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Abstract. The ubiquity of the Laplace-Beltrami operator in shape anal-
ysis can be seen by observing the wide variety of applications where it has
been found to be useful. Here we demonstrate a small subset of such uses
with their latest developments including a scale invariant transform for
general triangulated meshes, an effective and efficient method for denois-
ing meshes using Beltrami flows via high dimensional embeddings of 2D
manifolds and finally the possibility of viewing the framework of geodesic
active contours as a surface minimization having the Laplace-Beltrami
operator as its main ingredient.
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1 Introduction

The Laplace-Beltrami operator is a generalization of the Laplacian to non-flat
Riemannian manifolds. The Laplacian operator appears in differential equations
describing various physical phenomena, such as heat diffusion, wave propagation,
etc. In computer vision it has been used extensively, for example for blob and
edge detection, or image smoothing. When working with cruved manifolds, such
as 3D shapes or even images represented as surfaces in 3D or 4D, like volume
images, MRI or CT, we need a general representation of the Laplacian opera-
tor, such that it will take into account the non-trivial geometry of the manifold.
There are many instances in the field of shape analysis where various types of
metrics play an important role. The common approach presented in this arti-
cle is to view the problem within a manifold processing framework, and use an
appropriately defined metric in order to calculate the Laplace-Beltrami. Both
heat diffusion over a surface as well as minimal surfaces are direct applications
of the operator. More advanced methods involving this ubiquitous operator in-
clude the generation of various shape descriptors, diffusion distance definition,
isometry invariant embedding, to name just a few. In this paper we analyze sev-
eral such methods from the point of view of manifold processing and illustrate
their inherent inter-connectivity.
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2 Beltrami patch denoising

The Laplace-Beltrami is the generalization of the Laplacian on Riemanian man-
ifolds. It has been shown [25] that image denoising can be effectively formulated
by considering an image to be a 2D manifold embedded into a higher dimensional
spatial-spectral space such as {x, y,R,G,B}. This embedding can then be tra-
versed iteratively using the so called Beltrami flow which generates a scale space
over the manifold and leads to noise reduction of the image while preserving
relevant features such as edges.

More recent papers [23][28] have extended this approach by embedding the
image manifold into a so called patch-space. The improved denoising capacity of
these techniques, as well as their greater generality, suggests that the Beltrami
flow is indeed well suited for dealing with the problem of depth map and image
denoising. An example of the smoothing property of the Beltrami patch flow can
be seen in Fig. 1.

Fig. 1. Top row: Face with artificial Gaussian noise σ = 10, denoised using Beltrami
patch denoising PSNR = 42.45, original face. Bottom row: Respective mean curvature
of each face. It appears that despite the disruptive noise, the denoising process retains
the main features present in the face.

2.1 Mathematical background

We consider a height field I to be a 2D Riemannian manifold embedded in a
higher dimensional space. We thus define the patch-space mapping P : Σ →
M ⊆ Rn(2w+1)2+2 such that

P (x, y) =
(
x, y,

{
Ik (x+ i, y + j)

})
, (1)
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for i, j = −w, .., w, k = 1, .., n where w ∈ N is the window size and n is the
number of channels we use. For the case of a single height field n = 1, however
if we were provided with a set of registered scans of a particular surface, n
could represent the number of scans. The manifolds Σ and M are equipped with
metrics G and H respectively. We require that lengths between corresponding
points measured on each manifold are the same. For that end, we write that

ds2 =
(
dx dy dIki,j

)
H

 dx
dy
dIki,j

 = (dx dy)G

(
dx
dy

)
. (2)

where Iki,j is the compact form for
{
Ik (x+ iw, y + jw)

}
. In reality, the coordi-

nates x and y do not possess the same physical measure as the intensity values
of the height field so we need to introduce a scaling factor into the patch-space
metric given by

hpq =

{
δpq

β2δpq

1 ≤ p, q ≤ 2

2 < p, q ≤ n (2w + 1)
2

+ 2
, (3)

where δpq is the Kronecker delta. We can now use the chain rule dIki,j = β2Ik
i,jxdx+

β2Ik
i,jydy from which it follows that when we pullback the metric from the em-

bedding the induced metric tensor is given by

G =

(
1 + β2

∑
i,j,k I

k2
i,jx β2

∑
i,j,k I

k
i,jxI

k
i,jy

β2
∑
i,j,k I

k
i,jxI

k
i,jy 1 + β2

∑
i,j,k I

k2
i,jy

)
. (4)

Using this metric we define a measure S on the manifold. For a Euclidean em-
bedding in M , S is none other than the area of the surface as measured in
Σ

S [Σ,G] = Area ∝
∫∫ √

det(G)dxdy, (5)

where the proportion is up to a scale as a result of the non-unity coefficients of
the diagonal entries of H. There is a more general version of the above measure
called the Polyakov action which can be useful for non-Euclidean embeddings
and details of its application to the Beltrami framework can be found in [25]. We
minimize Eq. (5) using variational calculus and then multiply by g−1/2 which is
permitted through the freedom of paramaterization. We arrive at

∆gI
k
i,j =

1
√
g

div
(√
gG−1∇Iki,j

)
= 0. (6)

The left hand operator is recognized to be the Laplace-Beltrami operator and we
can now compactly write the reformulation of the Beltrami flow in pach space
as

It = ∆gI. (7)
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2.2 Method and results

The Beltrami flow in patch-space derived above can produce efficient and plau-
sible denoising schemes in natural images. The flow is performed by a novel
explicit update scheme. We fix the number of iterations and find the optimal β
for a given σ in order to maximize the quantative efficacy of the process as mea-

sured by the Peak Signal to Noise Ratio PSNR = 10log10

(
1/E

[
(Iest − I)

2
])

across a wide range of different representative images. σ is the noise level as-
sumed to be present in the image. It has been empirically observed that these
two variables have a surprizingly simple relationship for natural images as seen
in Fig. 2.

Fig. 2. Left: Example of PSNR as a function of β−2 with a typical global maximum.
Right: Linear relationship between the logarithms of σ and β−2. Error bars indicate
one standard deviation from the mean over a set of different images.

Accurate denoising of range images is often the first stage in 3D reconstruc-
tion pipelines that stitch depth images together to form a solid model and it is
thus imperative that this process be fast and efficient. In our naive Matlab im-
plementation we use an integral image and unit weighting of neighbouring height
values to speed up the calculation of the flow update for each iteration. Further-
more, the diffusion update of every pixel in an image is independent of every
other for a given iteration in our explicit scheme. This implies that an optimized
implementation would need to take advantage of this inherrent parallelism and
significant speed improvements could be expected. For implementation details
of the method itself see [28].

Point clouds and meshes are often assumed to have noise which is Gaussian
and that is offset along the normal direction to the true surface at every vertex
location. In contrast, the noise model for range scanners is mainly observed to
be offset in the direction of the capturing device’s focal point. Furthermore the
noise is not Gaussian in nature and also includes areas with missing data. This
presents a significant hurdle for state of the art image denoising algorithms due to
the fact that they are mostly tuned for optimal removal of additive white noise.
A case in point is BM3D [13] to which we compare Beltrami patch denoising on
a depth map obtained from a real scanner in Fig. 3.
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Fig. 3. Far left: Original noisy scan. Top row: BM3D for σ = 5 and σ = 20. Bottom
row: Beltrami patch for σ = 5 and σ = 20.

Together with the efficiency of our method the Beltrami patch flow has an
additional desirable property in that it can be tuned to eliminate weak high
frequency structures. This is especially relevant for a variety of structured light
scanners which tend to inject artifacts along the boundaries of the projected light
patterns of the scanner. These artifacts can be observed as horizontal wrinkles
in Fig. 3 and are faithfully preserved by BM3D whereas our method removes the
artifacts while leaving the main components of the scan intact.

In this section we have illustrated the applicability of the Beltrami patch
flow to height fields. One extension of this approach which is currently being
investigated is how to apply the technique onto general meshes and point clouds.
These data structures require a somewhat different treatment and a variety of
new techniques are currently being developed by researchers to better understand
and manipulate these discretized manifolds. With this in mind we now turn our
attention to a new metric for use on triangulated meshes which is invariant to
local changes in scale.

3 Invariant decomposition of the Laplace-Beltrami
operator

In [26] it was argued that the Laplace-Beltrami operator and the corresponding
heat operator acquire invariant properties when choosing an appropriately in-
variant metric. This observation was later exploited to construct an equi-affine
invariant Laplace-Beltrami operator in [21] from which an invariant diffusion
distance was extracted, and more recently in [1] where a scale invariant metric
for surfaces was introduced.

At the other end, the standard Laplace-Beltrami operator’s eigen-functions
were used as a natural basis for shape representation, analogous to the Fourier
basis in classical signal processing [16, 17]. We follow [21] and show how the re-
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sults of [1] can be incorporated into the axiomatic world of shape processing.

One of the useful properties of the Laplace-Beltrami is that the operator
admits a spectral decomposition. In this section we show how a new metric
coupled with a discrete version of the Laplace-Beltrami and its eigenfunctions
can be used to produce locally scale invariant signatures of shapes.

3.1 Introduction

Consider S(u, v) a parametrized surface S : Ω ⊂ R2 → R3. The length of a
parametrized curve C in S can be measured using a general parametrization p
with

l(C) =

∫
C∈S

ds =

∫
C

|Cp|dp =

∫
C

|Suup + Svvp|dp

=

∫
C

√
|Su|2du2 + 2〈Su, Sv〉dudv + |Sv|2dv2, (8)

from which we have the usual metric definition of infinitesimal distances on a
surface

ds2 = gijdω
idωj , (9)

where we used Einstein summation convention, ω1 = u, ω2 = v and gij =
〈Sωi , Sωj 〉.

Using this convention and given a metric G on a manifold, we write the
Laplace-Beltrami operator as

∆Gf =
1
√
g
∂i
(√
ggij∂jf

)
, (10)

where g is the determinant of G, gij =
(
G−1

)
i,j

, and ∂i is the derivative with

respect to the ith coordinate.
The spectral theorem applied to the operator ∆g states that it admits a

spectral decomposition, i.e. an orthogonal eigenbasis {φi, i ∈ Z} and a set of
eigenvalues {λi, i ∈ Z} where

∆gφi = λiφi, 〈φi, φi〉 = 1, ∀i ∈ Z. (11)

This spectral decomposition has been extensively used for shape analysis.
Diffusion geometry was introduced in [2] and refined in [12]. It uses the Laplace-
Beltrami operator ∆g of the surface as a diffusion or heat operator. The heat
profile on the surface from a source located at s, after heat has dissipated for
time t, is given by the heat kernel signature (HKS)[27, 6]

HKS(s, t) =
∑
i

e−λitφ2i (s) (12)
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where φi and λi are the corresponding eigenfunctions and eigenvalues of ∆g,
that satisfy ∆gφi = λiφi. The diffusion distance is then defined as

d2g,t(s, s
′) = ‖hs,t(ŝ)− hs′,t(ŝ)‖2g

=

∫
S

(hs,t(ŝ)− hs′,t(ŝ))2da(ŝ)

=
∑
i

e−2λit(φi(s)− φi(s′))2. (13)

The choice of an appropriate metric that stays invariant to certain classes of
deformations is important in the context of shape analysis. Several distances
have been used, such as Euclidean [11, 3], geodesic [14, 19, 15, 18], diffusion [8],
and affine invariant versions thereof [22] to compare and match between shapes.
Yet another example is the scale invariant HKS [9] which is a non-linear function
of the HKS. In order to be robust to local scale changes and isometries the
following local scale-invariant isometric metric was proposed

g̃ij = |K|〈Sωi , Sωj 〉, (14)

so that
dτ2 = |K|

(
〈Su, Su〉du2 + 2〈Su, Sv〉dudv + 〈Sv, Sv〉dv2

)
. (15)

It is a similarity (local scale + isometry) invariant arc-length, where K is the
gaussian curvature.

3.2 Experimental results

To demonstrate the robustness of the scale invariant metric with respect to lo-
cal scale transformation, we first consider the shapes shown in Fig. 4. We then

Fig. 4. Left to right: A centaur and its local scale transformed version. Details preser-
vation for the coordinates reconstructed from the 1000 first eigenvectors of the Laplace
Beltrami decomposition for the regular metric and the scale invariant metric.

present the profile of the heat kernel signature as a function of time (see Eq.
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(12)) at three different points, the left hand finger tip, the right hand one, and
the horseshoe of the front left leg as shown in Fig. 5. Another experiment that

Fig. 5. Scaled heat kernel signatures for the regular metric (bottom), and the invariant
version (top). The blue circles represent the signatures for three points on the original
surface, while the red plus signs are computed from the deformed version. Using a
log-log axes we plot the scaled-HKS as a function of t.

allows us to understand the importance of an invariant metric is done by the
following eigen reconstruction of a shape. The eigenbasis of the shape has been
studied in [17] and [16]. We compute the spectral decomposition of the Laplace-
Beltrami with respect to both usual and scale invariant metric and compute an
approximation of the original shape by projecting the coordinates of the shape
on the first one thousand eigenvectors in that basis. We notice that the local
scale invariant Laplace-Beltrami has a spectral decomposition that preserves de-
tails at all scales, and can be useful not only to analyze a group of shapes with
local scale transfomations but also shapes whose small details are important as
shown in Fig. 4. In the last experiment depicted in Fig. 6 we applied the GMDS
algorithm [7] using local scale invariant diffusion distance to compute the corre-
spondence between an armadillo and its scaled version

The Laplace-Beltrami’s ubiquity can be seen not only in its application to
shape understanding but also to the field of computer vision where its tendency
towards minimal surfaces can be elegantly linked with the classic problem of
segmentation through the geodesic active contours model.
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Fig. 6. Correspondences between the Armadillo and its local scale tranformed version
using GMDS with the scale invariant metric.

4 Geodesic active contours and the Laplace-Beltrami
framework

In this section the Laplace-Beltrami operator and the flow towards minimal
surfaces that it generates is shown to be intimately related to the Geodesic
Active Contours (GAC) model for image segmentation [10]. Related work include
the papers by Bresson et al. [5], who showed how to obtain the GAC flow by
minimizing a weighted Polyakov action, and Bogdanova et al. [4], who showed
similar results for embedding spaces other than 3-D Euclidean space. Sochen
et al. [24] examined the image filtering problem, and showed that there existed
an intimate relationship between the PDE-based geometric approaches, derived
from minimizing the Polyakov action with an appropriate metric, and non-linear
filters of robust statistics.

We proceed by briefly describing the two frameworks - the geodesic active
contours and the generalized minimal surface flow, and then provide a formula-
tion in which their relationship becomes evident.

4.1 Geodesic active contours

Geodesic active contours were introduced for object boundary detection using
active contours evolving in time according to the intrinsic measures of the image.
In [10] it was shown that curve evolution using the geodesic active contours model
is equivalent to finding minimal distance curves in a Riemannian space whose
metric is defined by the intrinsic image measures mentioned above. Specifically,
these are curves that minimize the following length measure

LR :=

∫
f (|∇I (C(q))|) |C ′(q)| dq =

∫
f (|∇I (C(s))|) ds, (16)
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in a Riemannian space with the metric tensor gij = f (|∇I (C)|) δij . The function
f (|∇I (C)|) is an edge indicator function, designed to stop the active contour
when it arrives to the object boundary.

Casseles et al. used steepest-descent method to minimize the length LR (16),
and obtained the following curve evolution flow

∂C(t)

∂t
= (f(I)κ−∇f ·N)N , (17)

where κ is the curvature of C, and N is its unit inward facing normal.
The level set formulation [20] of the geodesic problem (17) is given by

∂u

∂t
= |∇u|div

(
f(I)

∇u
|∇u|

)
= f(I) |∇u|div

(
∇u
|∇u|

)
+∇f(I) · ∇u, (18)

where u(x, y, t) is the level set function of the evolving curve - C(x, y, t) =

{(x, y) : u(x, y, t) = 0}, and κ = div
(
∇u
|∇u|

)
gives the curvature of the level sets

of the function u.
The level set function flow in Eq. (18) can be interpreted as a generalized

minimal surface flow. In order to show this we will use the methodology described
by Sochen et al. in [25], which we will review briefly in the following section.

4.2 Generalized minimal surface flow

Let us treat the level set function u(x, y) as a two-dimensional surface embedded
in a 3-dimensional space. As in Sec. 2 we define such an embedding by the map
X : Σ →M , where Σ denotes a 2-D manifold Σ with local coordinates (σ1, σ2),
and M denotes the 3-D embedding space M . Explicitly, X is written as X =(
X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)

)
. Both manifolds Σ and M are equipped

with metric tensors, gµν(σ1, σ2) and hij(x
1, x2, x3), respectively. The map X

and the metric hij can be used to construct the metric on Σ

gµν(σ1, σ2) = hij(X)∂µX
i∂νX

j . (19)

Here we keep the Einstein summation convention, following the original work
of [25]. Next, the following weight functional can be associated with the map
X : Σ →M

S
[
Xi, gµν , hij

]
=

∫
dmσ

√
(g)gµν∂µX

i∂νX
jhij(X), (20)

where gµν is the inverse of the metric gµν (that is gµγgγν = δµν), and g is the
determinant of {gµν}. This weight functional is called Polyakov action, and can
also be viewed as a generalized area measure. A particular case of the Polyakov
action has already been shown in Sec. 2, Eq. (5).
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The minimal weight map (embedding) X can be obtained using steepest-
descent. The gradient of the Polyakov action with respect to the embedding
is

− 1

2
√
g
hil

δS

δX l
=

1
√
g
∂µ
(√
ggµν∂νX

i
)

+ Γ ijk∂µX
j∂νX

kgµν (21)

In order to find the minimal measure embedding, Sochen et al. [25] used the
following gradient descent flow

Xi
t = − 1

2
√
g
hil

δS

δX l
. (22)

We note that the gradient (21) was obtained by multiplying the Euler-Lagrange
equations of (20) by a strictly positive function and a positive definite matrix,
that together were called a pre − factor. It does not change the minimum,
and produces a geometric parameterization-invariant flow. We will see that the
pre-factor needed to produce the GAC flow will be somewhat different, stem-
ming from the different geometry of the problem. We can also see that the first
term in the right-hand side of the Eq. (21), 1√

g∂µ
(√
ggµν∂νX

i
)

is exactly the

Laplace-Beltrami operator acting on the embedding X, denoted above by ∆g.
The second term includes the Levi-Civita connection coefficients Γ ijk, that de-

scribe the geometry of the embedding space. When M = R3 with Euclidean
metric, hij = δij , the second term vanishes, and the flow becomes Xt = ∆gX,
as seen in the previous sections.

4.3 Back to GAC: level set formulation as a flow toward minimal
surface

Next, we show that the level set geodesic active contour flow in Eq. (18) can be
obtained by minimizing a certain generalized area measure. First, let us choose
X that maps a 2D Euclidean space (σ1 = x, σ2 = y) to a 3D Euclidean space,
such that

X = (x, y, u(x, y)) . (23)

The action functional we would like to study is

S =

∫∫
dxdyf(|∇I(x, y)|)

√
1 + |∇u|2, (24)

This is Polyakov action obtained by choosing the following metric tensors for
the parameter and the embedding spaces Σ and M , respectively

gµν = f(σ2, σ2) (∂µX · ∂νX) ,

hij = f(x1, x2)δij . (25)

Both gµν and hij are legitimate metric tensors, and, since (σ2, σ2) = (x, y) and
(x1, x2, x3) = (x, y, z), Eq. (19) holds.
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The metric tensor gµν written in a matrix form becomes

G = (gµν) = f

(
1 + u2x uxuy
uxuy 1 + u2y

)
(26)

The metric determinant is g = det(G) = f2
(
1 + ‖∇u‖2

)
, and

√
g = f

√
1 + ‖∇u‖2.

The inverse of the metric is

G−1 = (gµν) =
f

g

(
1 + u2y −uxuy
−uxuy 1 + u2x

)
. (27)

Next, we use Eq. (21) in order to obtain the gradient-descent flow for the
level set function component of X, namely X3 = u(x, y),

ut = X3
t =

1
√
g
∂µ (
√
ggµν∂νu) + Γ 3

jk∂µX
j∂νX

kgµν . (28)

Let us develop the two terms of the flow in Eq. (28) separately. Substituting
the expressions for

√
g and gµν into the first term of the right-hand side of the

flow in Eq. (28) produces

1
√
g
∂µ (
√
ggµν∂νu) =

1

f
√

1 + |∇u|2
· div

(
∇u√

1 + |∇u|2

)
(29)

In order to calculate the second term of the flow in Eq. (28) we must find
the expression for the Levi-Civita connection coefficients Γ 3

jk. For the metric hij
defined in Eq. (25)

Γ ijk =
1

2
hil (∂jhlk + ∂khjl − ∂lhjk)

=
∑
l

1

2

1

f
δil (∂j (fδlk) + ∂k (fδjl)− ∂l (fδjk))

=
1

2

1

f
(δik∂jf + δji∂kf − δjk∂if) (30)

Therefore

Γ 3
jk =

1

2f
(δ3k∂jf + δj3∂kf) , (31)

or, in a matrix form,

Γ 3 =
1

2f

 0 0 fx
0 0 fy
fx fy 0

 . (32)

Finally, the second term of the flow from Eq. (28) becomes

Γ 3
jk∂µX

j∂νX
kgµν =

∇f · ∇u
f2 (1 + |∇u|2)

. (33)
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Using Eq. (29) and Eq. (33) we obtain the expression for the level set function
flow

ut =
1

f
√

1 + |∇u|2
div

(
∇u√

1 + |∇u|2

)
+

∇f · ∇u
f2 (1 + |∇u|2)

(34)

In order to obtain the GAC level set formulation we need to multiply the
above flow by a pre-factor of f2

(
1 + |∇u|2

)
. The flow obtained this way is

ut = div

f ∇u√
1 + |∇u|2

√1 + |∇u|2 (35)

We see that, up to the additional constant 1, this is exactly the flow of the
level set function of the geodesic active contours model from Eq. (18). Since the
surface definition in Eq. (23) is arbitrary, we can choose the aspect ratio between
du and dx, dy to be as large as we want. Thus 1 can be viewed as ε that vanishes
upon the right selection of u.

Essentially what we have shown is that the geodesic active contours method
in its level set formulation can be regarded as a minimal surface detection prob-
lem that minimizes the Polyakov action functional, and in doing so we have
determined the related metric tensors for both parameter and embedding spaces.

5 Conclusions

We have shown the links between a patch based heat flow with the Beltrami
operator as a diffusion filter, an invariant metric that was introduced into the
operator yielding invariant geometries for shape matching and synthesis, and the
geodesic active contour model expressed as a Beltrami diffusion equation. The
Laplace-Beltrami operator acting on data in one form or another can be seen as
one of the most fundamental operators in the analysis and processing of images
and shapes. By manipulating the metric, the action and the filtering processes
we have observed its applicability across a wide range of problems which further
illustrates the inherent ubiquity of the operator. We believe that the Laplace-
Beltrami viewpoint in this field has the potential to enable and enhance the
understanding and exploration of images and shapes.
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