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Abstract. The success of variational methods for optical flow comnaies
in their ability to regularize the problem at a different{gixel) level and com-
bine piecewise smoothness of the flow field with the briglgnemnstancy as-
sumptions. However, the piecewise smoothness assumptiften motivated by
heuristic or algorithmic considerations. Lately, new psiavere proposed to ex-
ploit the structural properties of the flow. Yet, most of thstill utilize a generic
regularization term.

In this paper we consider optical flow estimation in staterss. We show that in-
troducing a suitable motion model for the optical flow allavesto pose the regu-
larization term as a geometrically meaningful one. The psepl method assumes
that the visible surface can be approximated by a piecewis®th planar mani-
fold. Accordingly, the optical flow between two consecufir@nes can be locally
regarded as a homography consistent with the epipolar gepiared defined by
only three parameters at each pixel. These parametersractlylrelated to the
equation of the scene local tangent plane, so that theira$pariations should
be relatively small, except for creases and depth discoitiss. This leads to a
regularization term that measures the total variation efttodel parameters and
can be extended to a Mumford-Shah segmentation of the isiloiface. This
new technique yields significant improvements over stathefart optical flow
computation methods for static scenes.
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1 Introduction

Optical flow is defined as the motion field between consectitar@es in a video se-
quence. Its computation often relies on the brightnesstaong assumption, which
states that pixel brightness corresponding to a given sgeim¢ is constant throughout
the sequence. Optical flow computation is a notoriouslgdsed problem. Hence, ad-
ditional assumptions on the motion are made in order to egpa the problem. Early
methods assumed spatial smoothness of the optical flow.[Ra2hmetric motion mod-
els [3, 4], and more recently machine learning [5] were idticed in order to take into
account the specificity of naturally occurring video sequeen In parallel, the regular-
ization process was made much more robust [6-9].

In this paper, we focus on optical flow computation in steceps image pairs,
given a reliable estimation of the fundamental matrix. Tgrisblem has already been
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addressed in [10-13]. The papers[10, 11] expressed theabfitiw as a one-dimensional
problem. This was done either by working on a rectified imaaje[i0], or by solving
for the displacement along the epipolar lines [11]. A digfierapproach [12, 13] merely
penalized deviation from the epipolar constraint. In addit[12] proposed a joint es-
timation of the stereoscopic optical flow and the fundamentdrix. Finally, in order

to treat the problem of occluded areas and object bound&@sAri and Sochen [14]
suggest to explicitly account for regions of discontiresti

Yet, a third body of works turned to a complete modeling ofsbene flow [15-17].
While this approach is the most general, we focus in this papestatic scenes, for
which a more specific parameterization can be found.

While the reported experimental results in the aforemeetitppapers are very con-
vincing, their regularization methods still rely on theditional assumption that optical
flow should be piecewise smooth. Here, motivated by the paeameterization ap-
proach presented in [18], the optical flow is obtained bynestion of the space-time
dependent parameters of a motion model, the regularizaéong applied to the model
parameters. In [19], we used homogeneous coordinatestess@homography model,
which allows to select a geometrically meaningful coortireystems for this problem.
Here we elaborate upon this model by adding an AmbrosioeTelit scheme, which
gives a physically meaningful interpretation for the miaiobtained in the optimization
process.

In the case of a static scene, the optical flow can be factate@imodel determined
by the camera motion and an over-parameterized repregentdithe scene. The scene
motion is described locally as a homography satisfying fhipa@ar constraint and pa-
rameterized by the equation of a local planar approximatfdine scene. Assuming that
the scene can be approximated by a piecewise smooth marefdiorcing piecewise
spatial smoothness on the homography parameters beconaggamatically justified
regularization criterion which favors piecewise smootnalr regions.

2 Background

2.1 TheVariational Framework

In the variational framework for optical flow, brightnessistancy and smoothness as-
sumptions are integrated in an energy functional. (u€t:, y, t), v(x, y,t)) denote the
optical flow at pixel coordinate;, y) and timet. Brightness constancy determines the
data term of the energy functional

Ep(u) = [(22). ®

where
L =Ix+uy+ov,t+1)—1I(x,y,t) (2)
and¥(s?) = v/s2 + 2 is a convex approximation of thie; norm for a smalk.
M(a, z,y,t) denotes a generic model of the optical flow at pixely) and timet,
wherea = (ai(7,y,t))ie(1,....n} iS @ family of functions parameterizing the model, i.e.,

(vieny) = Moz ®



We begin with the smoothness term proposed by Nir et al. ify [18

Es(a) = / v (levailf) | ()

In order to refine the discontinuities and obtain a physjoalkaningful regulariza-
tion, we extend the smoothness prior using the Ambrosidefelti scheme [20, 21].

Es ar(a) = / var? (Z ||Vai||2> +ea(l—var)’ + 2| Voar[?,  (5)

i=1

whereuv 41 is a diffusivity function, ideally serving as an indicatdrtbe discontinuities
set in the flow field. Choosing, = L and gradually decreasing towards0 can be
used to approximate the Mumford- Shah [22] modelNitaonvergence process, but we
do not pursue this direction in this paper.

While the Ambrosio-Tortorelli scheme has been used in thmea of optical flow
[23—25], in our case this seemingly arbitrary choice of tagmation and segmentation
has a physical meaning. The regularization of the flow bescrsgmentation process
of thevisible surface in the scene into planar patches, each with his own set okplan
parameters. In addition, it helps us obtain accurate ecdgiiresulting flow.

Furthermore, the generalized Ambrosio-Tortorelli scheatews us to explicitly
reason about the places in the flow where the nonlinear nafuttee data manifold
manifests itself. Suppose we have a piecewise-planaic,staene, and an ideal solu-
tion (a*, v% ) wherea* is piecewise constant, and the diffusivity functief is 0 at
planar region boundaries andlsewhere. At such a solution, we expect two neighbor-
ing points which belong to different regions to have a verabmiffusivity valuev 4
connecting them, effectively nullifying the interactioetiveen different planes’ pa-
rameters. Furthermore the cost associated with this saligidirectly attributed to the
discontinuity set measure in the image. The proposed iddatien therefore becomes
a global minimizer of the functional, as determined by thesuge of discontinuities in
theQ%—D sketch [26]. This is directly related to the question raised by Tnadt al. [27]
regarding the over-parameterized affine flow model and d@baIminimizers.

The complete functional now becomes:

E(a) = Ep(M(a,z,y,t)) + aEs ar(a). (6)

In the remainder of this paper, we will propose a motion madbrcing the epipolar
constraint and show how to minimize the proposed functional

2.2 Epipolar Geometry

Let us introduce some background on epipolar geometry, $o m®tivate the choice
of the motion model. A complete overview can be found in [Z§, 2

Given two views of a static scene, the optical flow is restdcby the epipolar
constraint. Figure 1 shows that a pixalin the left image is restricted to a linecalled
an epipolar line in the right image. All the epipolar linedfire left (resp. right) image
go throughe (resp.e’), which is called the left (resp. right) epipole.



In projective geometry, image points and lines are oftemesgnted by 3D homo-
geneous coordinates
X
m=<{A|y|[NeR*}. (7)
1
Image points and their corresponding epipolar lines aaedlby the fundamental ma-

trix F
I = Fm. (8)

Consider a planer, visible from both cameras, and the planar homograighy
which corresponds to the composition of the back-projectiom the left view to a
plane(w) and the projection fronir) to the right view (see Figure 1). The homography
H, gives rise to a useful decomposition of the fundamentalimatr

F = [e/]xHy, (9)

wherele’]« is a matrix representation of the cross product with

Fig. 1. Epipolar geometry

3 Estimation of the Fundamental Matrix

One of the main challenges in estimating optical flow usiregggpipolar geometry is to
retrieve an accurate and robust estimation of the fundaaheratrix. Mainberger et. al.
[30] showed that robustness of the fundamental matrix esiin could be achieved by
using dense optical flow instead of applying RANSAC or LMed&imods to a sparse
set of matches. Hence, we use as initialization the HornuSch with Charbonnier
penalty function optical flow implementation provided bynSet al. [31], modified to
use color images. This represents a baseline nonlinearabfitw method, as in [31].
In addition to allowing the computation of the fundamentaltrix, this initialization
also serves as a starting point for our optical flow compoitetigorithm.



Many methods aimed at estimating the fundamental matrixheamlle large num-
bers of correspondences. Among those, we choose a robustiflation method based
on the symmetric epipolar distance, the implementationtu€tvis made very efficient
by the use of the Levenberg-Marquardt algorithm, as expthin [32].

4 A Flow Model Based on Local Homographies

We now proceed to develop the model and motivation for the #qwations. Suppose
the camera is calibrated, with projection matrices

P(t)=Po=(I]0), P(t+1) =Py = (Rt). (10)

whereR is a rotation matrix and is a translation vector expressing camera motion
between the two consecutive frames ahdt + 1. We assume that locally, the scene is
well approximated by the plane

vix+d=0 (11)

where(x™,d)T = (z,y,1,d)T denotes the 3D scene point visible at pixdh homo-
geneous coordinates. The corresponding poistafftimet + 1 is

x' =Py <§) =Rx+td=(R—-tvh)x (12)

in homogeneous coordinatesdesignates the normal of the local planar approximation
of the scene, and (vTx)~! is the depth of the scene at timeThe planar homography
expressed in (12) gives a geometrically meaningful motiodeh parameterized by.
From now on, considey as a function of the pixel coordinates. Under the assump-
tion that the scene can be approximated by a piecewise smuatifold, v must be
piecewise smooth.

We now derive the motion parameterization. In general, treera parameters are
not known, but we can re-parameterize the planar homograginge’ and 7. In the
following derivation we assume a calibrated view for siropyi's sake. LettH(x, y, t)
denote the planar homography motion model. We have

HxR-tv'. (13)

For any compatible planar homograghy (cf. [29], 13.1.1.1, we will provide a specific
choice later on),
I(vo,p): Ho=pu(R —tve") (14)
H=Hy— pt(v—vo)". (15)
As t ande’ are parallel, we can also write
/T

— e
le’][?

H=Ho+e 2 (v _vo)T. (16)



Hence H(z, y,t) can be parameterized by the function

T
—pe' "t
a($,y,t) - ||e/||2 (V($,y,t) 7V0)a (17)
so that
H(z,y,t) = Ho + e'a(z,y,1)". (18)

The parameterizatioais the unknown field we want to compute in order to model and
estimate the optical flow. The piecewise smoothnegsisfa direct consequence of the
piecewise smoothness of as testified by (17). More precisely, minimization of the
Ambrosio-Tortorelli regularization term favors segmeiota of the visible surface into
planar patches where the data evidence permits it.

When the cameras are not calibrated, the relationship leetee parameteriza-
tion a andv is still linear. In fact, the calibration matrices mainlyfedt the relative
weighting of the model parameters smoothness. Our expetinsbow that even with-
out controlling the relative smoothness of the model patarsethe optical flow can be
estimated accurately.

Note that the parameterizatiancan also be derived directly from the fundamental
matrix decomposition (9).

ForHy, we can choose the special matrix

HQ =S= [e/]x]:. (19)

Each column o with the corresponding column @f ande’ form an orthogonal basis

of R? so that (9) is satisfied is a degenerate homography which projects points in the
left image to points of the line representedddyin the right image. Next, we use the
notations

T
1 Ter h;
/ T
X=\12r2), € = Ye! ) HO = h2 ) (20)
T3 Ze! h3T

to signify the 3D point coordinates, the epipole’s 2D hommegmis coordinates, and the
homography matrix rows, respectively. The parametedraif H is introduced into the
expression of the optical flow

thx + zoalx

u x !
0w _y (), a2
M(a,x,y, ) <U) <h2Tx+ye/aTX) (y>7 h3TX+Ze/aTX ( )

where <z) are the corresponding pixels in the left image.

4.1 Euler-Lagrange Equations

By interchangeably fixing,;,7 = 1...n andv,r, we obtain the Euler-Lagrange equa-
tions which minimize the functional.



Minimization with respect to a;. Fixing vr, we obtain
Vi, Va(Ep+avisEs) =0. (22)

the variation of the data term with respect to the model patanfunctiona; is given

by
VaEp(u,v) =20 (I2) IV, I, (23)

where
Val. = )\Qxi(xerh;ng — ze/thx)I;' + )\Qxi(ye/h;ng — ze/hsz)I;', (24)
and

If (x+u,y+ov,t+1) (25)

-1,
IJ:Iy(z+u,y+v,t+1). (26)

For the smoothness term, the Euler-Lagrange equations are

Va,Ey = 20a7¥ <Z||vai||2>+2v§wa v > |[Val | Vas (27)

=1 J

thus, the energy is minimized by solving the nonlinear systé equations

n T
' (I2) LV, 1. — aV (ﬁqu' (Z ||Vai||2>> Va; —

i=1

avipdiv (W' | Y |[Vay||* | Vai | =0. (28)
J

Minimization with respect to v 4. Fixing a;, we obtain

20v47¥Y <Z ||Vai||2> +2€61(var — 1) — e2Avar =0 (29)

=1

4.2 Implementation

Minimization with respect ta 4 is straightforward, as the equations are linear with
respect ta 4, therefore we will only elaborate on the minimization widspect taz;

The nonlinear Euler-Lagrange equation minimizingare linearized by adopting
three embedded loops, similarly to [18]. First, the warpedde gradient/,', Ij) is
frozen, and so ia. At each iteratiork, we have

(Vo I)* = z;d (30)



where

dr = ()\k)Q(l’erhng - zerthx)(Ij)k
+(A)?(yerhs"x — zeha T x) (1),

and the following approximation is made using first orderldagxpansions

3
I IF 4 d" Y widat (31)
1=1
where
da® = ak*t! — aF. (32)

The system of equations (28) becomes

3
o’ ((If+l)2) ([f +d" ijdajk> zid" — o div (LV <Z ||Vajk+1||2> VaikJrl) =0.
J

j=1

A second loop with superscripis added to cope with the nonlinearity &f.

Data Smooth

3
(Q/')k’l If +dF Zycjdaujk’l+1 x;d*¥ — o div ((W’)k’l Vaik’lH) =0

Jj=1

where

3 2
k.l = g : E s k,l o :,
(g//>Dat3« - W/ <I§ =+ dk :rida'ik'l> 9 (W/>Smooth - Q// § ||va’Jk l||2
J

i=1

At this point, the system of equations is linear and sparghenspatial domain.
The solutiona, as well as the diffusivity terna 4, are obtained through Gauss-Seidel
iterations. In the case of the Ambrosio-Tortorelli regidation term, the diffusion term
of the equation is modulated by 1.

5 Experimental results

We now demonstrate motion estimation results using ourrihgo, both visually and in
terms of the average angular error (AAE). No post-processas applied to the optical
flow field obtained after energy minimization. The algorithuas tested on image pairs
from the Middlebury optical flow test set [33], as well as afldges with a static scene
and publicly available ground truth optical flow from theitiag set. Results from the
training set are presented in Table 1.

The flow, parameters, and diffusivity field resulting fronr owethod are presented
in Figure 3. The optical flow is shown with color encoding ardisparity map.

Results from the test set are shown in Figure 2. A smoothressieter of 400
was used in all experiments, and the Ambrosio-Tortorelificients were set te; =



20,5 = 5 x 1072, The proposed method produced the best results to date statie
Yosemite and Urban scenes. The algorithm is not designedevey, for non-static
scenes, where the computed epipolar lines have no meanmgp@ssible solution to
this shortcoming is to return to a 2D search [13]. Such a castbapproach is left for
future work.

In the Teddy and Grove test images, the initialization of algiorithm introduced
errors in significant parts of the image, which our methodldmot overcome. This
behavior is related to the problem of finding a global minimfanthe optical flow,
which is known to have several local minima. Improving thetgll convergence using
discrete graph-based techniques, has been the focus ohkpapers (see [34-36],
for example), and is beyond the scope of this work. We expettebinitialization to
improve the accuracy to that of the Yosemite and Urban imags.p

Our optical flow estimation for the Yosemite and Urban segesryives the best
results to date, achieving an AAE o125 for the Yosemite sequence test pair &3R8
for the Urban sequence, as shown in Figure 2. When the funataimaatrix estimate
was improved (by estimating from the ground truth opticaMjlonve reduced the AAE
to 0.66 for Yosemite!

AAE STD
Grove2 2.41 7.16
Grove3 5.53 15.76
Urban2 2.15 9.22
Urban3 3.84 16.88
Venus 4.29 12.01
Yosemite 0.85 1.24

(a) Middlebury training set
Table 1. AAE comparison for static scenes of the Middlebury traingeg and for the Yosemite
sequence

Method AAE{Method AAE
Broxetal. [7]  1.59Roth/Black [5] 1.43
Mémin/Pérez [4] 1.58Valgaerts et al. [12] 1.17
Bruhn etal. [8] 1.46Nir et al. [18] 1.15
Amiaz et al. [37] 1.440ur method 0.85

(b) Yosemite sequence
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Fig. 2. Average angular error values of our algorithm, comparechemtiddlebury test set. The
smoothness coefficient was setite= 400 in all experiments. Red marks the row of the suggested
algorithm.



(a) Grove2  (b) Optical flow esti- (f) Urban2 (g) Optical flow esti-

mation mation
(c) Parameter field (h) Parameter field

(d) Disparity estimge) Diffusivity func- (i) Disparity estimaf) Diffusivity func-
tion tion tion tion

Fig. 3. Grove2 and Urban2 sequence results

It is interesting to look at the results obtained for scenib planar regions, such
as the Urban2 (Figure 3) image pair. In Urban2, the scenenposed of many planar
patches, modeled by constant patches in the model parametéoth these scenes, as
well as others, the resulting diffusivity field clearly marke contours of planar regions
in the image such as the buildings in Urban2 and the tree ahddsges in Grove2.

6 Conclusions

A new method for optical flow computation was presented, Whinges on a guiding
principle that optic flow regularization should have a stytimeoretical foundation. The
method is applicable to static scenes and retrieves mefahlngal motion parameters
related to the scene geometry. At each pixel, the paramptevide an estimation of
the plane tangent to the scene manifold, up to a fixed shifseale. To that extent, they
can be seen as a higher level output than optical flow in thepaten vision hierarchy.
An interesting aspect of our energy functional, which wasady mentioned in
[18], is that given a carefully selected over-complete paater field, the different pa-
rameters support each other to find a smooth piecewise carsigameter patches,
while the incorporated Ambrosio-Tortorelli scheme preseatiffusion across discon-
tinuities. Furthermore, the Ambrosio-Tortorelli schenfievas us to combine regular-



ization and segmentation, resulting in a physically megtfoilhregularization process,
while minimizing the dependency on the relative scalinghef toefficients.

Finally, although the performance demonstrated alreaég eyond the latest pub-

lished results, there is still much gain to be expected frattel fundamental matrix
estimation and algorithm initialization. In addition, whenore than two frames are
available and the camera pose is known, augmenting the maithelime-smoothness
is expected to systematically improve the results.
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