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Abstract—Shape recovery based on shading variations of
a lighted object was recently revisited with improvements
that allow for the photometric stereo approach to serve as a
competitive alternative for other shape reconstruction methods.
However, most efforts of using photometric stereo tend to
ignore some factors that are relevant in practical applications.
The approach we consider tackles the photometric stereo
reconstruction in the case of near-field imaging which means
that both camera and light sources are close to the imaged
object. The known challenges that characterize the problem
involve perspective viewing geometry, attenuation of light and
possibly missing regions. Here, we pay special attention to the
question of how to faithfully model these aspects and by the
same token design an efficient and robust numerical solver.
We present a well-posed mathematical representation that
integrates the above assumptions into a single coherent model.
The surface reconstruction in our near-field scenario can then
be executed efficiently in linear time. The merging strategy of
the irradiance equations provided for each light source allows
us to consider a characteristic expansion model which enables
the direct computation of the surface. We evaluate several
types of light attenuation models with nonuniform albedo and
noise on synthetic data using four virtual sources. We also
demonstrate the proposed method on surface reconstruction of
real data using three images, each one taken with a different
light source.

Keywords-Photometric Stereo; Partial Differential Equa-
tions; Shape from Shading

I. PERSPECTIVE ON SHAPE FROM SHADING AND
PHOTOMETRIC STEREO

Since the seminal Shape from Shading paper by B.K.P.
Horn [11], new models have been introduced in order to
extend the range of shape recovery problems that can be
solved by Shape from Shading (SfS) methods [16], [21],
[22]. A particularly important direction of research has
been the transition from the assumption of orthographic
viewing geometry [13], [4], [12] to the more realistic one
of perspective cameras [19].

Several papers reported using Perspective SfS (PSfS)
methods applied to endoscopic image analysis [22], [21],
[16]. Deguchi et al. [16] introduced the perspective viewing
shape estimation for objects located close to the camera,
taking into account a realistic endoscopic model for close
light source illumination (i.e. ideally attached to the optical
center). Later, Prados et al. [19] studied the same formulation

under a differential point of view and, using a model based
on Partial Differential Equations (PDEs), they concluded that
their formulation for the endoscopic perspective shape from
shading problem is well-posed. A recent paper by Breuß et
al. [3] shows that there might be ambiguity in the Prados et
al. model. In fact, near-field Endoscopic Perspective (EP)
shape reconstruction remains an open problem if only a
single image is considered.

In this paper we deal with the case of calibrated Pho-
tometric Stereo (PS), where multiple images of the same
scene are taken under different illumination conditions (with
known light positions) when scanner and object are close
to each other. For a recent overview about calibrated (and
uncalibrated) PS methods see [17]. In the EP framework Wu
et al. [21] studied the multi-image EP problem by consid-
ering two light sources placed off the optical center. They
develop a model based on the radiance information obtained
by simultaneously illuminating an object with two different
light sources. They then recover the surface by considering
a single irradiance equation for the sum of Lambertian re-
flectance functions of the two different light sources. The use
of this reflectance function results in a loss of information.
In order to avoid this problem and issues related to unknown
albedo, they use a photometric calibration. Surface recovery
is performed within a variational framework that involves
high computational complexity compared to alternative di-
rect methods [14]. The shape from EP problem solved
via a PS technique using n images (EPPSn) is a problem
initially addressed by Iwahori et al. [?], Clark [?] and more
recently Migita et al. [?]. Collins and Bartoli [7] solve the
close-range PS problem with weak considerations on the
parametrization of the variables like unknown surface, light
sources and solving the problem of the light attenuation with
a-priori light calibration procedure. They also use a prior
for a reflectance model, adding patches on the inspected
object even if the surface is assumed to be Lambertian. In
particular, their mathematical formulation is based on the
usual double step procedure where an energy functional is
minimized (which allows the computation of the surface
derivatives) and thereafter the surface is recovered [9], [1].
Let us emphasize that their energy is based on the sum
of Lambertian irradiance equations and this is a sort of



contradictory procedure with respect to the scientific trend
using photometric ratios [20], [14], [5] which yield more
suitable problems. For example the ratio approach effectively
makes the problem independent from the albedo.

Recently Parot et al. [18] studied the EPPSn by using
the classic approach to PS and using a heuristic filtering
process. They solve for the normal field to the surface as if
the light sources were distant and then filter the directional
gradients depending on the frequencies. The depth map is
then computed using a multi grid solver for the Poisson
equation. The applicability of this method is very limited
since they calibrate the uniform light directions assuming
reasonable distance between the object and the scanner. This
allows to exaggerate surface features but not reconstruct the
actual surface depths.

Here, we present a new mathematical formulation for the
EPPSn by considering the endoscopic perspective presented
in [16] and using the perspective parametrization used in
[15] based on non-linear PDEs from photometric ratios.
Such an extension introduces several realistic features which
make the new model mathematically interesting. The formu-
lation of a new mathematical model based on quasi-linear
PDEs is followed by an efficient finite difference upwind nu-
merical scheme for the direct approximation of the surface.
This scheme is simple to implement, highly parallelizable
and converges efficiently. The new model we describe can
also successfully handle images with missing data. Usually
the image acquisition procedure for PS includes nuisance
factors such as occlusions and shadows. Here we do not
focus on occlusions or shadows detection, but we show that
our problem successfully reconstructs surfaces when images
have missing parts. Furthermore, a significant advantage
of our model is the direct computation of the 3D surface
without explicit computation of the surface normals for the
purpose of integration. Non-linearities resulting from our
realistic lighting model yield a normal field that depends
on the depth of the surface as well as the direction of the
light source. However, this does not pose a problem in our
framework because we avoid directly computing the normal
field and using it in the numerical scheme.

In Section II we recall a well known parametrization for
the surface under close camera observation. The new math-
ematical model is introduced in Section III where we show
the differential model including non linear light attenuation.
Section IV introduces the theoretical formulation of the new
differential approach for three images which can be easily
extended to n ≥ 3. Using this formulation we will show how
it is possible to overcome the problem of handling images
with missing regions. In Section V we solve the problem of
EPPS3 and EPPS4 when there are images with missing parts
and an unknown albedo. A portion of that section is also
devoted to the explanation of the up-wind scheme used in
the numerical tests. Finally, in Section VI the experimental
results on synthetic and real data are presented.

II. THE ENDOSCOPIC PERSPECTIVE SET-UP

In order to give all the necessary ingredients to understand
the geometry behind the model we start by considering the
parametrization of the surface Σ (see Fig. 1) given in [19]
up to an unknown function z from the image domain Ωp =
Ωp ∪ ∂Ωp to R such that:

M(x, y) = [ξ(x, y), η(x, y), ζ(x, y)] :=

[
− x

z(x, y)

f
,−y

z(x, y)

f
, z(x, y)

]
. (1)

Here, f > 0 is the focal length of the camera, ζ < −f < 0,
and the triple [ξ(x, y), η(x, y), ζ(x, y)] = [ξ, η, ζ] are the real
world coordinates (with respect to the image coordinates).
This parametrization (1) is based on the pinhole camera
model and is due to the specific perspective viewing geome-
try as seen in Fig. 1 where the camera is placed at the origin
C of the coordinate system Cξηζ (namely at the optical
center) [19].

We recall that an outgoing vector normal to the surface
Σ is

n(x, y) =
z

f2
[
f∇z(x, y), z(x, y) + (x, y) · ∇z(x, y)

]
, (2)

and since the irradiance equation depends on the unit normal,
we take n(x, y) = n(x,y)

|n(x,y)| as a unit length normal vector.
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Figure 1. In the perspective world (i.e. the image coordinate system given
by Oxyz) the light reflected at image point (x, y) comes form the real
point [ξ, η, ζ] of the surface.

We consider the well-known irradiance equation for Lam-
bertian surfaces, given by the cosine law by the following
inner product

I(x, y) = ρ(x, y)(n(x, y) · l(x, y, . . .)), (3)

where I : Ωp → [0, 1] is the image function, ρ(x, y) is the
unknown albedo and l(x, y, . . .) is the light source direction.
Let us emphasize that the light direction l incident to the
surface depends explicitly on the image points (x, y) and
on other factors (. . .) we shall specify in the next section,
since the endoscopic formulation assumes close light source
illumination.



III. A NEW CLOSE-RANGE PS MODEL

In much of the literature dealing with Perspective SfS
[19], [16], a single light source is considered to be placed
at the optical center. This assumption is unrealistic when
considering a camera close to the inspected object. Since
PS uses several light sources, we consider a considerably
more realistic placement (ξj , ηj) on the optical plane, that
is ζ = 0. The coplanarity of the sources is not a necessary
constraint but we adopt it here to simplify our formulation.
We define the light directions as

lj(x, y, z) =

[
− ξjf

z − x,−
ηjf
z − y, f

]√(
x+

ξjf
z

)2
+
(
y +

ηjf
z

)2
+ f2

=
lj(x, y, z)

qj(x, y, z)
,

(4)
where

qj(x, y, z) =

√(
x+

ξjf

z

)2

+

(
y +

ηjf

z

)2

+ f2. (5)

Let us emphasize that for this model, the light directions
depend not only on the point (x, y), but since they are
displaced from the optical center, they also depend on z.
This introduces a non-linearity that does not involve the
derivatives of z.

A. Two types of light attenuation

We now consider two different kinds of light attenuation.
The first factor is due to the reduction of light energy
proportional to the inverse squared distance between the
light source and object. The second factor of attenuation we
describe, is a result of a realistic directional lighting model
of a real SMD light. However in principle we could choose
among many different continuous attenuation models to suit
our needs.

1) Light attenuation due to distance: The standard way to
model this attenuation of the light intensity is to compute the
distance between the light source and the surface explicitly.
For this purpose, let us consider the functions r1(x, y, z) and
r2(x, y, z) as the distances between the point of the surface
[ξ, η, ζ] and the respective light source.

In this case, since the light sources are shifted with respect
to the origin, the distance function is as follows:

rj(x, y, z) = dist

(
(ξj , ηj , 0),

(
− x z

f
,−y z

f
, z

))
=

z

f

√(
x+

ξjf

z

)2

+

(
y +

ηjf

z

)2

+ f2 =
z

f
qj(x, y, z).

(6)

The attenuation factor can then be written as r−2j .

2) Radial attenuation of the light: Many existing light
sources are directional. That is to say, they are bright along
a principal direction and become less bright at angles further
from the main direction. This behavior can be observed in
Fig. 2 and can be effectively simulated by multiplication
with cos(θ)µ where µ is the attenuation coefficient and is
reminiscent of the specular model for surface reflectance.
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Figure 2. The intensity of light for a directional light source pointing
downwards.

The attenuation factor is easily computable since

cos(θ)µ(x, y, z) = (lj(x, y, z) · (0, 0, 1))µ =
fµ

qµj (x, y, z)
(7)

where lj(x, y, z) is the i-th light source placed at (ξj , ηj).
The light direction is collinear with the viewing direction
of the camera which simplifies both our formulation and
the experimental setup. Both attenuation effects can be
expressed by multiplication of the following factor

aj(x, y, z) =
fµ

r2j (x, y, z)q
µ
j (x, y, z)

=
fµ+2

z2qµ+2
j (x, y, z)

.

(8)

B. EPPS2 model

Our model for the SfEPPS2 problem considers the fol-
lowing irradiance equations

Ij(x, y) =ρ(x, y)
lj(x, y, z) · n(x, y)

r2j (x, y, z)q
µ+1
j (x, y, z)

fµ =

ρ(x, y)
lj(x, y, z) · n(x, y)fµ+2

z2qµ+3
j (x, y, z)|n(x, y)|

(9)

where

lj(x, y, z) · n(x, y) = −ξjzx − ηjzy +
z2

f
. (10)

Now, solving the EPPS2 from a mathematical point of
view consists of solving the following system of non-linear
PDEs of Hamilton-Jacobi type,

I1(x, y) = ρ(x, y)
l1(x, y, z) · n(x, y)fµ+2

z2qµ+3
1 (x, y, z)|n(x, y)|

on Ωp

I2(x, y) = ρ(x, y)
l2(x, y, z) · n(x, y)fµ+2

z2qµ+3
2 (x, y, z)|n(x, y)|

on Ωp

z(x, y) = g(x, y) on ∂Ωp

.

(11)



Our strategy to solve such a problem is to merge the
irradiance equations of (11) by noting that the non-vanishing
quantity ρ(x,y)fµ+2

|n(x,y)|z2 is present in both of them. We merge
such equations as follows

Second Equation of (11)︷ ︸︸ ︷
I1(x, y)qµ+3

1 (x, y, z)

l1(x, y, z) · n(x, y)
=
ρ(x, y)fµ+2

|n(x, y)|z2︸ ︷︷ ︸
First Equation of (11)

=
I2(x, y)qµ+3

2 (x, y, z)

l2(x, y, z) · n(x, y)

getting

I1(x, y)qµ+3
1 (x, y, z)

−ξ1zx − η1zy + z2

f

=
I2(x, y)qµ+3

2 (x, y, z)

−ξ2zx − η2zy + z2

f

. (12)

Let us emphasize that this way of merging the irradiance
equations, allows us to eliminate the non-linearity with
respect to the partial derivatives of z contained in |n(x, y)|.
This makes the resulting problem completely independent
from the albedo and the strategy is an incremental develop-
ment over [20], where the ratio idea originated.

After some algebra, we obtain the following first-order
quasi-linear PDE

zx

(
I1(x, y)qµ+3

1 (x, y, z)ξ2 − I2(x, y)qµ+3
2 (x, y, z)ξ1

)
+

zy

(
I1(x, y)qµ+3

1 (x, y, z)η2 − I2(x, y)qµ+3
2 (x, y, z)η1

)
=

z2

f

(
I1(x, y)qµ+3

1 (x, y, z)− I2(x, y)qµ+3
2 (x, y, z)

)
, (13)

resumed as follows{
b(x, y, z) · ∇z(x, y) = s(x, y, z), on Ωp
z(x, y) = g(x, y) on ∂Ωp,

(14)

where g(x, y) is the Dirichlet boundary condition,

b(x, y, z) =
[
I1(x, y)qµ+3

1 (x, y, z)ξ2 − I2(x, y)qµ+3
2 (x, y, z)ξ1,

I1(x, y)qµ+3
1 (x, y, z)η2 − I2(x, y)qµ+3

2 (x, y, z)η1

]
and

s(x, y, z) =
z2

f

(
I1(x, y)qµ+3

1 (x, y, z)−I2(x, y)qµ+3
2 (x, y, z)

)
.

IV. DIRECT SURFACE RECONSTRUCTION USING IMAGES
WITH MISSING PARTS

If we have three images then we can consider the set of
unique image pairs and linearly combine them following
the same procedure as [15]. We are thus able to define
the EPPSn problem by exploiting the linearity of the basic
differential formulation (14) and reducing it to a single
quasi-linear PDE which can handle missing regions in a
natural fashion.

Since we want to exploit the PS technique, we assume
that each pixel is illuminated in at least two images thereby
avoiding reduction to a EPPS1 problem. This means that we

need a minimum of two light sources to proceed with our
method.

In order to complete the theoretical analysis, we note that
the uniqueness of the weak (i.e. Lipschitz, z ∈ Lip(Ωp)) so-
lution for the differential problem (14) can be proved ([14]).
Here an important comment must be made regarding the
light attenuation. In the previous section we introduced the
new model (14) with two specific light attenuations because
for real tests we used SMD lights with these photomet-
ric characteristics. However, well-posedness is guaranteed
even for general attenuation functions (8). In the following
sections we show how we can still reconstruct the surface
from three images, even if they have non-overlapped missing
parts, treating the new differential problem with a general
attenuation function aj(x, y, z).

V. W-EPPSn WITH ALMOST NO BOUNDARY CONDITION

In this section we focus on the applicability of our model.
In Section IV we extended the EPPSn model by supposing
the knowledge of the boundary condition g(x, y). Clearly
such a hypothesis compromises the use of that model for
many real applications. It is therefore important to find a way
to solve the EPPSn problem while removing the requirement
for a-priori knowledge of the boundary condition.

Researchers facing the SfS, PSfS or the EPPS problems
often adopt a two-stage strategy where one first computes the
surface normals all over the domain and then integrates the
normal field in order to perform surface recovery. Usually
the normal computation is done by considering a linear
system computed using the irradiance equations. Let us
emphasise that when close light sources are taken into
account the usual linearity of the Lambertian reflectance
equation is lost. In this particular case, since the light sources
are not placed at the optical center, the normalization of the
light direction and the further light attenuations introduce
a non-linearity with respect to z. In other words, given n
images, it is very hard to compute the unknown zx, zy and z
just by solving the following system of irradiance equations:

I1 = ρ(x, y)a1(x, y, z)
l1(x, y, z) · n(x, y)

q1(x, y, z)

I2 = ρ(x, y)a2(x, y, z)
l2(x, y, z) · n(x, y)

q2(x, y, z)
...

In = ρ(x, y)an(x, y, z)
ln(x, y, z) · n(x, y)

qn(x, y, z)

. (15)

The approach in this work is to compute z without com-
pletely eliminating the non-linearity. In fact, the quasi-linear
PDE of (14) still contains a non-linear component, but
the problem of recovering z can be successfully achieved
directly by solving a quasi-linear PDE.

Furthermore, partial images clearly represent a loss of
information in the image set and several authors have



approached the problem of surface recovery with occlusions
[10], [6]. However we are not aware of attempts to overcome
the problem of missing parts within the framework of the
endoscopic problem.

We take the above issues into consideration and use them
to help design a numerical strategy for reconstructing the
surface using our model. The strategy involves determining
the depth of only a single arbitrarily placed initial seed point
within the reconstruction domain and robustly manipulating
the path of the characteristics from that point. We do this
in order to let the information travel in the most convenient
directions for the whole domain.

A. Steering the characteristic field

On the way to defining a numerical strategy we will need
to manipulate the path along which the information travels.
To do this we will exploit the following result:

Theorem Let bt(x, y, z) be the vector field of any pair of
images where t ∈

(
[n]
2

)
1. Then, ∀t1, t2 ∈

(
[n]
2

)
, ∀(u, v) ∈ Ωp

and ∀z ∈ Lip(Ωp) we have:

bt1(x, y, z) · bt2(x, y, z) 6= ±|bt1(x, y, z)||bt2(x, y, z)|.
(16)

In other words, this theorem states that two different
vector fields bt1 and bt2 can not be parallel. We can adopt
the same fast marching strategy of [15] steering the direction
of the characteristics for the case when n = 3.

We enumerate the steps in our characteristic steering
method here:

1) fix the exact depth value to z for a point, in our case
it shall be towards the center of the image domain
adding all of that point’s neighbors to a list of pixels
to be visited;

2) traverse the list of pixels to be visited and update the
value for z for each one by the scheme (18) derived
in the next section;

3) for each newly visited pixel add its unvisited neighbors
to the list of pixels to be visited;

4) in case of (non-overlapped) missing parts in the
images, we can change the wavefront propagation
direction in order to surround the shadow sets (i.e.
computing the boundary condition) and then solve (14)
with the appropriate pair of images;

5) the above steps are repeated until the L∞ discrete
norm of the difference between the last two elements
of the approximating sequence is smaller than some
predetermined threshold.

We remark that in this near-field set up, the convergence
of the previous algorithm is not as straightforward as in
[15] because here the vector fields b(x, y, z) depend on
z, i.e. they are unknown. However, this aspect does not

1( [n]
2
) is the set of pairs of integer indices with no repetition. For

example, if n = 3, we have ( [3]
2
) = {(1, 2), (1, 3), (2, 3)}.

prevent the scheme from converging efficiently. The fast
convergence behaviour of the problem requires a non-trivial
proof showing the convergence of the numerical scheme
with respect to [14], but we omit it here due to lack of
space.

B. Numerical scheme

We now consider the numerical method that we employ to
obtain the experimental results. The scheme considered orig-
inates from [14] where a finite difference up-wind scheme
is used.

In order to simplify the notation we shall denote
b(xi, yj , z(xi, yj)) by bi,j(zi,j) = (b1i,j(zi,j), b

2
i,j(zi,j)) and

s(xi, yj , z(xi, yj)) by si,j(zi,j).
Let us consider the following implicit up-wind scheme:

b1i,j(Zi,j)
Zi+1,j − Zi−1,j

2∆
+ b2i,j(Zi,j)

Zi,j+1 − Zi,j−1
2∆

=

si,j(Zi,j) + |b1i,j(Zi,j)|
Zi+1,j − 2Zi,j + Zi−1,j

2∆
+

|b2i,j(Zi,j)|
Zi,j+1 − 2Zi,j + Zi,j−1

2∆
. (17)

The artificial diffusion introduced in the right side of (17)
allows us to follow the vector field b by considering the
most appropriate discretization for the fist derivative in order
to track the characteristic lines. Specifically it consists of a
numerical scheme of consistency order equal to one with
respect to both partial derivatives.

We can write (17) explicitly as follows:

Z
r+1
i,j

=

(
|b1i,j(Z

r
i,j)|Zr

i−sgn (b1
i,j

(Zr
i,j

)),j
+

|b2i,j(Z
r
i,j)|Zr

i,j−sgn (b2
i,j

(Zr
i,j

))
+ si,j(Z

r
i,j)∆

) 1

|b1
i,j

(Zr
i,j

)| + |b2
i,j

(Zr
i,j

)|
.

(18)
VI. EXPERIMENTAL RESULTS

We now describe the full experimental procedure we
followed while investigating the properties of the new model.
The numerical schemes were all implemented in Matlab
MEX files in unoptimized C++ using OpenMP for the
parallelization and executed in Matlab using a 2013 Dell
Precision M6700 with an Intel i7 CPU clocked at 3GHz
and 32GB of RAM.

A. Synthetic cases

1) Eve: We therefore first consider a realistic shape
obtained from a mannequin head where real depth data has
been obtained from a structured light range scanner. This is
stored as a height field over a grid with 4-neighbor connec-
tivity. The mannequin face (known as Eve) is approximately
70cm from the virtual camera center. The virtual camera is
a perspective pinhole camera and all depth pixels which are
background are set to NaN to indicate that they are not part
of the mesh. Each pixel is also assigned an albedo which
we restrict to be between 0 and 1. For the experiments with
Eve we use either a uniform albedo of 1 or a synthetically



Figure 3. The input images with µ = 1 are shown in the first row.
The second row has (on the left) the shadow map and (on the right) the
approximate 3D shape with the Euclidean error map textured on. MSE =
0.52mm2

Figure 4. The input images with µ = 5 are shown in the first row. The sec-
ond row has (on the left) the shadow map and (on the right) the approximate
3D shape with recovered albedo textured on. MSE = 3.75E-4units2

generated albedo based on Perlin noise. We define four
virtual light sources which lie on the camera plane z = 0
and are positioned at 90o intervals at a radius of 4cm. Each
light source is defined by its direction and the non-linear
light attenuation coefficient µ as described in Section III-A2.

Using the above setup we performed the experiment as
shown in Fig. 3. Here the central pixel was initialized with
the ground truth depth value and the method described in
Section V-A was used together with the backward upwind
scheme of Section V-B.

2) AbsPeaks, with realistic shadows: Fig. 4 shows the set
of significantly overlapped shadows and light attenuations
where µ = 5 for light sources placed at a radial distance
of 10 units. This demonstrates that our formulation enables
photometric stereo even for shadowed regions and non-
parallel-ray light sources.

3) Comparison to other methods: Let us compare our
shape recovery approach to other methods which have not
necessarily been designed to handle shadows. We therefore
allow all irradiance values and retain the data in double
precision floating point format without first converting to 8-
bit grayscale. The point light sources are positioned 3 units
from the focal point, which, as we have mentioned, is in
contrast to the classic assumption of distant light sources.
The reasoning behind this placement is to demonstrate the
deformation of the shape recovered by other methods when
the model of nearby light sources, is not taken into account.
We compare our approach with [1] and [8]. The surface
normals provided to these two methods are first computed
by assuming distant parallel ray light sources where the light
direction is computed by averaging between the light source
position and an approximate distance from the object (as
done in [18]). [1] requires the use of full boundary conditions
whereas [8] assumes so called natural boundary conditions
which requires no additional information. Fig. 5 illustrates
that the reconstruction by the other two methods becomes
considerably worse when we add attenuation of µ = 1,
whereas our result remains consistent with an RMSE of
1.95E-2 units.

B. Real cases

In the last scenario we use a low cost endoscopic camera
synchronized to four individually controlled low power
white SMD light sources.

The images were taken in a dark environment and a
calibration image was acquired without any lights activated.
This was then subtracted from all subsequent images to
account for ambient lighting. Any pixels with a value less
than 20 were marked as shadow. This is a very simple heuris-
tic but useful for our setup of multiple light sources. The
intrinsic camera parameters were found using the Bouguet
calibration toolbox [2] and all images had the effect of lens
distortion removed. The depth to a single point on the object
was measured manually. A more practical version could use
a small laser pointer calibrated to the camera to extract an
initial seed depth but we have not implemented this in these
experiments. The processed images for each object can be
seen in Fig. 6 with a rendering of a novel view of the
same object based on our reconstruction. It is interesting
to note that our method was able to successfully reconstruct
the thumb and the ridges of the thumb-prints are clearly
visible in the 3D render. Furthermore, despite the specularity
and non-uniform albedo present in the steps images, the
reconstruction is unaffected and preserves the straight lines
of the edges of the steps. The hand model is also interesting
because it illustrates that our method can handle real world
scenarios in which there is a level of noise in the captured
images.



Ground truth using our method using [1] using [8]

Figure 5. First row Images from AbsPeaks with µ = 1 and lights positioned 3 units from the focal point. Second row From left to right: ground
truth shape, reconstruction using our method MSE = 3.82E-4units2, the reconstruction using [1] MSE = 5.19units2, the reconstruction using [8]
MSE = 21.5units2 . All reconstructed shapes have their error maps textured on.

Figure 6. Novel views from reconstructions of real objects imaged with the experimental setup described in Section (VI-B). The captured images are
shown on top of each reconstruction. The distance between the object and the scanner is: Model stairs 120mm, Thumb-tip 35mm, Hand 220mm

VII. CONCLUSIONS

An efficient model for shape reconstruction from the
EPPSn problem was proposed. The main goal of the pro-
posed model is to define a new differential formulation
based on a quasi-linear PDE, where the well-posedness holds
even in the presence of images with missing parts. We
have shown that PDEs provide a strong way of modeling
near-field photometric stereo that can be used to approx-
imate completely general lighting scenarios. The model
we presented overcomes the limitations of more classical

approaches since the lighting is modeled realistically as a
nearby source with fully general illumination. As far as
we can tell this currently represents state of the art in
physical modeling for any PS method. We are currently
investigating even more general models for non-linearities
such as specular effects and general BRDF functions. Our
current experiments demonstrate that the model gracefully
deals with non-linear light attenuations as well as non-
uniform surface albedo and missing data. Furthermore, the
suggested method handles real world surfaces and produces



quantitatively faithful surface reconstructions for nearby
objects. The method is highly parallelizeable and future
work will attempt an implementation on a kilo-core Graphics
Processing Unit to demonstrate that real time endoscopic
shape from PS is possible. Current ongoing work includes
shrinking the scanning head and performing tracking so that
reconstructed depth maps can be fused into a larger surface.
Another issue is that of obtaining at least one known ground
truth point (assuming a single connected surface). This has
not been implemented but we are investigating using a laser
dot or line calibrated to the camera.
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