
2012 IEEE 27-th Convention of Electrical and Electronics Engineers in Israel

Patch-space Beltrami denoising of 3D point clouds
Aaron Wetzler∗

∗Faculty of Electrical Engineering
Technion, Haifa 32000, Israel

Guy Rosman†, Ron Kimmel†
†Faculty of Computer Science
Technion, Haifa 32000, Israel

Abstract—The Beltrami framework has been shown to be an
effective and efficient denoising filter for color images, treating
them as two dimensional manifolds embedded in a hybrid spatial-
spectral space. Recent work using this framework on the patch-
space of an image has demonstrated that including neighboring
pixels in the feature space can significantly improve the tech-
nique’s denoising performance. In this paper we demonstrate an
extension of the patch-space Beltrami filter to unstructured point
sets. We achieve this by extracting the neighborhood about each
point, and using the resulting canonical local frame to perform
an explicit iteration of the patch-space Beltrami flow on the
normal coordinates. As we demonstrate on real 3D data, the
resulting iterative scheme denoises the point set while preserving
the underlying manifold structure.

I. INTRODUCTION

Denoising of point clouds, or point set fairing as referred
to in the computer graphics literature, is an important post-
processing step performed on potentially noisy data obtained
from a 3D scanner. Given the drastic increase in the availability
of commodity depth cameras the research being carried out in
this field is becoming increasingly important.

There are several different solutions to the problem of
surface denoising depending on the kind of data. If the scanned
data is in the form of a depth image, then many of the
methods developed over the years by the image processing
community for the purpose of denoising of regular images
[20][11][18][1][4] are immediately applicable and require no
special treatment apart from possibly scaling the height values.

In a similar, manner many of the same algorithms have
been reformulated for use on surface data that is in the form
of triangulated meshes and unstructured point sets. Yoshizawa
[21] adapted the non-local means algorithm [1] to operate
on meshes. Similarly Fleishman [8] showed how the bilateral
filter [20][18] could be applied to meshes.

For point sets the method of moving-least-squares (MLS,
[10]) is often used to perform smoothing on scanned data.
More recently Rosman et al. [13] developed a patch-
collaborative method for point set denoising based on the state
of the art BM3D [4] algorithm.

More methods for surface fairing are based on diffusion pro-
cesses. For triangulated meshes, a common diffusion operator
is the discrete Laplace-Beltrami cotangent weights formulation
of [12], used to perform mean-curvature flow of the surface,
including extensions to implicit numerical schemes [5].

For point sets, an anisotropic smoothing process was re-
cently suggested by Lange and Polthier [9]. The method relies

on a novel formulation of the underlying surface’s Weingarten
map which they developed specifically for point clouds.

Recent efforts [14],[19] have shown that denoising of im-
ages or depth scans can significantly benefit from operating on
so called patch-space within the image. Here we demonstrate
how the Beltrami flow operating in patch-space can be used as
an anistropic diffusion process that denoises noisy point cloud
data.

In the work presented here our contributions are
• An extension of the patch-space based Beltrami method

onto unstructured point clouds.
• An exploration of the definition of patches on point cloud

data in the spirit of [13], and its use in the context of
patch-space Beltrami filtering.

• An investigation of role of normal estimation, and the
choice of robust normal estimation [7] as opposed to
PCA.

In Section II we shortly describes the Beltrami framework
and its patch-space extension. Section III describes the im-
plementation of patch-space Beltrami filtering in point clouds,
and details some of the aspects involved therein. In Section IV
we demonstrate the results of our algorithm on both real
and synthetic noise cases. Section V concludes the paper and
describes some of our future directions.

II. THE BELTRAMI FRAMEWORK IN PATCH-SPACE

We now give an overview of the patch-space Beltrami
framework. For an in-depth exposition of the mathematical
tools required, we refer the reader to standard textbooks in
Riemannian geometry [6].

The Laplace-Beltrami is the generalization of the Laplacian
on Riemanian manifolds. It has been shown [17] that image
denoising can be effectively formulated by considering an im-
age to be a 2D manifold embedded into a higher dimensional
spatial-spectral space such as {x, y,R,G,B}. This embedding
can then be traversed iteratively using the so called Beltrami
flow which generates a scale-space over the manifold and
leads to noise reduction of the image while preserving relevant
features such as edges. However an image need not represent
color intensity and as such for the following formulation
we shall consider a height map which represents the signed
distances of points above a plane. In the next section we
describe how this graph can be extracted.

We shall start by considering a height map I as being a
2D Riemannian manifold embedded in a higher dimensional



space. Similar to previous work [19] we wish to take advantage
of the information available in the neighborhood of each point.
To this end, we can lift each point into a high dimensional
space by considering not only its value but also those of its
neighbors within a fixed window known as a patch. For the
case of a height map over a discretized domain we thus define
the patch-space mapping P : Σ → M ⊆ Rn(2w+1)2+2 such
that

P (x, y) =
(
x, y,

{
Ik (x+ i, y + j)

})
, (1)

for i, j = −w, .., w, k = 1, .., n where w ∈ N is the window
size and n is the number of channels we use. For the case of
a single height field n = 1, however if we were provided
with a set of registered scans of a particular surface, n could
potentially represent the number of scans. In the following
discussion we assume n = 1. The manifolds Σ and M are
equipped with metrics G and H respectively. We require and
thus enforce that lengths measured over both manifolds are
the same. To that end, we write that

ds2 =
(
dx dy dIki,j

)
H

 dx
dy
dIki,j

 = (dx dy)G

(
dx
dy

)
.

(2)
where Iki,j is the compact form for

{
Ik (x+ i, y + j)

}
. In

reality, the coordinates x and y do not possess the same
physical measure as the intensity values of the height field
because we are working on an integer-sized grid so we need
to introduce a scaling factor β into the patch-space metric H
given by

hpq =

{
δpq

β2δpq

1 ≤ p, q ≤ 2

2 < p, q ≤ n (2w + 1)
2

+ 2
, (3)

where δpq is the Kronecker delta. We can now use the chain
rule dIki,j = β2Ik

i,jxdx+ β2Ik
i,jydy from which it follows that

when we pullback the metric from the embedding the induced
metric tensor is seen to be

G =

(
1 + β2

∑
i,j,k I

k2
i,jx β2

∑
i,j,k I

k
i,jxI

k
i,jy

β2
∑

i,j,k I
k
i,jxI

k
i,jy 1 + β2

∑
i,j,k I

k2
i,jy

)
. (4)

Using this metric we define a measure S on the manifold. For
a Euclidean embedding in M , S is none other than the area
of the surface as measured in Σ

S [Σ, G] = Area ∝
∫∫ √

det(G)dxdy, (5)

where the proportion is up to a scale as a result of the non-
unity coefficients of the diagonal entries of H. There is a
more general version of the above measure called the Polyakov
action which can be useful for non-Euclidean embeddings and
details of its application to the Beltrami framework can be
found in [17]. We minimize Eq. (5) using variational calculus

and then multiply by g−1/2 which is permitted to us through
the freedom of paramaterization. We eventually arrive at

1
√
g

div
(√
gG−1∇Iki,j

)
= 0. (6)

The left hand operator is recognized to be the Laplace-
Beltrami operator and we can now compactly write the re-
formulation of the Beltrami flow in patch-space as

It = ∆gI. (7)

The regular Beltrami flow is a mean curvature flow that
preserves intensity edges while eliminating noise. By adding
neighborhood pixels and therefore performing the flow in
patch-space the aim is to provide additional information that
will implicitly extend the weighting of an edge by providing
more support. The flow is proportional to 1√

g which acts like
an edge indicator. It slows down the smoothing of strong ridges
on the manifold and in addition accelerates the removal of
noisy areas.

III. ALGORITHM DESCRIPTION

In this section we describe one way in which the patch-
space version of the Beltrami filter can be applied to a point
cloud to perform denoising. Other possible variations on the
method are briefly described in the following subsections, as
well as in Section V.

The algorithm performs the filtering by extracting a patch
around each point in the point set, computing the flow time-
step on the patch using the patch-Beltrami filter described in
the previous section and then adjusting the current point ac-
cordingly. An algorithmic description is given as Algorithm 1.

We now proceed to describe the various substeps of the
algorithm.

A. Local neighborhood definition

In a point cloud setting we do not have the true neighbor-
hood relations for each point. We therefore define a neighbor-
hood Ni of a point pi to be the set of its k-nearest neighbors
intersected with the set of points that lie within a distance R
where distance is measured in Euclidean space using the L2

norm. The main question that arizes now is how to choose R
consistently and effectively. We will use Ni to define a support
from which we construct a local frame around pi. We note that
choosing too-big an R will cause the tangent plane estimation
to be inaccurate. However choosing R to be too small, it is
possible that the noise will dominate the chosen neighborhood
leading to an unreliable frame extraction.

In order to mitigate these problems we fix a minimum
number of nearest neighbors kmin that we would like to
have in any neighborhood. We then traverse the point cloud
and estimate the average distance rkmin

to the kthmin nearest
neighbor of every point. As in almost all denoising algorithms
we assume we have some estimate of the level of noise σ that
has corrupted the data. Ideally we would like a neighborhood



Algorithm 1 Patch-space Beltrami point set denoising
1: for iterations t = 1, 2, . . . , T do
2: for i = 1, 2, . . . , N do
3: Compute point neighborhood Ni.
4: Estimate normal direction ni.
5: Use the projection of points in Ni in the normal direction to obtain a local parameteric surface representation Ii.
6: Smooth the neighborhood’s representation using the patch-space Beltrami flow.
7: Update point i according to its change in Ii in the normal direction.
8: end for
9: end for

to span a larger domain than the strength of the signal and so
we define the neighborhood radius R to be

R = max (5σ, rkmin) , (8)

which essentially guarantees that we will have at least kmin

points in any given neighborhood. The number k of neigh-
borhood points is adjusted to reflect the value of R so we
set

k = dkmin
R2

r2kmin

e (9)

where the squared powers are a result of the very rough
assumption that points are distributed more or less evenly
per unit area of the tangent plane to each point. In practice
the value for k has to be bounded from above because the
even distribution assumption is only valid locally and often
too many points may be included in some neighborhoods.

Fig. 1. A local frame and neighborhood estimation result.

We note that the neighborhood is kept constant throughout
the all iterations. This is for computational reasons, but this
also helps avoid clustering of points together, as noted by
Lange and Polthier [9]. Figure 1 demonstrates the selection of
a local neighborhood and the accompanying choice of local
frame.

B. Frame estimation and local surface interpolation

For point pi we would like to use Ni to help us approximate
the noisy implicit surface on which pi is placed. The denoising

filter described earlier requires a grid to operate over and
as such we need to interpolate the points in Ni over a
discretized domain that spans an approximation of pi’s tangent
plane. Approximating the tangent plane requires determining
its normal vector ni. One simple and well established method
is to take the third principal component of Ni’s coordinate
matrix, performing principal components analysis (PCA) on
the local patch. PCA is a linear method and is prone to outlier
corruption. In fact the problem of robust normal estimation
based on a point’s neighborhood is non-trivial and is one of
the major influencing factors in the efficacy of any method
which requires point normals. Fleishman et al. [7] describe
a robust normal estimation procedure which we adopt and
discuss its benefits and application later on. Assuming that
we have a method to estimate pi’s normal, we define two
additional arbitrary vectors ui, vi that span the tangent plane
and are orthnormal to ni and to each other. All three vectors
are orthonormal and as such form a local tangent frame. We
use these vectors and the position of the point pi to obtain a
transformation

Ti =


uTi −(pi)u
vTi −(pi)v
nTi −(pi)n

0 0 0 1

 , (10)

which will take any point in Ni in its homogenous repre-
sentation and transform it into a canonical frame. Provided
that the surface does not fold in on itself, the points in this
new canonical frame can be interpolated over the domain
[−R,R] × [−R,R] to form a height map Ii for point pi. In
our examples we found a simple bilinear interpolation to be
sufficient. Figure 2 demonstrates the estimated patch and local
frame.

C. Patch-space update along the normal

The two previous processing steps have transformed Ni into
Ii. In order to update pi we perform a single Euler step along a
discrete version of the flow described by (7), over Ii. We then
extract the change in Ii for the central pixel, δi, as the central
pixel corresponds to pi. We update point i by the explicit step

pt+1
i = pti + δtin

t
i, (11)



where t indicates the global iteration step. When computing
the discrete flow it is important to note that the scaling factor
β from the patch-space metric H should have a fixed ratio
proportional to the dimensions of the grid and be inversely
proportional to the patch radius R because Ii’s domain was
defined to span twice the patch radius. However this is not
necessarily the case in practice so we leave β as a somewhat
flexible parameter to the method. We note that for a specific
choice of β, the height map update will result in a variant of
the mean-curvature flow. Such a flow does not preserve surface
edges as is often desired in surface processing. The choice
of a high β value, however, along with robust estimation of
the surface normals, results in a highly nonlinear flow that
preserves edges while removing surface noise.

Fig. 2. Left: An estimated local patch and local frame axes. Right: an image
representation of the projection of the patch in the normal direction. The black
frame represents the patch-space window.

D. Robust normals estimation

The efficacy of the proposed method is largely dependent
on how well we can estimate the normals at every point.
While for the results shown in Section IV, PCA-based normal
estimation was sufficiently accurate, robust normal estimation
is desirable. One such method is the method of Fleishman
et al. [7] introduced in the context of moving-least-squares
approximation.

The gist of the procedure is an iterative RANSAC-like
process that builds and tests support sets of points from a
neighborhood to try to find the normal vector with the least
number of outliers. We found that this method preserved
the corners more effectively compared to regular PCA. An
example of the difference in the results can be seen in Figure 3

IV. RESULTS

We now proceed to demonstrate the results of our method.
We implemented the main algorithm in Matlab and used some
functionality from the open source PCL library [16], such as
nearest-neighbor indexing. For all experiments we chose a grid
size of 21x21 and a window size of 7x7. In principle the grid
size should be dependent on the spacing of the data but we
found for the data in our experiments it was sufficient to leave
it constant.

Figure 4 demonstrates the removal of additive white Gaus-
sian noise from the Bust model. Noise intensity was σ = 0.01.
As can be seen, the resulting surface is quite smooth and the

Fig. 3. A comparison of PCA-based and robust normal estimation, in terms of
smoothing results. Top: Smoothing results using PCA for normal estimation.
Bottom: Results using robust normal estimation.

facial features are preserved despite the strong level of noise,
achieving results comparable to other techniques such as MLS
[10].

In Figure 5 we demonstrate the denoising of a real 3D
scan of a face, taken from a structured light scanner [15]. The
results demonstrate the robustness of our method for different
noise types, including real scanning artifacts.

Currently, our Matlab implementation is far from optimized,
and takes several minutes to run on the Bust model, with 9800
points. The parallel nature of the update step computation
makes GPU implementation seems to promise significantly
faster results. We intend to pursue this direction in the near
future.

Fig. 4. Left: The standard Bust model perturbed by Gaussian noise with
σ = 0.01 Right: The corresponding model after passing being denoised by
the proposed method. Note: The point clouds have been triangulated for the
sake of visual clarity only. The proposed method does not assume any mesh
topology or triangulation.



Fig. 5. Left: A noisy point cloud obtained from a structured light scanner.
Right: The corresponding point cloud after after passing through the Beltrami
filter operating on patch-space using the proposed method.

In all our experiments we kept the neighborhoods of each
point constant over all iterations of the algorithm. This dramat-
ically improves the run time of the algorithm and is justified
by the fact that we do not expect the neighborhood of a point
to change dramatically during the proposed denoising process.

V. CONCLUSION

In this paper we have presented a method for applying the
Beltrami filter to a point cloud using a patch-space based
iterative denoising procedure. Furthermore we have investi-
gated the impact of using a more robust frame estimation
over a neighborhood of points, compared to regular PCA, and
demonstrated that this improves the capacity of the suggested
method to restore edges. The results of the experiments are
encouraging and open the door for further research into the
application of patch and neighborhood based filtering method-
ologies in point clouds.

Several aspects of this methods are left as open questions
which we are investigating. These include different discretiza-
tions for the Laplacian operator, and influence of neighboring
patches. The choice of similarity measure between patches
may include an Iterative Closest Point fitting (ICP, [3], [2]),
as shown, for example by Rosman et. al. [13].

Finally, as mentioned before, the algorithm can be exten-
sively parallelized, as we hope to demonstrate in the near
future.

ACKNOWLEDGEMENTS

The authors would like to thank Anastasia Dubrovina and
Yonatan Aflalo for stimulating discussions. This research was
supported by the European Community’s FP7- ERC program,
grant agreement no. 267414.

REFERENCES

[1] B. C. Antoni Buades and J.-M. Morel. A review of image denoising
algorithms, with a new one. SIAM Interdisciplinary Journal, 4:490–530,
2005.

[2] P. J. Besl and N. D. McKay. A method for registration of 3D shapes.
14(2):239–256, 1992.

[3] Y. Chen and G. Medioni. Object modelling by registration of multiple
range images. Image Vision Comput., 10:145–155, April 1992.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image restoration
by sparse 3D transform-domain collaborative filtering. In J. T. Astola,
K. O. Egiazarian, and E. R. Dougherty, editors, Proc. SPIE, volume
6812, 2008.

[5] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of
irregular meshes using diffusion and curvature flow. In SIGGRAPH,
pages 317–324, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[6] M. P. do Carmo. Riemannian Geometry. Birkhäuser Verlag, Boston,
MA, 1992.

[7] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares
fitting with sharp features. SIGGRAPH, pages 544–552, 2005.

[8] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising.
Transactions on Graphics, 22(3):950–953, 2003.

[9] C. Lange and K. Polthier. Anisotropic smoothing of point sets. Comput.
Aided Geom. Des., 22(7):680–692, 2005.

[10] D. Levin. The approximation power of moving least-squares. Math.
Comput., 67(224):1517–1531, 1998.

[11] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Anal. Mach Intell, pages 629–639, 1990.

[12] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and
their conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[13] G. Rosman, A. Dubrovina, and R. Kimmel. Patch-collaborative spectral
surface denoising. Technical Report CIS-2012-03, Technion, Department
of Computer Science, 2012.

[14] A. Roussos and P. Maragos. Tensor-based image diffusions derived from
generalizations of the total variation and Beltrami functionals. In ICIP,
September 2010.

[15] O. Rubinstein, Y. Honen, A. Bronstein, M. Bronstein, and R. Kimmel.
3D-color video camera. In Computer Vision Workshops (ICCV Work-
shops), 2009 IEEE 12th International Conference on, pages 1505 –1509,
272009-oct.4 2009.

[16] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation, Shanghai,
China, May 9-13 2011.

[17] N. Sochen, R. Kimmel, and R. Malladi. A general framework for low
level vision. IEEE Trans. on Image Processing, pages 310–318, 1998.

[18] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In Proc. IEEE ICCV, pages 836–846, 1998.

[19] A. Wetzler and R. Kimmel. Efficient Beltrami flow in patch-space. In
SSVM, pages 134–143, 2011.

[20] L. P. Yaroslavsky. Digital Picture Processing. Springer Verlag New
York, Inc., Secaucus, NJ, USA, 1985.

[21] S. Yoshizawa, A. Belyaev, and H. P. Seidel. Smoothing by example:
mesh denoising by averaging with similarity-based weights. Proceedings
of International Conference on Shape Modelling and Applications, pages
38–44, 2006.


