
Efficient Beltrami Flow in Patch-Space

Aaron Wetzler and Ron Kimmel

Department of Computer Science,
Technion, Israel

Abstract. The Beltrami framework treats images as two dimensional
manifolds embedded in a joint features-space domain. This way, a color
image is considered to be a two dimensional surface embedded in a hybrid
special-spectral five dimensional {x, y,R,G,B} space. Image selective
smoothing, often referred to as a denoising filter, amounts to the process
of area minimization of the image surface by mean curvature flow. One
interesting variant of the Beltrami framework is treating local neighbor-
ing pixels as the feature-space. A distance is defined by the amount of
deformation a local patch undergoes while traversing its support in the
spatial domain. The question we try to tackle in this note is how to per-
form patch based denoising accurately, and efficiently. As a motivation
we demonstrate the performance of the Beltrami filter in patch-space,
and provide useful implementation considerations that allow for param-
eter tuning and efficient implementation on hand-held devices like smart
phones.

Keywords: Beltrami flow, patch-space, denoising.

1 Introduction

Following the success of the Non Local Means denoising method as introduced
by Buades et al. in [2] much attention has been devoted to developing various
types of patch based denoising techniques. A patch, in terms of an image, is
generally considered to be a square region of pixels of fixed size centered at
the coordinates of an image pixel. Peyrè in [6] studies patch based manifolds
while a more specific analysis of a generalized patch based denoising framework
is done by Tschumperlè and Brun in [12]. They show that the NL means [2]
and Bilateral [11] filters are isotropic versions of their patch based diffusion
framework by choosing a specific patch size and metric. In much the same way
Sochen et al. present the Beltrami framework and show in [8] how choices of
different metrics can be used to produce filtering methods like the anisotropic
diffusion process of Perona and Malik [5] as an example. Anisotropic diffusion
was also shown by Barash in [1] to have a strong connection to the Bilateral
filter through the adaptive smoothing filter and Elad in [4] demonstrated its
connection to other classical filtering techniques.

In [7] Maragos and Roussos, explore a generalization of the Beltrami flow us-
ing weighted patches. We will use a similar formulation while setting the weights

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 134–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient Beltrami Flow in Patch-Space 135

of each neighboring pixel to be one. In this context, the Beltrami framework pro-
vides a general and natural substrate for diffusion based image manipulation and
naturally extends to higher dimensions. We will show how it can be applied to
an image manifold in patch-space with better visual results as well as the overall
PSNR compared to strictly local-differential techniques. We will discuss numer-
ical considerations and demonstrate how the use of an integral image eliminates
the algorithm’s dependency on the patch size allowing for good performance on
a modern smartphone.

Fig. 1. Examples of Beltrami patch denoising for color images. From top to bottom,
left to right a) Noisy F16, σ = 20 b) Denoised image, PSNR = 31.51dB c) Noisy Lena,
σ = 30 d) Denoised image, PSNR = 29.54dB e) Noisy Mandrill, σ = 50 f) Denoised
image, PSNR = 21.43dB.

2 The Beltrami Framework

We consider an image to be a 2D Riemannian manifold embedded in D = d+ 2
dimensional space where d = 1 for grayscale images and d = 3 for color images.
We can thus write the map X : Σ → M where X is the mapping of the image
manifold into the embedding space feature manifoldM . For a grayscale mapping
we can write

X(σ1, σ2) = (x(σ1, σ2), y(σ1, σ2), z(σ1, σ2)). (1)

If we further specify that σ1 = x, σ2 = y and I is the image intensity map, then
from (1) we have the graph of I given by

X(x, y) = (x, y, I(x, y)). (2)

Both Σ and M are Riemannian manifolds and hence are equipped with metrics
G and H respectively which enable measurement of lengths over each manifold.



136 A. Wetzler and R. Kimmel

We require the lengths as measured on each manifold to be the same. Thus we
can write that

ds2 = (dx dy dI)H

⎛
⎝dxdy
dI

⎞
⎠ = (dx dy)G

(
dx
dy

)
. (3)

We can equate these and write the result compactly using Einstein notation
where repeated upper and lower indices are summed over

guv = hij∂uX i∂vX
j u, v = 1..2 i, j = 1..3 (4)

Here the meaning of ∂u,v is just the partial derivative with respect to x or y.
For the simple case in (4) where H = (hij) is the identity matrix we use the
chain rule dI = Ixdx+Iydy and determine that for (2) the induced metric tensor
G = (guv) is

G =
(

1 + I2x IxIy
IxIy 1 + I2y

)
. (5)

Having a metric enables us to define a measure on the manifold which, for a
Euclidean embedding in M , turns out to be the area of the surface as measured
by the local coordinates in Σ

S [X,G] =
∫∫ √

gdxdy = A =
∫∫ √

1 + I2x + I2ydxdy. (6)

Here g = div(G). There is a more general version of the above measure called the
Polyakov action which can be useful for non-Euclidean embeddings and details of
its application to the Beltrami framework can be found in [8]. We now minimize
the functional in (6) using the methods of variational calculus with the resulting
Euler-Lagrange relation given by

− d
dx

(
Ix√
g

)
− d

dy

(
Iy√
g

)
= −div

(√
gG−1∇I) = 0. (7)

We excersize freedom of paramaterization and multiply by g−1/2 which allows
(7) to be compactly written as ΔgI = 0 where Δg is the second order differential
operator of Beltrami. We now formulate a geometric flow of the manifold

It = ΔgI, (8)

which creates a scale space via the generalization of the Laplace operator onto
Riemannian manifolds. The discretized version of (8) allows us to perform it-
erative traversal through this scale space on a computer and produces a very
effective technique for denoising grayscale images when using the metric in (5).

3 Operating in Patch-Space

A patch is a window centered at a given pixel. We therefore define the mapping
P : Σ → R

nw2+2 in the form

P (x, y) =
(
x, y,

{
Ik (x+ iw, y + jw)

})
i, j = −w, .., w, k = 1, .., n. (9)



Efficient Beltrami Flow in Patch-Space 137

Here w ∈ N is known as the window size or patch size, and n is the number of
channels in the image. For example, a single channel image where n = 1 and
w = 5 produces patches of size 11 × 11 centered about each pixel in the image
I. We can see that the above definition reduces to the grayscale embedding (2)
for w = 0 and n = 1 as described in the previous section. From here on we will
denote

{
Ik (x+ iw, y + jw)

}
i, j = −w, .., w k = 1, .., n, as Iki,j . Note that Ik is

simply the kth color channel. We wish to derive the induced metric tensor G for
this new embedding. For that goal we first consider the arclength measurement
in the embedding space which we assume to be Euclidean and therefore

ds2 = 〈dP ,dP 〉H = dx2 + dy2 +
∑
i,j,k

(
dIki,j

)2
. (10)

In reality, the coordinates x and y do not possess the same physical measure as
the intensity values of the image so we need to introduce a scaling factor into
the patch-space metric given by

hij =

{
δij

β2δij

i, j � 2
otherwise

, (11)

where δij is the Kronecker delta. Following the same procedure as before and
using the chain rule dIki,j = Ik

i,jxdx + Ik
i,jydy we pullback the metric from the

embedding to determine that the new induced metric tensor for the 2D image
manifold embedded into patch-space is given by

G =

(
1 + β2

∑
i,j,k I

k2
i,jx β2

∑
i,j,k I

k
i,jxI

k
i,jy

β2
∑

i,j,k I
k
i,jxI

k
i,jy 1 + β2

∑
i,j,k I

k2
i,jy

)
. (12)

This metric combined with (8) gives the Beltrami flow in patch-space as

It = ΔgI =
1√
g

div
(√
gG−1∇I) . (13)

4 Implementation and Results

We use the flow given by (13) to progress through the scale space on image
manifolds embedded into patch-space for both grayscale and color images. The
algorithm was tested on a desktop PC and the color version was efficiently imple-
mented on an iPhone 4 smartphone. To measure the success we visually inspected
the results as well as measured the standard Peak Signal to Noise Ratio for im-
ages: PSNR = 10log10

(
2552/E

[
(Iest − I)2

])
where Iest is the estimation of

the denoised version of I.

4.1 Parameter Optimization

Given an image with additive Gaussian white noise and standard deviation σ we
need to find a set of parameters that produces the best PSNR value. The normal



138 A. Wetzler and R. Kimmel

approach is to fix β and change the number of iterations which allows traversal
of the scale space. The obvious disadvantage is that more iterations mean longer
execution times. One efficient alternative which has been used here is to fix
the number of iterations and vary β. This has the effect of artificially moving
through the scale space by causing a change of the distances on the embedded
image manifold. The output therefore depends on the window size, the number
of iterations of the update, and the parameter β. The time complexity of the
algorithm is O(KN2W 2) where K is the number of iterations, N is the width
of an image (assuming it is square) and W = 2w + 1 for a patch size w. We

Fig. 2. Example of PSNR as a func-
tion of β−2 with a typical global max-
imum

Fig. 3. Loglinear relationship between
σ and β−2. Error bars indicate one
standard deviation from the mean over
a set of different images.

fixed the variables depending on whether an image was grayscale or color. To
optimize for β we ran a non-linear optimization program with the PSNR as the
target function for a particular image. With the variables held constant except
for β, the PSNR function was found to always have a global maximum over the
search region. An example function is shown in Fig. 2. The analytical relationship
between β and σ is non-trivial however we determined experimentally that the
optimal value of β is approximately related to σ by a linear model in log space
for values of σ up to 1001 by the simple relation

log(β−2) = a log(σ) + b. (14)

Fig. 3 shows this relationship graphically. The graph was obtained by running
the optimization program for a set of different images and then fitting the model
in (14). It was found that the value of β that globally maximized the PSNR
of any representative image produced PSNR values very close to maximum in
other images corrupted by Gaussian noise with the same σ. The error bars in Fig.
3 show that there is almost negligible deviation from the mean for the optimal
1 Pixel intensity values range from 0 to 255.



Efficient Beltrami Flow in Patch-Space 139

values of β for a given σ for different images. This fact is critical and illustrates
that a and b obtained from the log-linear model only need to be calculated once
for a predetermined window size, color type and iteration count. They can then
be used to generate a β for any given σ for any image. Alternatively, a densely
populated look-up table can be generated to relate the two for even greater
accuracy.

4.2 Reducing Time Complexity

The weights of nearby pixels are unitary in our method. We take advantage of
this property and eliminate the W 2 component by using an integral image to
calculate the sums in (12) for each color channel yielding running time complex-
ity of O(KN2). This allows for patch size independence in performance which
is especially important for a practical implementation on a mobile device.
For low values of K and images of size 256 × 256 the iPhone implementation
performs denoising in real time. A patch size of 5× 5 (w = 2) produced the best
results for grayscale images with negligible PSNR differences for the various it-
erations as shown in Table 1. The same behavior occurs for color images except

Table 1. PSNR results from denoising of the Cameraman image corrupted with
AGWN for σ = 20 using optimized β. Values are in dB.

w = 0 w = 1 w = 2 w = 3 w = 4

10 iterations 28.04 29.11 29.21 29.09 28.96

50 iterations 27.58 29.04 29.37 29.27 29.15

100 iterations 27.35 28.94 29.36 29.28 29.16

150 iterations 27.22 28.88 29.35 29.28 29.16

that the optimal patch size appears to be 7 × 7 (w = 3). The PSNR alone is
not enough as can be seen in Fig. 4. The denoising properties of the Beltrami
flow are reasonable for a small number of iterations, however higher quality vi-
sual results require more iterations. It was found that grayscale images are best
denoised by K = 150 iterations and w = 2, whereas color images require only
K = 10 iterations at a window size of w = 3.

Table 2. Run times in seconds for Patch Beltrami color denoising on an iPhone 4

N = 256 N = 512

K = 1 0.14 0.54

K = 5 0.65 2.60

K = 10 1.27 5.13

K = 20 2.55 10.37

K = 50 6.42 25.45



140 A. Wetzler and R. Kimmel

Fig. 4. From left to right a) Noisy image at σ = 20 b) Denoised with 10 iterations,
PSNR = 29.21 c) Denoised with 150 iterations PSNR = 29.35 d) Original image

Running times for different iteration counts of the iPhone implementation
for color images are shown in Table 2. Depending on an application’s speed
requirements, K can be further reduced down to K = 1 with a gradual decrease
in output quality as shown in Fig. 5, where it is seen that after K = 10 there is
virtually no improvement. For each iteration the update of a pixel is independent
of the update of any other pixel, so the process is highly parallelizable, however
this characteristic has not been exploited in the current implementation.

Table 3. PSNR comparison between Regular Beltrami, Patch Beltrami and NL means
for some standard grayscale images. All values are in dB.

CMan Lena Barbara House

Regular Beltrami 36.97 36.90 35.85 36.92
Patch Beltrami 37.70 38.11 37.01 38.16 σ = 5

NL means 33.91 37.55 36.06 38.05

Regular Beltrami 27.22 29.03 26.20 28.98
Patch Beltrami 29.35 32.05 28.71 32.13 σ = 20

NL means 29.37 31.56 29.86 31.97

Regular Beltrami 20.55 23.00 20.95 22.63
Patch Beltrami 23.83 27.13 23.52 26.88 σ = 50

NL means 23.93 26.46 24.26 26.09

Using the optimally chosen parameters, the denoising process can now be
used automatically with the only input parameter being σ as is the norm for
denoising images. The experiments in Table 3 reveal that apart from causing a
significant improvement over the original application of the Beltrami flow, the
new patch-based metric in fact produces results comparable to or even better
than the Non-Local means method [2]. Furthermore, the results are within about
2dB of the state of the art, such as the block matching algorithms of Dabov et
al. [3].

4.3 Residual Noise

Another way to compare the effectiveness of a denoising process is by evaluating
the residual as noise as introduced by Baudes et al. in [2]. Here, we look at



Efficient Beltrami Flow in Patch-Space 141

Fig. 5. Optimized denoising for different values of K a) Noisy image, σ = 20, PSNR =
22.25 b) PSNR = 28.93, K = 1 c) PSNR = 29.91, K = 2 d) PSNR = 31.15,K = 5
e) PSNR = 31.45, K = 10 f) PSNR = 31.55, K = 40

the differences between the estimated output image and the noisy input image.
Ideally, the resulting difference image should also appear as Gaussian white noise.
Fig. 6 shows that patch based Beltrami flow produces significantly less structure
in the difference image compared to the original pixel based version.

Fig. 6. Method noise. From top to bottom, left to right a) Original image b) Noisy
image with σ = 20 c) Beltrami patch denoising. 150 iterations, w = 2 d) Method noise
for Beltrami patch denoising e) Regular Beltrami denoising f) Method noise for regular
Beltrami denoising.

4.4 Non-gaussian Denoising

In addition to filtering Gaussian noise, the Beltrami flow has other desirable
properties. The process tends to align colors along boundaries which lends itself
to solving the problem of antialiasing images with jagged, unmatched edges.
Another fundamental characteristic of the method is the traversal of a scale
space which flattens out smooth, weakly textured objects. An example of the
effect of applying the Beltrami patch filter in both types of examples is shown
in Fig. 7. It is interesting to note that a state of the art denoising method,
BM3D [3], copes very poorly with these two situations because it is optimized
for Gaussian noise removal alone.

5 Conclusions

We have shown that the extension of the original Beltrami filter with a more
general metric produces significantly better results than the original Beltrami
filter. The number of iterations required for denoising color images is K � 10
resulting in a relatively fast algorithm of time complexityO(KN2) permitting an



142 A. Wetzler and R. Kimmel

Fig. 7. Removal of aliasing and block textures. From left to right, top to bottom a)
Photograph of truck with aliasing. b) Beltrami patch denoising, σ = 20 c) CBM3D
denoising, σ = 20 d) Photograph of castle with weak block textures e) Beltrami patch
denoising, σ = 20 f) BM3D denoising, σ = 20.

efficient implementation on a modern smartphone. We have also experimentally
determined the relationship between the image intensities and their coordinates
as posed in [8]. The proposed method produces PSNR values close to state of
the art techniques such as BM3D [3]. In addition to Gaussian denoising, the
process accurately removes weak textures and aliasing while preserving the fine
structure of the edges in images that other methods are not capable of dealing
with.

6 Future Work

Modern smartphones have powerful graphics processing units as well as accel-
erated vector engine hardware. Neither of these features were utilized for the
current application and further work is required to enable the method to work
at optimal speed. Although this note has focused mainly on the denoising prop-
erty of the Beltrami operator it would seem reasonable to further study other
applications of the operator in patch-space such as inverse diffusion and other
processes which control the eigen-values of the local diffusion operator. Many of
these techniques have already been developed for the original Beltrami flow such
as the FAB diffusion method as described by Gilboa et al. [9] and therefore it
would be prudent to extend their application to patch-space. The same can be
said for the short time Beltrami kernel as described by Spira et al. in [10] where
it is approximated by finding local geodesic distances on the manifold via the
fast marching method and the local metric tensor. The analysis and implemen-
tation of the same procedure would be a fruitful direction for future research in
patch-space based flows.

Acknowledgments. This research was supported by European Community’s
FP7- ERC program, grant agreement no. 267414.



Efficient Beltrami Flow in Patch-Space 143

References

1. Barash, D.: A fundamental relationship between bilateral filtering, adaptive
smoothing and the nonlinear diffusion equation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(6), 844–847 (2002)

2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
CVPR, pp. 60–65 (2005)

3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Transactions on Image Processing,
2080–2095 (2007)

4. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans-
actions on Image Processing 11(10), 1141–1151 (2002)

5. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Anal. Mach. Intell., 629–639 (1990)

6. Peyre, G.: Manifold models for signals and images. Computer Vision and Image
Understanding 113, 249–260 (2009)

7. Roussos, A., Maragos, P.: Tensor-based image diffusions derived from generaliza-
tions of the total variation and Beltrami functionals. In: ICIP (September 2010)

8. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision.
IEEE Trans. on Image Processing, 310–318 (1998)

9. Sochen, N.A., Gilboa, G., Zeevi, Y.Y.: Color image enhancement by a forward-
and-backward adaptive Beltrami flow. In: Sommer, G., Zeevi, Y.Y. (eds.) AFPAC
2000. LNCS, vol. 1888, pp. 319–328. Springer, Heidelberg (2000)

10. Spira, A., Kimmel, R., Sochen, N.A.: Efficient Beltrami flow using a short time
kernel. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695,
pp. 511–522. Springer, Heidelberg (2003)

11. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc.
IEEE ICCV, pp. 836–846 (1998)

12. Tschumperlé, D., Brun, L.: Non-local image smoothing by applying anisotropic
diffusion pde’s in the space of patches. In: ICIP, pp. 2957–2960 (2009)


