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Abstract—An important operation in geometry processing is
finding the correspondences between pairs of shapes. Measures
of dissimilarity between surfaces, has been found to be highly
useful for nonrigid shape comparison. Here, we analyze the
applicability of the spectral kernel distance, for solving the
shape matching problem. To align the spectral kernels, we
introduce the iterative closest spectral kernel maps (ICSKM)
algorithm. The ICSKM algorithm farther extends the iterative
closest point algorithm to the class of deformable shapes.
The proposed method achieves state-of-the-art results on the
Princeton isometric shape matching protocol applied, as usual,
to the TOSCA and SCAPE benchmarks.
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I. INTRODUCTION

Correspondence detection between pairs of shapes lies
at the heart of many operations in the field of geome-
try processing. The problem of acquiring correspondence
between rigid shapes has been widely addressed in the
literature. As for non-rigid shapes, this problem remains
difficult even when the space of deformations is narrowed to
nearly isometric surfaces, which approximately preserve the
geodesic distances between corresponding points on each
shape.

A common approach for shape matching is to define
a measure of dissimilarity between shapes modeled as 2-
manifolds. The well-established Gromov-Hausdorff distance
measures the maximum geodesic discrepancy between pairs
of corresponding points of the two given shapes [18]. The
point-wise map can be inferred to as a byproduct of the
evaluation of the Gromov-Hausdorff distance. This approach
was embraced by the Generalized Multi-Dimensional Scal-
ing (GMDS) framework [5]. Within the Gromov-Hausdorff
framework, Bronstein et al. [7] suggested replacing the
geodesic distance by the diffusion distance [8], exploiting
the apparent stability of diffusion distances to local changes
in the topology of the shape. Despite its generality and
theoretical beauty, it has been a challenge to apply the
Gromov-Hausdorff framework in a straightforward manner
to shape matching, mainly due to its intrinsically combina-
torial nature.

Kasue and Kumura [11] extended the Gromov-Hausdorff
distance framework to the family of spectral methods. The

spectral kernel distance was constructed by replacing the
metric defined on the manifolds with the heat kernel. The
heat kernel provides a natural notion of scale, which is
useful for multi-scale shape comparison. Recently, Mémoli
[17] introduced the spectral Gromov-Wasserstein distance,
applying the theory of mass transportation. The spectral
Gromov Wasserstein distance via the comparison of heat
kernels satisfies all properties of a metric on the class of
isometric manifolds.

The evaluation of the spectral kernel distance between two
nearly isometric surfaces should be capable of discovering
the mapping between them. Alas, the task is not straight-
forward, due to model impairments and the combinatorial
nature of the problem. Therefore, to achieve highly accurate
and dense correspondence, we need to make adaptations
to this distance measure and design an efficient and robust
optimization algorithm.

A. Contribution

Our main observation is that the alignment of the spectral
kernels and the evaluation of the spectral kernel distance
between two shapes can be achieved by extending the well
established Iterative Closest Point (ICP) algorithm [4], [28]
to the class of nonrigid shapes. The classical ICP algorithm
refines the correspondence between rigid shapes embedded
in the three dimensional Euclidean space. The key idea is
simple. Given an initial map between the shapes, find the
best rotation and translation that aligns the shapes, apply it
and calculate new correspondence by the nearest neighbor
algorithm.

As for nonrigid shapes, a similar idea was presented by
the iterative post-process refinement algorithm [19]. Instead
of aligning the shapes in the three dimensional Euclidean
domain, this method estimates the transformation that best
fits the shapes in the spectral domain. Given an initial map
from shape X to shape Y , one linear constraint is generated
for each point x ∈ X , and the least squares method is used
to infer the transformation matrix.

The proposed iterative closest spectral kernel maps (IC-
SKM) algorithm extends this idea by finding the trans-
formation that best matches the respective spectral kernels
K(x, x′) and K̃(y, y′) of the shapes X and Y . Now, each
pair of points x, x′ ∈ X generates a linear constraint by



including its normalized kernel relation K(x, x′)/K(x, x).
The two dimensional information, effectively improves the
refinement procedure. The optimization problem is solved
by the least squares method with Tikhonov regularization
[10], [27]. The algorithm is shown to be robust, flexible
and easy to implement. It can be used efficiently as a
refinement procedure of rough or sparse correspondence
detection methods. The main advantage of the ICSKM
algorithm over existing methods is in the combination of
the iterative post-process refinement algorithm with the two
dimensional constraints of the spectral kernel, resulting in
highly accurate correspondence maps.

II. RELATED WORK

A. spectral kernel distance

The heat kernel Kt(x, x
′) is defined as the solution of the

heat equation
∂u

∂t
= ∆u, with a point heat source at x ∈ X ,

measured at point x′ ∈ X after time t > 0, where ∆ denotes
the Laplace-Beltrami (LB) operator.

Kasue and Kumura [11] defined the metric d(X,Y )
between the Riemannian manifolds X and Y by comparing
their respective heat kernels

d(X,Y ) ≡ inf
ϕ:X 7→Y
ψ:Y 7→X

max(dis(ϕ), dis(ψ)), (1)

taking the supremum of kernel distortion for all t > 0

dis(ϕ) ≡ sup
x,x′∈X,t>0

u(t)dt(x, x
′, ϕ(x), ϕ(x′)),

dis(ψ) ≡ sup
y,y′∈Y,t>0

u(t)dt(ψ(y), ψ(y′), y, y′),

where dt(x, x
′, y, y′) measures the absolute discrepancy

between the heat kernels K(x, x′) and K̃(y, y′)

|Vol(X)Kt(x, x
′)− Vol(Y )K̃t(y, y

′)|.

Vol(X) and Vol(Y) are the volumes of X and Y , respec-
tively. The function u(t) ≡ e−(t+1/t) is used to normalize
the kernels for different values of t, and make sure that
it will not blow up as t → 0. We denote d(X,Y ) as the
spectral kernel distance. The spectral kernel distance is a
metric between isometry classes of Riemannian manifolds,
which means, in particular, that two manifolds are at zero
distance if and only if they are isometric.

In practice, a more tractable L2 version of Eq. (1) can be
optimized by finding the map ϕ : X 7→ Y that best aligns
the spectral kernels of two shapes for a fixed time t. In
the discrete setting, the spectral kernel distortion can be
formalized as

min
ϕ:X 7→Y

∑
x,x′∈X

|Kt(x, x
′)− K̃t(ϕ(x), ϕ(x′))|2. (2)

B. Post-process iterative refinement algorithm

The post-process iterative refinement algorithm [19] takes
as input an initial map, iteratively finds the transformation
matrix between the spectral bases of the two compared
shapes, and outputs a dense correspondence between the
shapes. Here, we use the first n Laplace-Beltrami eigenfunc-
tions as the spectral basis [3], [14], [25], [26]. The eigen-
decomposition of the LB operator consists of non-negative
eigenvalues 0 = λ0 < λ1 < · · · < λi < · · · , with cor-
responding eigenfunctions Φ ≡ {φ0, φ1, · · · , φi, · · · } that
forms an orthonormal basis, which is well suited for rep-
resenting near isometric shapes [1], [19]. In this case, the
post-process iterative refinement algorithm is similar to the
well known Iterative Closest Point (ICP) [4], [28] in n
dimensions, except that it is performed in the natural spectral
domain, rather than the standard Euclidean space.

Let ϕ : X 7→ Y be a bijective mapping between shapes
X and Y . If we are given a scalar function f : X 7→ R,
then, we can obtain a corresponding function g : Y 7→ R
by the composition g = f ◦ ϕ−1. Given the bases Φ and
Φ̃ on the shapes X and Y , respectively, we can represent
f as a row vector a with coefficients ai, and equivalently,
g as a row vector b with coefficients bi. It is easy to show
that we can write a linear transformation a = bC, where
the transformation matrix C is independent of f and is
completely determined by the bases Φ, Φ̃ and the map ϕ.

Now, suppose we have point-to-point correspondences,
such that each point x ∈ X corresponds to some point y ∈ Y
by the mapping y = ϕ(x). In this case, the delta function
δx at point x ∈ X corresponds to the delta function δ̃y at
point y = ϕ(x). We can represent the delta function δx in
the basis Φ by

ax = Φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . ).

Equivalently, the function δ̃y can be represented in the basis
Φ̃ as

by = Φ̃(y) = (φ̃1(y), φ̃2(y), . . . , φ̃i(y), . . . ).

Then, we can construct the function preservation constraints
A = BC, where the corresponding matrices A and B are
built by stacking the row vectors ax and by , respectively.
Therefore, at every iteration of the refinement procedure,
we can infer the transformation matrix C from previous
correspondences by solving A = BC with the least square
method. Then, a new map can be found by searching for the
point y ∈ Y , such that the row vector Φ̃(y)C is the closest
to Φ(x).

III. ITERATIVE CLOSEST SPECTRAL KERNEL MAPS

Motivated by the definition of the spectral kernel distor-
tion of Eq. (2), we wish to find the map ϕ : X 7→ Y
that aligns the compatible spectral kernels, K(x, x′) and
K̃(y, y′). We adopt a similar approach to the post-process



iterative refinement algorithm, by constructing correspond-
ing functions over the two shapes. The trivial functions
that represent point-to-point correspondence are the delta
functions. The key idea is to impose the spectral kernel
constraints on these delta functions. Accordingly, if the point
x ∈ X maps to y = ϕ(x) and the point x′ ∈ X maps to
y′ = ϕ(x′), then, the function

fx,x′ = (K(x, x′) / |K(x, x)|)δx,

should correspond to

gy,y′ = (K̃(y, y′) / |K̃(y, y)|)δ̃y.

We point out that x, x′ are constant parameters that define
the function fx,x′ . As seen in Section II-B, the LB basis
representation of the delta function δx at a point x ∈ X
is simply Φ(x). Therefore, the function fx,x′ in the basis
Φ, and eqivalently the function gy,y′ in the basis Φ̃, can be
represented by

ax,x′ = (K(x, x′) / |K(x, x)|)Φ(x),
by,y′ = (K̃(y, y′) / |K̃(y, y)|)Φ̃(y).

In this case, we can construct the corresponding matrices
A, B by stacking the row vectors ax,x′ and by,y′ , re-
spectively. Notice that we normalize the kernels, so that
K(x, x′) / |K(x, x)| = 1, ∀x = x′.

By recalling that for nearly isometric shapes, the corre-
spondence we are looking for should be represented by a
nearly-diagonal C [13], we can submit an element-wise off-
diagonal penalty W and formulate the following problem

argmin
C

‖A−BC‖2F + β ‖W � C‖2F , (3)

where β is a tuning parameter. The symbol � represents
the matrix element-wise multiplication operation. The matrix
W is chosen, such that as (i, j) is located farther from
the diagonal of the matrix W , the element-wise penalty
Wi,j increases. The minimization of Eq. (3) can be obtained
separately for each column of C by the least squares method,
with Tikhonov regularization [10], [27].

The iterative closest spectral kernel maps algorithm is
summarized in Algorithm 1. For a given initial corre-
spondence ϕ̂0(x), ∀x ∈ X , the algorithm provides the
transformation matrix C computed in Step 3, and the point-
wise map ϕ̂(x) found in Step 4, which can be used to
approximate the spectral kernel distortion of Eq. (2).

As an additional option, one can discard correspondences
before estimating the transformation matrix in Step 3. For
example, corresponding triangles with flipped orientation are
expected to be outliers. In that case, it is advisable to filter
out correspondences that belong to such inversely oriented
coupled triangles.

The ICSKM algorithm can be viewed as a generalization
of the post-process iterative refinement algorithm. This is
noticed by setting the kernel K(x, x′) to be the heat kernel

Algorithm 1 : ITERATIVE CLOSEST SPECTRAL KERNEL MAPS

for ` = 1 to L do
1) Calculate the spectral coefficients

ax,x′ = (K(x, x′) / |K(x, x)|)Φ(x),
by,y′ = (K̃(y, y′) / |K̃(y, y)|)Φ̃(y),

for x, x′ ∈ X, y = ϕ̂`−1(x), y′ = ϕ̂`−1(y′),

using the correspondence ϕ̂`−1 provided by the
previous iteration.

2) Compose the constraint matrices A`, B` by stacking
the row vectors ax,x′ , by,y′ respectively.

3) Find the optimal transformation matrix C` that min-
imizes

‖A` −B`C`‖2F + β ‖W � C`‖2F .

4) For each point x ∈ X , find new map ϕ̂`(x) by
searching for the point y ∈ Y , that minimizes the
Euclidean distance between the row vectors Φ̃(y)C`
and Φ(x), applying

ϕ̂`(x) = argmin
y∈Y

∥∥∥Φ(x)− Φ̃(y)C`

∥∥∥
2
.

end for

Kt(x, x
′). In that case, as t → 0 the normalized kernel

Kt(x, x
′) / |Kt(x, x)| → 0 for x 6= x′, and the only

constraints that remain are ax,x → Φ(x) and by,y → Φ̃(y).

Implementation

In all our experiments we used the same choice of pa-
rameters. In general, we chose our parameters for achieving
the most accurate results in a reasonable time. To that end,
we used n = 200 eigenfunctions of the LB operator.

Our empirical evidence suggests that the GPS kernel [21],
[23], that is,

K(x, x′) =
∑
i

1

λi
φi(x)φi(x

′),

provides superior qualities for correspondence detection,
compared to other kernels we tested. The number of iteration
has been set to L = 45. At each iteration, a subset of
2000 points are matched. The off-diagonal penalty W 2

i,j =

|λ̃i − λj |
λj

Ui was set to be proportional to the difference of

the eigenvalues λ̃i and λi that correspond to φ̃i and φi,
and scaled by the ith entry of U = diag(BTB). The tuning
parameter β was set to 0.1.

The system was implemented in MATLAB. All the exper-
iments were executed on a 3.00 GHz Intel Core i7 machine
with 32GB RAM. Run-times for pairs of shapes of various
sizes from the TOSCA dataset are shown in Table I.



Table I
RUN-TIMES (IN SECONDS) OF THE PROPOSED METHOD, EVALUATED ON

SHAPES FROM THE TOSCA DATASET.

# of vertices 4344 19248 25290 45659 52565

n = 50 eigenfunctions
runtime 32 39 41 51 56

n = 100 eigenfunctions
runtime 50 59 62 74 80

n = 200 eigenfunctions
runtime 115 135 140 153 165

IV. RESULTS

We tested the proposed method on pairs of shapes rep-
resented by triangulated meshes from both the TOSCA
database [6] and the SCAPE database [2]. The TOSCA
dataset contains densely sampled synthetic human and ani-
mal surfaces, divided into several classes with given ground-
truth point-to-point correspondences between the shapes
within each class. The SCAPE dataset contains scans of real
human bodies in different poses. We compare our results to
several correspondence detection methods.

• Iterative Closest Spectral Kernel Maps - the method
proposed in this paper. Initial coarse map is found by
comparing the first few matched eigenfunctions of the
LB operator [24]. Another option is to use a small
number of landmark points.

• Functional Maps + Blended (TOSCA only) - the
functional maps based post-process iterative refinement
algorithm. We use the results shown in [19]. There,
the post-process procedure refines the correspondence
provided by the Blended method [12].

• Blended - the method proposed by Kim et al. that uses
a weighted combination of isometric maps [12].

• Möbius Voting - the method proposed by Lipman et al.
counts votes on the conformal Möbius transformations
[15].

• Permuted Sparse Coding + MSER (SCAPE only) -
the approach proposed by Pokrass et al. finds corre-
spondence by using methods from the field of sparse
modeling [20] . We note that this method depends on
the ability to detect repeatable regions between shapes.
There, maximally stable extremal regions (MSER) are
used as a preprocessing step [16].

Fig. 1 compares the ICSKM algorithm with existing methods
on the TOSCA benchmark, using the evaluation protocol
proposed in [12]. The distortion curves describe the per-
centage of surface points falling within a relative geodesic
distance from what is assumed to be their true locations.
For each shape, the geodesic distance is normalized by the
square root of the shape’s area. It is evident from the bench-
mark that the proposed method significantly outperforms
existing ones.

TOSCA correspondence

Figure 1. Evaluation of the iterative spectral kernel maps algorithm applied
to shapes from the TOSCA database, using the protocol of [12].

SCAPE correspondence
(allow symmetries)

Figure 2. Evaluation of the iterative closest spectral kernel maps algorithm
applied to shapes from the SCAPE database, using the protocol of [12] with
allowed symmetries.

Fig. 2 compares the proposed correspondence algorithm
with existing methods on the SCAPE database, again using
the evaluation protocol proposed in [12], allowing symmetric
flip for a selected number of feature points. Remark: In the
evaluation, the correct symmetry is automatically chosen for
the shape as a whole.

Table II displays the percentage of correspondences that
fall within different values of relative geodesic distances. It
is interesting to focus on large geodesic errors. Unlike other
methods, in the proposed approach only one of 200 points
has a geodesic error larger than 0.1.



Table II
PERCENTAGE OF SURFACE POINTS FALLING WITHIN A RELATIVE

GEODESIC ERROR FOR DIFFERENT METHODS (TOSCA).

Geodesic circle 0.025 0.050 0.100 0.150

ICSKM 82.5 95.9 99.5 99.9
F. Maps + Blended 69.5 88.7 96.4 98.5

Blended 55.9 84.7 96.6 98.0
Möbius Voting 39.3 60.9 79.6 86.2

ICSKM landmark points initialization
(TOSCA+SCAPE)

Figure 3. Evaluation of the iterative closest spectral kernel maps algorithm
initialized by landmark points.

We continue investigating the refinement capabilities of
the ICSKM algorithm. For that goal, we provide the algo-
rithm with 3 to 50 landmark points, that were randomly
selected from the ground-truth mapping. Fig. 3 compares
the dense maps produced by the algorithm with these initial
constraints. Observe that with just five landmark points, the
algorithm outperforms previous state-of-the-art methods. We
have also applied the ICSKM algorithm to non-isometric
shapes taken from the TOSCA database. Fig. 4, displays the
distortion curves for different pair of classes. For each class,
we used the manually selected landmark points specified in
[12]. Half of these points were used to provide the algorithm
with initial correspondence. The rest of the points were used
to evaluate the geodesic error. Fig. 5 demonstrates how the
mapping produced by the ICSKM algorithm initialized with
7 landmark points, transfers the texture from a wolf to a cat
and from a dog to a horse

Finally, we illustrate how the proposed method is able to
find the intrinsic reflective symmetry axis of nonrigid shapes.
Intrinsic symmetry detection can be viewed as finding
correspondence from a shape to itself [22]. Following this
approach, we search for a self-map with flipped orientation.
In Fig. 6 we visualize the distance between a point and its
image for several shapes from the TOSCA database.

Non-isometric shapes correspondence

Figure 4. Evaluation of the ICSKM algorithm applied to non-isometric
shapes from the TOSCA database. For the primates and animals categories,
the algorithm is provided with pairs of 18 and 11 landmark points, respec-
tively. The distortion curves are evaluated by calculating the geodesic error
of 18 corresponding points for the primates category, and 10 corresponding
points for the animals category.

Figure 5. Texture mapping of non-isometric shapes. The textures of wolf
and dog shapes were transfered to cat and horse shapes, respectively. The
ICSKM algorithm was initialized by 7 landmark points selected using the
farthest point strategy [9].

V. CONCLUSIONS

A new method for correspondence detection between
nonrigid shapes was introduced. The method is based on
the evaluation of the spectral kernel distance, optimized by
an ICP based approach in the spectral domain. We have
demonstrated the effectiveness of the ICSKM algorithm by
achieving state-of-the-art results on shape matching bench-
marks. In the future, we intend to apply the ICSKM algo-
rithm for other purposes, such as registration of rigid shapes,
matching stereo images, and comparing deformable shapes
with texture, and to study the potential and the limitations of
the proposed approach for refining correspondences between
shapes with topological noise or partially missing data.



Figure 6. Symmetry axis of several shapes from the TOSCA database.
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