic distances), we summarized the averaged values of the
correspondence errors D(X,Y") in Table 2. The results show that in both settings
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Table 2. SHREC’10, algorithm performance comparison: average geodesic distances from
the groundtruth correspondence.

Transformation strength

Algorithm 1 <2 <3 <4 <5

GMDS 39.92  36.77 35.24 3740 39.10
The proposed method, cotangent weight scheme  15.51  18.21 22.99 25.26 28.69
The proposed method, graph Laplacian 10.61 1548 19.01 23.22 23.88

the average performance of the proposed method is better than that of the GMDS
algorithm, for all transformation strengths.

For a more detailed description of the SHREC’10 correspondence benchmark,
the compared algorithms and the comparison results the reader is referred to
[Bronstein et al. (2010)].

6.3. Combined dissimilarity vs. other dissimilarity measures

In this section, we would like to present an empirical evidence for the fact that
minimizing the proposed combined dissimilarity measure Dis(P) produces better
correspondence than minimizing each of its parts (linear and quadratic) separately.
For this purpose, we conducted the following experiment: we compared the cor-
respondence obtained by minimizing the dissimilarity measure Dis(P), which we
denote by Fj, with correspondences obtained by

(1) Minimizing the linear part of the dissimilarity Dis(P) (Eq. (6)), thus only min-
imizing the difference between the pointwise surface descriptors.

(2) Minimizing the quadratic part of the dissimilarity Dis(P) (Eq. (6)), thus only
minimizing the difference between the metric structures of the shapes. This
matching problem formulation is similar to that used in [Memoli and Sapiro
(2005); and Bronstein et al. (2006)], and thus is likely to suffer from the same
problem, namely convergence to a local minimum without proper initialization.

(3) Using the combined dissimilarity measure Dis(P), with different surface descrip-
tors. That is, we constructed the surface descriptors using the absolute values
of the eigenvectors of the Laplace-Beltrami operator, thus we had only one set
of descriptors for each shape.

Figure 12 shows the primary correspondences obtained as described above, for
two shapes of a cat. We suggest two types of evaluation of the obtained corre-
spondence quality: numerical and visual evaluation (Fig. 12). For the numerical
evaluation we calculated three dissimilarity measures, for each one of the obtained
correspondences: the combined dissimilarity Dis(P) given by Eq. (6), linear dis-
similarity Dis)(P), and quadratic dissimilarity Disq(P). The results can be found
in Table 3. Naturally, the correspondence obtained using the proposed method is
the most accurate in terms of Dis(P). The correspondence obtained by minimizing
the linear part of the dissimilarity measure, Disj(P) is very similar to Fj, but is
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Fig. 12.  Correspondences obtained by minimizing different distortion measures: (a) combined
distortion measure, denoted by Pj; (b) descriptor based distortion; (c) metric structure based dis-
tortion; and (d) combined distortion with descriptors constructed of absolute values of eigenvectors
of Apr.

less accurate in terms of pairwise point relationships Disq (P). Since in this case we
do not have to solve the quadratic problem, its computation time is the shortest.
The correspondence obtained by minimizing the quadratic part alone is clearly
incorrect. We think it is the result of the minimization algorithm getting stuck
at a local minima, with high dissimilarity values. The calculation time is also the
longest for this type of optimization. The fourth correspondence is the closest to Py
in terms of the dissimilarity Dis(P). The main disadvantage of using the absolute
values of the eigenvectors as the descriptors is the fact that one can only find a

Table 3. Dissimilarity values Dis(P), Dis;(P), and
Disq(P) calculated using the correspondences obtained
using the four methods described in Sec. 6.3.

Evaluation measure

Minimized dissimilarity =~ Dis)(P) Disq(P) Dis(P)

Dis(P) 1.48 7.18 8.66
Dis;(P) 1.28 8.37 9.66
Disq(P) 9.44 10.49 19.93

Dis(P), with ||¢|| 1.62 7.64 9.26
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single correspondence this way. Thus, the descriptors calculated using the absolute
values of the eigenvectors should be considered when one is interested in a single
correspondence, either primary or symmetrical one.

7. Conclusions

The paper presents a general framework for finding correspondences between non-
rigid isometric shapes. We formulated the correspondence detection problem as
a minimization of dissimilarity between pointwise surface properties and pairwise
structures. We described a method for construction of isometry invariant surface
descriptors based on eigendecomposition of the Laplace-Beltrami operator. Those
descriptors, coupled with geodesic distances were used to calculate the dissimi-
larity measure. We also discussed the problem of correspondence ambiguity that
occurred when matching intrinsically symmetric shapes. We showed that by employ-
ing the above surface descriptors we could find several possible correspondences
between the shapes. We then demonstrated the algorithm’s performance for dif-
ferent types of transformations, including isometric transformations, scaling, and
remeshing.

One of the current limitations of the proposed method is the inability to cope
with complex symmetry groups, that are represented by rotational symmetries in
the Laplace-Beltrami eigenfunction space, as well as the problem of coping with
eigenfunction switching. The algorithm can also benefit from a more efficient solu-
tion of the minimization problem, which currently constitutes the bottle-neck of the
algorithm’s computational complexity. This also requires severe subsampling of the
shapes, thus affecting the matching accuracy. The possible improvements in this
direction include utilizing the problem structure to diminish the space of possible
solutions, and applying continuous relaxation techniques to speed up the mini-
mization. Future work may also include extending the algorithm to handle other
important cases of shape matching, such as partial shape matching, and matching
in the presence of topological and local scale changes.
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