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Abstract. Regularization of images with matrix-valued data is impor-
tant in medical imaging, motion analysis and scene understanding. We
propose a novel method for fast regularization of matrix group-valued
images.
Using the augmented Lagrangian framework we separate total-

variation regularization of matrix-valued images into a regularization and
a projection steps. Both steps are computationally efficient and easily
parallelizable, allowing real-time regularization of matrix valued images
on a graphic processing unit.
We demonstrate the effectiveness of our method for smoothing sev-

eral group-valued image types, with applications in directions diffusion,
motion analysis from depth sensors, and DT-MRI denoising.

Keywords: Matrix-valued, Regularization, Total-variation, Optimiza-
tion, Motion understanding, DT-MRI, Lie-groups.

1 Introduction

Matrix Lie-group data, and specifically matrix-valued images have become an in-
tegral part of computer vision and image processing. Such representations have
been found useful for tracking [35,45], robotics, motion analysis, image pro-
cessing and computer vision [10,32,34,36,48], as well as medical imaging [6,31].
Specifically, developing efficient regularization schemes for matrix-valued images
is of prime importance for image analysis and computer vision. This includes
applications such as direction diffusion [25,42,47] and scene motion analysis [27]
in computer vision, as well as diffusion tensor MRI (DT-MRI) regularization
[7,14,21,40,43] in medical imaging.
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In this paper we present an augmented Lagrangian method for efficient reg-
ularization of matrix-valued images with constraints on the singular values or
eigenvalues of the matrices. Examples include the special-orthogonal, special-
Euclidean, and symmetric positive-definite matrix groups. We show that the
augmented Lagrangian technique allows us to separate the optimization process
into a total-variation (TV, [38]) regularization, or higher-order regularization
step, and an eigenvalues or singular values projection step, both of which are
simple to compute, fast and easily parallelizable using consumer graphic process-
ing units (GPUs), achieving real-time processing rates. The resulting framework
unifies algorithms using in several domains into one framework, where only the
projection operator is slightly different according to the matrix group in ques-
tion. While such an optimization problem could have been approached by gen-
eral saddle-point solvers such as [12], the domain of our problem is not convex,
requiring such algorithms to be modified in order to allow provable convergence.
We suggest using two sets of auxiliary fields with appropriate constraints.

One field allows us to simplify the total-variation regularization operator as
done, for example, in [11,20,41]. Another field separates the matrix manifold
constraint into a simple projection operator. This results in a unified framework
for processing of SO(n), SE(n) and SPD(n) images, as we describe in Section 3.
In Section 4 we demonstrate a few results of our method, for regularization of
3D motion analysis, direction diffusion and diffusion tensor imaging. Section 5
concludes the paper.

2 A Short Introduction to Lie-Groups

Lie-groups are groups endowed with a differentiable manifold structure and an
appropriate group action. Their structure allows us to define priors on Lie-group
data in computer vision and has been the subject of intense research efforts,
especially involving statistics of matrix-valued data [31], and regularization of
group-valued images [43], as well as describing the dynamics of processes involv-
ing Lie-group data [27]. We briefly describe the Lie-groups our algorithm deals
with, and refer the reader to the literature for an introduction to Lie-groups [22].
The rotations group SO(n) - The group SO(n) describes all rotation ma-

trices of the n-dimensional Euclidean space,

SO(n) =
{
R ∈ Rn×n,RTR = I, det(R) = 1

}
. (1)

The special-Euclidean group SE(n) - This group represents rigid transfor-
mations of the n-dimensional Euclidean space. This group can be thought of
as the product manifold of the rotations manifold SO(n) and the manifold R

n

representing all translations of the Euclidean space. In matrix form this group
is written as

SE(n) =

{(
R t
0 1

)
,R ∈ SO(n), t ∈ R

n

}
. (2)
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The symmetric positive definite group SPD(n) - This group is the group of
symmetric positive definite matrices. This group has been studied extensively in
control theory (see [17] for example), as well as in the context of diffusion tensor
images [31], where the matrices are used to describe the diffusion coefficients
along each direction. By definition, this group is given in matrix form as

SPD(n) = {A ∈ Rn×n,A � 0} . (3)

3 An Augmented Lagrangian Regularization Algorithm
for Matrix-Valued Images

We now proceed to describe a fast regularization algorithm for images with
matrix-valued data, referred to as Algorithm 1. The optimization problem we
consider is

argmin
u∈G

∫
‖u−1∇u‖+ λ‖u− u0‖2dx, (4)

where ‖ · ‖ is the Frobenius norm, u represents an element in an embedding of
the Lie-group G into Euclidean space, specifically for the groups SO(n), SE(n),
and SPD(n). We use the notation ∇u to denote the Jacobian of u, described as
a column-stacked vector. The regularization term ‖u−1∇u‖ expresses smooth-
ness in terms of the geometry of the Lie-group. Elements of SO(n) can be
embedded into R

m,m = n2, and elements of SE(n) can similarly be embed-
ded into R

m,m = n(n + 1). The elements of SPD(n) can be embedded into
R
m,m = n(n+ 1)/2.
For brevity’s sake, we use the same notation to represent the Lie-group el-

ement, its matrix representation, and the embedding onto Euclidean space, as
specified in each case we explore.
The term ‖u−1∇u‖ can be thought of as a regularization term placed on ele-

ments of the Lie algebra about each pixel. In order to obtain a fast regularization
scheme, we look instead at regularization of an embedding of the Lie-group ele-
ments into Euclidean space,

argmin
u ∈ G

∫
‖∇u‖+ λ‖u− u0‖2dx. (5)

The rationale behind the different regularization term ‖∇u‖ stems from the fact
that SO(n) and SE(n) are isometries of Euclidean space, but such a regular-
ization is possible whenever the data consists of nonsingular matrices, and has
been used also for SPD matrices [46]. We refer the reader to our technical report
[37] for a more in-depth discussion of this important point. Next, instead of re-
stricting u to G, we add an auxiliary variable, v, at each point, such that u = v,
and restrict v to G, where the equality constraint is enforced via augmented La-
grangian terms [23,33]. The suggested augmented Lagrangian optimization now
reads
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min
v∈G,u∈Rm

max
μ
L(u, v;μ) = (6)

min
v∈G,u∈Rm

max
μ

∫ [ ‖∇u‖+ λ‖u− u0‖2+
r
2
‖u− v‖2 + tr(μT (u− v))

]
dx.

Given a fixed Lagrange multiplier μ, the minimization w.r.t. u, v can be split
into alternating minimization steps with respect to u and v, both of which are
trivial to implement in an efficient and parallel manner.

3.1 Minimization w.r.t. v

The minimization w.r.t. v is a projection problem per pixel,

argmin
v∈G

r

2
‖v − u‖2 + tr(μT (u − v))

= argmin
v∈G

r

2

∥∥∥v − (μ
r
+ u

)∥∥∥2 (7)

= Proj
G

(μ
r
+ u

)
,

where ProjG denotes a projection operator onto the specific matrix-group G, and
its concrete form for SO(n),SE(n) and SPD(n) will be given later on.

3.2 Minimization w.r.t. u

Minimization with respect to u is a vectorial TV denoising problem

argmin
u∈Rm

∫
‖∇u‖+ λ̃ ‖u− ũ (u0, v, μ, r)‖2 dx, (8)

with ũ = (2λu0+rv+μ)
(2λ+r) . This problem can be solved via fast minimization tech-

niques for TV regularization of vectorial images, such as [9,16,19]. We chose to
use the augmented-Lagrangian TV algorithm [41], as we now describe. In order
to obtain fast optimization of the problem with respect to u, we add an auxil-
iary variable p, along with a constraint that p = ∇u. Again, the constraint is
enforced in an augmented Lagrangian manner. The optimal u now becomes a
saddle point of the optimization problem

min
u ∈ R

m

p ∈ R
2m

max
μ2

∫ [
λ̃ ‖u− ũ (u0, v, μ, r)‖2 + ‖p‖
+μT2 (p−∇u) + r2

2
‖p−∇u‖2

]
dx. (9)

We solve for u using the Euler-Lagrange equation,

2λ̃(u− ũ) + (div μ2 + r2 div p) +Δu = 0, (10)

for example, in the Fourier domain, or by Gauss-Seidel iterations.
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The auxiliary field p is updated by rewriting the minimization w.r.t. p as

argmin
p ∈ R

2m

∫
‖p‖+ μT2 p+

r2
2
‖p−∇u‖2, (11)

with the closed-form solution [41]

p =
1

r2
max

(
1− 1

‖w‖ , 0
)
w,w = r2∇u− μ2. (12)

Hence, the main part of the proposed algorithm is to iteratively update v, u,
and p respectively. Also, according to the optimality conditions, the Lagrange
multipliers μ and μ2 should be updated by taking

μk = μk−1 + r
(
vk − uk

)
, (13)

μk2 = μk−1
2 + r2

(
pk −∇uk

)
.

An algorithmic description is summarized as Algorithm 1.

Algorithm 1. Fast TV regularization of matrix-valued data

1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), pk(x), according to Equations (10,12).
3: Update vk(x), by projection onto the matrix group,

– For SO(n) matrices, according to Equation (14).
– For SE(n) matrices, according to Equation (15).
– For SPD(n) matrices, according to Equation (16).

4: Update μk(x), μk2(x), according to Equation (13).
5: end for

3.3 Regularization of Maps onto SO(n)

In the case of G = SO(n), Although the embedding of SO(n) in Euclidean space
is not a convex set, the projection onto the matrix manifold is easily achieved
by means of the singular value decomposition [18]. Let USVT =

(
μ
r + u

k
)
be

the singular vector decomposition (SVD) of μr + u
k. We update v by

vk+1 = Proj
SO(n)

(μ
r
+ uk

)
= U(x)VT (x), (14)

USVT =
(μ
r
+ uk

)
.

Other possibilities include using the Euler-Rodrigues formula, quaternions, or
the polar decomposition [26]. We note that the non-convex domain SO(n) pre-
vents a global convergence proof. The algorithm, in the case of G = SO(n) and
G = SE(n), can be made provably convergent using the method of Attouch et
al. [5]. The details and proof are shown in our technical report [3].
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3.4 Regularization of Maps onto SE(n)

In order to regularize images with values in SE(n), we use an embedding into
R
n(n+1) as our main optimization variable, u, per pixel.
The projection step w.r.t. v applies only for the n2 elements of v describing

the rotation matrix, leaving the translation component of SE(n) unconstrained.

Specifically, let v = (vR, vt), vR ∈ R
n2

, vt ∈ R
n denotes the rotation and

translation parts of the current solution, with a similar partition for the Lagrange
multipliers μ = (μR, μt). Updating v in step 3 of Algorithm 1 assumes the form

vk+1
R = Proj

SO(n)

(μR
r
+ ukR

)
, vk+1

t =
(μt
r
+ ukt

)
(15)

vk+1 = Proj
SE(n)

(vk) = (vk+1
R , vk+1

t ).

3.5 Regularization of Maps onto SPD(n)

The technique described above can be used also for regularizing symmetric
positive-definite matrices. Here, the intuitive choice of projecting the eigenvalues
of the matrices onto the positive half-space is shown to be optimal [24]. Many
papers dealing with the the analysis of DT-MRI rely on the eigenvalue decom-
position of the tensor as well, i.e. for tractography, anisotropy measurements,
and so forth.
For G = SPD(n), the minimization problem w.r.t. v in step 3 of Algorithm 1

can be solved by projection of eigenvalues. Let Udiag (λ)UT be the eigenvalue
decomposition of the matrix μ

r + u
k. v is updated according to

vk+1 = Proj
SPD(n)

(vk) = U(x) diag
(
λ̂
)
UT (x), (16)

Udiag (λ)UT =
(μ
r
+ uk

)
,
(
λ̂
)
i
= max ((λ)i , 0) ,

where the matrix U is a unitary one, representing the eigenvectors of the matrix,

and the eigenvalues
(
λ̂
)
i
are the positive projection of the eigenvalues (λ)i. Op-

timization w.r.t. u is done as in the previous cases, as described in Algorithm 1.
Furthermore, the optimization w.r.t. u, v is now over the domainRm×SPD(n),

and the cost function is convex, resulting in a convex optimization problem. The
convex domain of optimization allows us to formulate a convergence proof for the
algorithm similar to the proof by Tseng [44]. We refer the interested reader to
our technical report [3]. An example of using the proposed method for DT-MRI
denoising is shown in Section 4.

3.6 A Higher-Order Prior for Group-Valued Images

We note that the scheme we describe is susceptible to the staircasing effect, since
it minimizes the total variation of the map u. Several higher-order priors can
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be incorporated into our scheme that do not suffer from staircasing effects. One
such possibile higher-order term generalizes the scheme presented by Wu and Tai
[49], by replacing the per-element gradient operator with a Hessian operator. The
resulting saddle-point problem becomes

min
u ∈ R

m

p ∈ R
4m,

v ∈ G

max
μ2

∫ [ ‖p‖+ λ̃ ‖u− ũ (u0, v, μ, r)‖2
+μT2 (p−Hu) + r2

2 ‖p−Hu‖2
]
dx, (17)

where H denotes the per-element Hessian operator. We show an example using
the appropriately modified scheme in Figures 1,3

4 Numerical Results

As discussed above, the proposed algorithmic framework is considerably general,
suitable for various applications. In this section, several examples from differ-
ent applications are used to substantiate the effectiveness and efficiency of our
algorithm.

4.1 Directions Regularization

Analysis of principal directions in an image or video is an important aspect
of modern computer vision, in fields such as video surveillance [30, and ref-
erences therein], vehicle control [15], crowd behaviour analysis [29], and other
applications[32].
Since SO(2) is isomorphic to S1, the suggested regularization scheme can be

used for regularizing directions, such as principal motion directions in a video
sequence. A reasonable choice for a data term would try to align the first coor-
dinate axis after rotation with the motion directions in the neighborhood,

EPMD(U) =
∑

(xj ,yj)∈N (i)

(
U1,1 (vj)x + U1,2 (vj)y

)
,

where
(
xj , yj , (vj)x , (vj)y

)
represent a sampled motion particle [29] in the video

sequence, and Ui,j represent elements of the solution u at each point.
In Figure 1 we demonstrate two sparsely sampled, noisy, motion fields, and

a dense reconstruction of the main direction of motion at each point. The data
for the direction estimation was corrupted by adding component-wise Gaussian
noise. In the first image, the motion field is comprised of 4 regions with a different
motion direction at each region. The second image contains a sparse sampling

of an expansion motion field of the form v(x, y) = (x,y)T

‖(x,y)‖ . Such an expansion
field is often observed by forward-moving vehicles. Note that despite the fact
that a vanishing point of the flow is clearly not smooth in terms of the motion
directions, the estimation of the motion field is still correct.
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Fig. 1. TV regularization of SO(n) data. Left-to-right, top-to-bottom: a noisy, TV-
denoised, and higher-order regularized (minimizing Equation 17) version of a piecewise
constant SO(2) image, followed by a expansion field directions image. Different colors
mark different orientations of the initial/estimated dense field, black arrows signify the
measured motion vectors, and blue arrows demonstrate the estimated field.

In Figure 2 we used the algorithm to obtain a smooth field of principal mo-
tion directions over a traffic sequence taken from the UCF crowd flow database
[4]. Direction cues are obtained by initializing correlation-based trackers from
arbitrary times and positions in the sequence, and observing all of them simul-
tenaously. The result captures the main traffic lanes and shows the viability of
our regularization for real data sequence.
Yet another application for direction diffusion is in denoising of directions

in fingerprint images. An example for direction diffusion on a fingerprint image
taken from the Fingerprint Verification Competition datasets [1] can be seen in
Figure 3. Adding a noise of σ = 0.05 to the image and estimating directions
based on the structure tensor, we smoothed the direction field and compared it
to the field obtained from the original image. We used our method with λ = 3,
and the modified method based on Equation 17 with ε = 10, as well as the
method suggested by Sochen et al. [39] with β = 100, T = 425. The resulting
MSE values of the tensor field are 0.0317, 0.0270 and 0.0324, respectively, com-
pared to an initial noisy field with MSE = 0.0449. These results demonstrate
the effectiveness of our method for direction diffusion, even in cases where the
staircasing effect may cause unwanted artifacts.

4.2 SE(n) Regularization

We now demonstrate a smoothing of SE(3) data obtained from locally matching
between two range scans obtained from a Kinect device. For each small surface
patch from the depth image we use an iterative closest point algorithm[8] to
match the surface from the previous frame. The background is segmented by sim-
ple thresholding. The results from this tracking process over raw range footage
are an inherently noisy measurements set. We use our algorithm to smooth this
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Fig. 2. Regularization of principal motion directions. The red arrows demonstrate mea-
surements of motion cues based on a normalized cross-correlation tracker. Blue arrows
demonstrate the regularized directions fields.

Table 1. Processing times (ms) for various sizes of images, with various iteration counts

Outer iterations 15 15 25 50 100
GS iterations 1 3 1 1 1

320× 240 49 63 81 160 321
640× 480 196 250 319 648 1295
1920× 1080 1745 2100 2960 5732 11560

SE(3) image, as shown in Figure 4. It can be seen that for a careful choice of the
regularization parameter, total variation in the group elements is seen to signifi-
cantly reduce rigid motion estimation errors. Furthermore, it allows us to discern
the main rigidly moving parts in the sequence by producing a scale-space of rigid
motions. Visualization is accomplished by projecting the embedded matrix onto
3 different representative vectors in R

12. The regularization is implemented us-
ing the CUDA framework, with computation times shown in Table 1, for various
image sizes and iterations. In the GPU implementation the polar decomposi-
tion was chosen for its simplicity and efficiency. In practice, one Gauss-Seidel
iteration sufficed to update u. Using 15 outer iterations, practical convergence
is achieved in 49 milliseconds on an NVIDIA GTX-580 card for QVGA-sized
images, demonstrating the efficiency of our algorithm and its potential for real-
time applications. This is especially important for applications such as gesture
recognition where fast computation is crucial.
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Fig. 3. TV regularization of SO(2) data based on fingerprint direction estimation. Left-
to-right, top-to-bottom: The fingerprint image with added Gaussian noise of σ = 0.05,
the detected direction angles, the detected directions displayed as arrows, the detected
directions after regularization with λ = 3, regularization results using a higher-order
regularization term shown in Equation 17 with λ = 6, the regularization result by
Sochen et al. [39].

Fig. 4. Regularization of SE(3) images obtained from local ICP matching of the surface
patch between consecutive Kinect depth frames. Left-to-right: diffusion scale-space
obtained by different values of λ: 1.5, 1.2, 0.7, 0.2, 0.1, 0.05 , the foreground segmentation
based on the depth, and an intensity image of the scene. Top-to-bottom: different frames
from the depth motion sequence.
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4.3 DT-MRI Regularization

In Figure 5 we demonstrate a smoothing of DT-MRI data from [28], based on the
scheme suggested in Section 3.5. We show an axial view of the brain, glyph-based
visualization using Slicer3D [2], with anisotropy-based color coding.
The noise added is an additive Gaussian noise in each of the tensor elements

with σ = 0.1. Note that while different noise models are often assumed for
diffusion-weighted images, at high noise levels the Gaussian model is a reasonable
approximation. Regularization with λ = 30 is able to restore a significant amount
of the white matter structure. At such levels of noise, the TV-regularized data
bias towards isotropic tensors (known as the swell effect [13]) is less significant.
The RMS of the tensor representation was 0.0406 in the corrupted image and
0.0248 in the regularized image. Similarly, regularized reconstruction of DT-MRI
signals from diffusion-weighted images is also possible using our method, but is
beyond the scope of this paper.

Fig. 5. TV denoising of images with diffusion tensor data, visualized by 3D tensor
ellipsoid glyphs colored by fractional anisotropy. Left-to-right: the original image, an
image with added component-wise Gaussian noise of σ = 0.1, and the denoised image
with λ = 30.

5 Conclusions

In this paper, a general framework for regularization of matrix valued maps is
proposed. Based on the augmented Lagrangian techniques, we separate the op-
timization problem into a TV-regularization step and a projection step, both
of which can be solved in an easy-to-implement and parallel way. Specifically,
we show the efficiency and effectiveness of the resulting scheme through several
examples whose data taken from SO(2), SE(3), and SPD(3) respectively. To
emphasize, for matrix-valued images, our algorithms allow real-time regulariza-
tion for tasks in image analysis and computer vision.
In future work we intend to explore other applications for matrix-valued image

regularization as well as generalize our method to other types of maps, and data
and noise models.
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