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Abstract

Multidimensional-scaling (MDS) is an information anal-
ysis tool. It involves the evaluation of distances between
data points, which is a quadratic space-time problem. Then,
MDS procedures find an embedding of the points in a low
dimensional Euclidean (flat) domain, optimizing for the
similarity of inter-points distances. We present an efficient
solver for Classical Scaling (a specific MDS model) by ex-
tending the distances measured from a subset of the points
to the rest, while exploiting the smoothness property of the
distance functions. The smoothness is measured by the L2

norm of the Laplace-Beltrami operator applied to the un-
known distance function. The Laplace Beltrami reflects the
local differential relations between points, and can be com-
puted in linear time. Classical-scaling is thereby reformu-
lated into a quasi-linear space-time complexities procedure.

1. Introduction

With recent advances in science and technology the
amount of digital information being stored and analyzed
constantly expands and is sometimes referred to as big data.
Along with the growth in size of available data, appears the
need for simplification and dimensionality reduction. Meth-
ods, such as principal component analysis (PCA) [29], self-
organizing map (SOM) [17], Local Coordinate Coding [31]
[32], and multidimensional scaling (MDS) [5], are data re-
duction techniques that occupy the minds of researchers,
who constantly try to reduce their computational and space
complexities. Dimensionality reduction achieved by em-
bedding data into a Euclidean space is often referred to as
flattening. For example, in [26] and [12], multidimensional
reduction was applied to numerically flatten models of mon-

keys’ cortical surfaces. In [27], [24], and [22], flattening
was used for image and video analysis.

A family of distance preserving data flattening tech-
niques is the multidimensional scaling or MDS. These
methods attempt to map the data into a low dimensional Eu-
clidean space, while preserving, as much as possible, some
affinity measures between each pair of data points. In [14],
classical scaling was used to map non-rigid curved surfaces
into a Euclidean space, such that the geodesic distances be-
tween each pair of points is as similar as possible to the
Euclidean distance between the corresponding embedded
points. It was shown that the embedded set of points, re-
ferred as a canonical form, is invariant to isometric defor-
mations of the non-rigid object. Canonical forms could
thereby be used for non-rigid object matching and classi-
fication. Here, we give as an example the construction of
such forms that we choose to embed in R3. We show how
to efficiently avoid the need to store the full pairwise dis-
tances matrix.

The first step in most distance preserving mapping meth-
ods is the computation of all the pairwise distances. When
the data lies on a manifold, and geodesic distances need to
be computed, this task can be time consuming and in some
cases impractical. Efficient procedures such as the fast
marching method [16], can compute the distance map be-
tween all pairs of points, in time complexity of O(p2 log p),
where p is the number of data points. The time and space
complexities are at least quadratic in the number of points,
which prohibits dealing with more than a few thousands of
points. Attempts to reduce the space complexity of the dis-
tance map were made in the locally linear embedding (LLE,
[23]) and the Hessian locally linear embedding (HLLE,
[10]) methods, where only local distances were stored be-
tween nearby data points, so that the effective space com-
plexity is O(p). In [3], Belkin and Niyogi suggested to em-
bed data points into the Laplace-Beltrami eigenspace for the
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purpose of data clustering. There, as well, only the clos-
est neighbors of each data points are considered in order to
construct the Laplace-Beltrami operator. That way, the lo-
cal metric is captured while the full pairwise distance map
is not evaluated and the global geometric structured is ig-
nored.

The difficulty to deal with all pairwise distances was re-
alized by De Silva and Tenenbaum in [28]. They suggested
to flatten only a subset of landmark data points. These land-
marks were then used as anchors for interpolating the rest
of the points in the target embedded space. The Nyström
method [2] is an efficient technique that can be used to con-
struct low rank approximations of positive semidefinite ma-
trices, using only a few columns chosen randomly from
the matrix. In [30], Nyström method was used for ap-
proximating the affinity matrix and perform MDS. Instead
of random sampling, an incremental sampling scheme was
proposed for choosing the columns one by one, such that
the variance of the affinity matrix is minimized. [8] used
Nyström method for graph drawing, and proposed a dif-
ferent sampling scheme based on the farthest point strat-
egy, which we find to be more efficient and provided bet-
ter approximation results. A regularization term can then
be used for the pseudo-inverse computation, which further
improves the approximation. The graph shortest path dis-
tances are being measured using BFS, which assumes all
edges are with equal length. [19] combined Kernel-PCA
[25] with Nyström method and showed how it can be ef-
ficiently used for mesh segmentation and for finding mesh
correspondence.

Spectral MDS (SMDS) [1] translates the classical scal-
ing problem into the spectral domain which allows to sig-
nificantly reduce the time and space complexities of the flat-
tening procedure. The full distance map is evaluated using
interpolation from a small set of sampled points, between
which the geodesic distances are computed. Then, the clas-
sical scaling problem is solved using matrix decomposition
in the spectral domain. Here, inspired by the Spectral-MDS,
we develop a novel method for distance interpolation that is
more efficient, simpler, and more accurate, and avoids the
need to explicitly use the spectral domain. Working in the
spacial domain is essentially equivalent to using all of the
eigenvectors in the spectral domain and is therefore more
accurate. Using the interpolation phase, we show how to
reformulate the classical scaling problem so that only small
matrices are stored and involved in the computation. The
numerical experiments demonstrate the improved accuracy
and efficiency compared to [1].

The structure of the paper is as follows. In Section 2
we review the Classical Scaling method. In Section 3 we
formulate our distance interpolation technique, and show
how to approximate the affinity matrix by decomposing it to
smaller matrices. Next, in Section 4 we use the interpolation

as part of the classical scaling algorithm and show how to
solve it without explicitly computing and storing the full
pairwise distance matrix. Finally, in Section 5 we support
the proposed method with experimental results, followed by
conclusions.

2. Review of Classical Scaling
Multidimensional scaling (MDS) methods aim at find-

ing an embedding Z in a low dimensional space Rm of p
points such that the Euclidean distances between their cor-
responding coordinates ‖zi − zj‖Rm are as close as pos-
sible to some affinity measure (Dij). Classical scaling is
one such procedure. It is defined through the minimization
problem argZ min

∥∥ZZT + 1
2JEJ

∥∥
F

, where Eij = D2
ij

and Jij = δij − 1
p , and as usual, δij = 0 for i 6= j and

δii = 1 for all i. The solution for this problem is achieved
by decomposing the matrix − 1

2JEJ into its eigenvalues
and eigenvectors matrices V ΛV T . Then, by considering
the m largest eigenvalues and corresponding eigenvectors
in the truncated matrices Ṽ and Λ̃, the solution is given
by Z = Ṽ Λ̃

1
2 . The traditional classical scaling algorithm

requires the computation of the full Ep×p matrix which is
practically impossible to obtain when dealing with more
than several thousands of points. When the points lay on
a surface, the affinities Dij can be defined as the geodesic
distances between the data points. In this case, the values
of D are invariant to isometric deformations of the surface,
thus revealing its intrinsic geometry. In this paper we focus
on this case and define Eij as the squared geodesic distance
between points i and j. In the next section, we show how to
approximate the matrix E from a small subset of its rows,
thus significantly reducing the space and time complexities.

3. Distances Interpolation
LetM be a manifold embedded in some Rm space. De-

note by D(x, y) the geodesic distance between x, y ∈ M.
We assumeM is sampled by a set of p points, approximat-
ing the smooth surface, and hence D can be approximated
by a p × p matrix. Denote by E the p × p matrix such that
Eij = D2

ij . Our goal is to compute E, as the first step of
the classical MDS.

We next show how to approximate the matrix E from a
small subset of its rows. Let F be a n × p matrix which
holds n chosen rows of E. The rows selection and the
construction of F are discussed in Subsection 3.2. We
would like to find a p × n matrix M such that E ≈ MF .
The task of approximating a matrix by decomposing it into
smaller matrices has already been addressed before in sev-
eral places, see for example [11], [20]. One such method is
the Nyström method [2], which is simple and accurate way
for approximating positive semi-definite matrices. Never-
theless, Nyström like procedures usually do not use any



prior knowledge about the matrix to be decomposed. Here,
we exploit the fact that the values of E are geodesic dis-
tances on the manifold. This additional knowledge allows
us have a better estimation of the matrix M .

3.1. Approximating E

We first discuss the continuous case, and then move the
discrete one. Let {xi}ni=1 be a set of n landmark points
chosen from the manifold, and let x0 be an arbitrary point
on the manifold. Denote by ē : x ∈ M → R the squared
geodesic distance from x0 to any other point x ∈ M. De-
note by fi the value of ē at point xi, such that ē(xi) = fi,
and assume that we know these values. Our goal now is to
interpolate the function ē(x) from its n known values.

We follow the idea of Aflalo et al. presented in [1].
There, ē(x) was interpolated using the Dirichlet energy
minimization

argē min E(ē) s.t. ē(xi) = fi, (1)

where
E(ē) =

∫
x∈M

‖∇ē(x)‖22da(x) (2)

is the Dirichlet’s energy of the function ē(x). da(x) is the
infinitesimal volume element, and the gradient is defined
with respect to the manifold. The energy E(ē) was termed
in [1] as the smoothness measure of ē(x). Thus, defining the
interpolation as that of finding the smoothest function ē(x)
that satisfies the constraints ē(xi) = fi.

Here, we change the smoothness term to be the L2 norm
of the Laplace-Beltrami operator applied to the unknown
distance function ē. We discuss the advantages of this for-
mulation in Subsection 3.3. The energy now reads

E(ē) =

∫
x∈M

(∆ē(x))
2
da(x) =

∫
x∈M

(
l̄(x)

)2
da(x), (3)

where ∆ē(x) is the Laplace-Beltrami operator on M ap-
plied to ē, and we denote l̄(x) = ∆ē(x).

In the discrete domain, denote by e and l the discretiza-
tion of ē and l̄. l and e are p× 1 column vectors, related by
l = Le, where Lp×p is the sparse discrete Laplace-Beltrami
operator. Any discretization matrix of the Laplace-Beltrami
operator can be used. Here, we choose to use the general
form L = A−1W , where A is a diagonal matrix such that
Aii is the metric infinitesimal volume element, andW is the
classical cotangent weights matrix for triangulated surfaces
as defined in [21]. For other data-sets, other Laplacian defi-
nitions can be used. The energy in its discrete form reads

E(e) =

p∑
i=1

li
2Aii = lTAl = eTLTALe, (4)

and the interpolation problem can be written as

e∗ = arge min eTLTALe s.t. Be = f, (5)

where f is a n × 1 vector holding the values {fi}ni=1, and
Bn×p is a selection matrix, whose rows are a subset of the
identity matrix’s rows, and hence multiplyingB by the vec-
tor e extracts the subset f from e. An alternative form of
the problem using a penalty function instead of constraints
is given by

e∗ = arge min(eTLTALe+ µ‖Be− f‖2), (6)

where the scalar µ is sufficiently large. The solution is given
by

M = (LTAL+ µBTB)−1µBT

e∗ = Mf. (7)

Recapping, given a vector of known values fn×1 sam-
pled from e, one can compute Mp×n and then e∗ = Mf ,
which is a reconstruction of e, in the sense of being as
smooth as possible while satisfying the above constraints.
Figures 1 and 2 demonstrate the reconstruction of e for flat
and curved manifolds (where e is treated as a column of the
matrix E).

Next, let F be a n×p matrix which holds n chosen rows
of E. Then, we can simply interpolate all the columns of
E simultaneously by Ê = MF . As E is symmetric by
definition, we symmetrize its reconstruction by

Ê =
1

2
(MF + FTMT ). (8)

Symmetrizing Ê allows us to combine the interpolation
with the classical MDS algorithm, as we will see in Sec-
tion 4. Note that we do not need to store the whole matrix
Ê, but rather keep only the matrices M and F , and thereby
reduce the space complexity from O(p2) to O(np). In the
triangulated surfaces we tested, for accurate reconstruction
of E, it was enough to select n ≈ 50, where the number of
vertices, p, approximating the surface was in the range of
103 to 106.

3.2. Choosing the set of rows

The matrix decomposition developed in the previous sec-
tion can be seen as a projection of E on the subspace
spanned by the chosen rows. Hence, a good choice of rows
would be one that captures the range of E with high ac-
curacy. The farthest point sampling strategy is a method
for selecting points from a manifold that are far away from
each other, and is known to be 2-optimal in sense of cov-
ering [15]. The first point is selected at random. Then, at
each iteration, the farthest point (in geodesic sense) from
the already selected ones is selected.



The geodesic distance computation from a point to the
rest of the p surface points can be performed efficiently us-
ing, for example, the fast marching method [16] for two di-
mensional triangulated surfaces, or using Dijkstra’s shortest
path algorithm [9] for higher dimensions, both with com-
plexity ofO(p log p). The complexity for choosing n points
(and hence also obtaining the geodesic distances from them
to the rest of the manifold points) with farthest point sam-
pling is thus O(np log p).

Here, we use the farthest point sampling strategy as an
efficient way of obtaining n rows of the matrix E. We
choose n samples from the manifold which corresponds to
n rows of E, and hold them in the n × p matrix F . Since
the chosen samples are far from each other, the correspond-
ing rows are expected to capture most of the information
of the matrix. While other existing methods need to store
the whole matrix in memory or at least scan it a few times
to decide which rows are best to choose, here, we do not
need to know the entire matrix in advance. This is a strong
advantage which could be exploited in problems related to
pairwise geodesic computation.

3.3. Formulation justification

As discussed in the previous section, Aflalo et al. have
used an energy minimization formulation with a smooth-
ness term to interpolate the matrix E. This suggested en-
ergy minimization formulation (Equations (1), (2)) has sev-
eral benefits. (1) It yields a simple matrix decomposition
for E. (2) The matrix M in the solution e∗ = Mf does not
depend on the values of f but only on the set of indices of
chosen rows. Thus, we can compute M once and interpo-
late all the columns of E simultaneously. (3) We expect the
geodesic distance function ē(x) to be smooth over the mani-
fold, as nearby points should have similar ē(x) values. This
feature is exploited in the smoothness measure definition.

Aflalo et al. [1] demonstrated state of the art results for
the matrix reconstruction and the embedding. Here, we fol-
lowed their idea, with a few significant modifications. (1)
Denote by F0 the n×nmatrix which is the intersection of F
and FT inE. In other words, F0 holds all pairwise geodesic
distances between the n landmark points. The method in [1]
used only the values in F0 for the interpolation task, by first
reconstructing F from F0, and then reconstructing E from
F . The benefit of this formulation is that it results in a sym-
metric decomposition Ê = MF0M

T = MF̂ , while here
we need to symmetrize the solution and use an additional
trick presented in Section 4 for integration with MDS. Here,
we skip the reconstruction of F , as the values of F were
computed when F0 was computed. (2) In [1] all computa-
tions were performed in the spectral domain, while here all
computations are done in the spacial domain. In the spec-
tral domain, only part of the eigenvectors of the Laplace-
Beltrami is considered (100-300 eigenvectors), while here

in the spacial domain, no eigenvectors are omitted. There-
fore, the accuracy is clearly better. The accuracy of both
methods becomes the same only when using all p eigenvec-
tors of L in the spectral domain. (3) Minimization of the
Dirichlet energy results in spikes (see Figure 1). The L2 of
the Laplacian is hence a more appropriate smoothness mea-
sure, turning to one higher degree of differentiation, while
keeping the solution simple.

In Figure 1 we demonstrate the interpolation of an arbi-
trary column of E from its n values. We use a flat surface,
and hence the function is simply the squared Euclidean dis-
tance from a point in R2, z = x2 + y2, where x and y
are the Euclidean coordinates. We compare our suggested
Laplacian smoothness measure to the Dirichlet smoothness
measure. As can be seen, when using the Dirichlet measure,
the function includes sharp discontinuities at the constraint
points.

Figure 1: Reconstruction of a column of E on a flat sur-
face. Left: the true values. The chosen n = 13 samples
are marked with red points. The samples are the constraints
ē(xi) = fi. Middle and right: the reconstructed columns
e∗ = Mf using Dirichlet and Laplacian smoothness terms.
For comparison, we colored the function according to the
absolute error |e∗ − e|.

In Figure 2, we visualize the reconstruction of a column
of E on a curved surface, from its n known values, using
our method. As can be seen, the true and reconstructed
functions look similar.

4. Accelerating Classical Scaling

We are now ready to present an efficient alternative for
the classical scaling algorithm using the interpolation dis-
cussed in the previous section. Recall that Ê = 1

2 (MF +
FTMT ) is the approximation of E obtained in Equation
(8). A straightforward solution would be similar to classi-
cal scaling. Namely, compute Y = − 1

2JÊJ , decompose it
into V1Λ1V

T
1 , and then form the truncated decomposition

Ṽ1Λ̃1Ṽ
T
1 , where Λ̃1 and Ṽ1 hold the m largest eigenval-

ues and m corresponding eigenvectors. The solution is then
given by

Z = Ṽ1Λ̃
1
2
1 . (9)



Figure 2: Reconstruction of a column of e on a curved sur-
face. Left: the curved surface. Middle: the true distance
function e from the middle point of the surface, sampled in
n = 30 points marked with red. Right: The interpolation
e∗ = Mf of the distance function from the samples, using
our method.

Since we would like to avoid computing and storing large
matrices, the above straightforward procedure would fail to
serve this purpose. To that and, we propose an alternative,
in which we first decompose Y into smaller matrices and
then extract the eigenvectors and eigenvalues from the small
matrices.

First, notice that the rank of Y is at most 2n. This
is due to the fact that F is of size n × p, and hence the
rank of MF is at most n. Consequently, the rank of
Ê = 1

2 (MF + (MF )T ) is at most 2n. Multiplying by J
from both sides, the rank of Y = − 1

2JÊJ remains bounded
by 2n. Therefore, Y can be decomposed into matrices that
are not larger than 2n × p. Such a decomposition could
be obtained as follows: Define S = (M |FT ) a horizontal
concatenation of the two matrices M and FT . Define the

block-permutation matrix T =

(
0n×n In×n
In×n 0n×n

)
where I

is the identity matrix. It is easy to verify that

Ê =
1

2
(MF + FTMT ) =

1

2
STST . (10)

Using QR factorization, it is possible to efficiently decom-
pose JS (p× 2n matrix) into Q (p × 2n matrix) and R
(2n × 2n matrix), such that JS = QR. The columns of Q
are orthonormal. R is an upper triangular matrix. We can
now write,

Y = −1

2
JÊJ = −1

4
JSTSTJ = −1

4
QRTRTQT . (11)

Our next step is to compute an eigenvalue decomposition
of− 1

4RTR
T , that is, V2Λ2V

T
2 , and truncate the matrices to

get Ṽ2Λ̃2Ṽ
T
2 , where Λ̃2 and Ṽ2 hold the m largest eigenval-

ues and m corresponding eigenvectors. We have

− 1

4
RTRT ≈ Ṽ2Λ̃2Ṽ

T
2 , (12)

and hence
Y ≈ QṼ2Λ̃2Ṽ

T
2 Q

T . (13)

It is clear that this is the truncated eigenvalue decomposition
of Y since QV2 is orthonormal as a product of orhonormal
matrices, and Λ2 is diagonal. Therefore, we managed to
obtain the truncated eigenvalue decomposition without ex-
plicitly computing Y . Finally, the solution of the classical
scaling problem is given by

Z = QṼ2Λ̃
1
2
2 . (14)

We sum up the final MDS acceleration in Procedure 1.

Procedure 1 fast-MDS

Input A manifoldM represented by p vertices, the number
of samples n and the embedding dimension m.

Output A matrix Z which contains the coordinates of the
embedding.

1: Compute the Laplace-Beltrami matrix L = A−1W .
2: Choose n vertices fromM and compute the matrix F ,

using farthest point sampling.
3: ComputeM according to Equation (7), whereB selects

the set of chosen vertices.
4: Define T , S according to Section 4, and J according to

Section 2.
5: Compute the QR factorization JS = QR.
6: Compute Ṽ2 and Λ̃2, which contain them largest eigen-

values and corresponding eigenvectors of − 1
4RTR

T ,
using eigenvalue decomposition.

7: Return the coordinates matrix Z = QṼ2Λ̃
1
2
2 .

5. Experimental Results
Throughout this section, we compare our proposed

method which we term Fast-MDS (FMDS) with the fol-
lowing related dimensionality reduction methods: Spec-
tral MDS (SMDS [1]), locally linear embedding (LLE,
[23]), Laplacian Eigenmaps [3], the method suggested in
[28] termed Landmark-Isomap, the Algorithm proposed by
[19], which uses the Nyström method to efficiently perform
Kernel-PCA with gaussian radial basis function (termed
here as KPCA), the method presented by [8], which is
termed SSDE, and finally the method presented by [30],
which is termed IS-MDS. All above methods were men-
tioned in the introduction. We also compare the matrix ap-
proximation we developed in Section 3 with the Nyström
matrix approximation [2]. Throughout this section we use
the Cat, David, Lioness, Centaur and Horse shapes from the
TOSCA database [6]. Each shape contains 3400 vertices
unless specified otherwise. When using SMDS, we use 200
eigenvectors. The parameter µ is set to 50.

When using MDS to flatten the intrinsic geometry of a
surface into a Euclidean space, the output is known as a
canonical form [14]. This form is invariant to isometric de-
formations of the surface. In our first example, Figure 3,



we show the canonical forms of David and Cat shapes, ob-
tained via fast-MDS. This demonstrates the idea that the
canonical forms are invariant to isometric deformations of
the non-rigid surface.

Figure 3: Shapes (left) from the TOSCA database [6] and
their corresponding canonical forms (right) obtained by
fast-MDS

In our next experiment, Figure 4, we measure the recon-
struction error of the squared affinity matrix E of the Cat
shape, defined as 1

p2 ‖Ê − E‖2F . The Cat shape is chosen
for the demonstration of figures 5 and 4 as well. The results
are similar for all shapes we have experimented with. Here,
we refer by best M to the best reconstruction Ê = MF with
respect to M , given by minM

1
p2 ‖E −MF‖2F . In addition,

we replace the matrix approximation developed in Section
3 with Nyström approximation and refer to this error plot as
Nystrom.

Figure 4: The reconstruction error of the affinity matrix E
with respect to the number of samples n, using different
methods.

In Figure 5 we present the final embedding error ob-
tained by different methods. This error is measured by

stress(Z)− stress(Z∗), where

stress(Z) =
1

p2
‖ZZT +

1

2
JEJ‖F , (15)

Z is the obtained embedding, and Z∗ is the embedding
obtained by full MDS. In the Landmark-Isomap (LM-
ISOMAP) method, a group of landmarks is first selected
and embedded using classical MDS. Then, the rest of the
points are projected onto the subspace spanned by the em-
bedded landmarks. This method is effective but limited,
since the embedding subspace is determined only by the
landmark points.

Figure 5: The embedding error of different methods with
respect to the number of samples n, defined in Equation
(15).

Figure 6 compares visually between canonical forms de-
rived from full classical MDS, fast-MDS, spectral MDS,
IS-MDS and SSDE. As can be seen, fast-MDS provides a
similar canonical form to the full MDS. The corresponding
stress error defined in Equation (15) is displayed under each
canonical form.

In Figure 7 we visualize the classification of 1200 digits
from the MNIST database [18]. Each digit is represented by
an 28× 28 image and can be treated as a point in a high di-
mensional space R784. We connect each point to its K near-
est neighbors, so that we get a connected manifold in R784.
The distance between neighbor images is calculated using a
simple L2 norm, and the geodesic distance between far im-
ages is calculated using Dijkstra’s shortest path algorithm
[9]. We apply MDS and the proposed fast-MDS method and
flatten the data into a two dimensional space. For visual
comparison between the two methods, the classical-MDS
embedding points were colored according to their horizon-
tal location, and then the fast-MDS points were colored with



MDS FMDS SMDS IS-MDS SSDE

Stress 344.4 366.9 389.6 651.9 892.1

Stress 261.1 282.8 316.4 2095.8 1016.9

Figure 6: Canonical forms of Dog and Cat, using n =
50 samples for the compared methods. Left to right:
The original shape followed by canonical forms obtained
by classical-MDS, fast-MDS, spectral-MDS, IS-MDS and
SSDE. The stress error 1

p2

∥∥ZZT + 1
2JEJ

∥∥
F

of the em-
bedding is displayed at the bottom of the corresponding
form.

same colors for same digits. As can be seen, the embedding
of FMDS is similar to full MDS, and the proposed method
works for high dimensional manifolds.

Figure 7: Flat embedding of 1200 images of zeros and ones
from the MNIST database, using full MDS and the pro-
posed Fast-MDS. Zeros are marked with filled circles and
ones are marked with empty squares.

Multidimensional Scaling can be used to visualize the re-
lations between data points, represented by a distance ma-
trix. In the following example, we use MDS to visualize
the relations between the canonical forms of 61 nonrigid
shapes. We computed each one of the canonical forms us-
ing FMDS, KPCA, LLE and Laplacian Eigenmaps. Then,
we aligned each pair of canonical forms using the iterative
closest point algorithm (ICP [4], [7]), which finds the rigid
transformation between two sets of points by minimizing
the distance between them. We computed the Euclidean
distances between each aligned pair of the 61 canonical
forms, and obtained a 61 × 61 pairwise Euclidean distance

matrix. Finally, we embedded the distance matrix into R2

using Classical MDS. Figure 8 shows the results. As can
be seen, canonical forms computed by MDS, FMDS and
SMDS can be used for classification of the nonrigid ob-
jects. The other methods mainly consider local relations of
the data and hence their canonical forms are less distinctive.

Figure 8: Flat embedding of 61 canonical forms ob-
tained by MDS. The canonical forms are the embed-
ding results of a different isometric poses of Cat, Cen-
taur, David, Horse and Lioness, using MDS, the proposed
fast-MDS (FMDS), Spectral-MDS (SMDS), kernel-PCA
with nyström (KPCA), locally linear embedding (LLE) and
Laplacian Eigenmaps. A quantitative measure of the classi-
fication, which is invariant to linear transformation of the
data, is computed by Jf = trace(S−1

T SW ) according to
[13]. There, SW is the within-cluster scatter matrix, SB

is the between-cluster scatter matrix, and ST = SW + SB

is the total scatter matrix. The smaller Jf the better is the
classification.

Finally, we evaluated the computation time of MDS,
FMDS, and SMDS on 5 shapes from the database and then
averaged the results. For each shape we created a triangu-
lated mesh with p vertices, and then computed the embed-
ding. The algorithms were evaluated on an i5 Intel com-
puter with 4GB RAM. Figure 9 presents the average time it
took each of the methods to compute the result, including
the computation of the geodesic distances. The MDS graph
was computed only on part of the values due to time and
memory limitations. Without memory limitations, its final
computation time would have taken more than a couple of



hours.

Figure 9: computation time (in seconds) for MDS, fast-
MDS, and spectral-MDS on shapes with different number
of vertices.

6. Conclusions

Using the assumption of a smooth distance function, we
were able to reduce the time and space complexities in di-
mensionality reduction of big data. Following the ideas
in spectral-MDS, we showed how to split the large dis-
tances matrix into two much smaller matrices, which are
obtained by solving a simple interpolation problem. Then,
we showed how to reformulate the classical scaling prob-
lem without explicitly computing the pairwise geodesic dis-
tances matrix. The challenging time consuming problem of
geodesic distances computation is resolved by sampling the
surface in just a few points, and computing the geodesic dis-
tances only from these points. As opposed to spectral-MDS,
we do not translate the problem into the spectral domain, but
rather work in the space domain without truncating of the
eigenspace in which we operate. This allows us to save time
while improving the accuracy of the original problem. As
an example, we demonstrated that an accurate computation
of a canonical form, traditionally involving the calculation
of all pairwise geodesic distances, which is usually consid-
ered a preprocessing stage, can be very efficiently computed
on a standard computer.
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