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Abstract. The success of variational methods for optical flow computation lies
in their ability to regularize the problem at a differential(pixel) level and com-
bine piecewise smoothness of the flow field with the brightness constancy as-
sumptions. However, the piecewise smoothness assumption is often motivated by
heuristic or algorithmic considerations. Lately, new priors were proposed to ex-
ploit the structural properties of the flow. Yet, most of themstill utilize a generic
regularization term.
In this paper we consider optical flow estimation in static scenes. We show that in-
troducing a suitable motion model for the optical flow allowsus to pose the regu-
larization term as a geometrically meaningful one. The proposed method assumes
that the visible surface can be approximated by a piecewise smooth planar mani-
fold. Accordingly, the optical flow between two consecutiveframes can be locally
regarded as a homography consistent with the epipolar geometry and defined by
only three parameters at each pixel. These parameters are directly related to the
equation of the scene local tangent plane, so that their spatial variations should
be relatively small, except for creases and depth discontinuities. This leads to a
regularization term that measures the total variation of the model parameters and
can be extended to a Mumford-Shah segmentation of the visible surface. This
new technique yields significant improvements over state ofthe art optical flow
computation methods for static scenes.
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1 Introduction

Optical flow is defined as the motion field between consecutiveframes in a video se-
quence. Its computation often relies on the brightness constancy assumption, which
states that pixel brightness corresponding to a given scenepoint is constant throughout
the sequence. Optical flow computation is a notoriously ill-posed problem. Hence, ad-
ditional assumptions on the motion are made in order to regularize the problem. Early
methods assumed spatial smoothness of the optical flow [1, 2]. Parametric motion mod-
els [3, 4], and more recently machine learning [5] were introduced in order to take into
account the specificity of naturally occurring video sequences. In parallel, the regular-
ization process was made much more robust [6–9].

In this paper, we focus on optical flow computation in stereoscopic image pairs,
given a reliable estimation of the fundamental matrix. Thisproblem has already been
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addressed in [10–13]. The papers [10, 11] expressed the optical flow as a one-dimensional
problem. This was done either by working on a rectified image pair [10], or by solving
for the displacement along the epipolar lines [11]. A different approach [12, 13] merely
penalized deviation from the epipolar constraint. In addition, [12] proposed a joint es-
timation of the stereoscopic optical flow and the fundamental matrix. Finally, in order
to treat the problem of occluded areas and object boundaries, Ben-Ari and Sochen [14]
suggest to explicitly account for regions of discontinuities.

Yet, a third body of works turned to a complete modeling of thescene flow [15–17].
While this approach is the most general, we focus in this paper on static scenes, for
which a more specific parameterization can be found.

While the reported experimental results in the aforementioned papers are very con-
vincing, their regularization methods still rely on the traditional assumption that optical
flow should be piecewise smooth. Here, motivated by the over-parameterization ap-
proach presented in [18], the optical flow is obtained by estimation of the space-time
dependent parameters of a motion model, the regularizationbeing applied to the model
parameters. In [19], we used homogeneous coordinates to express a homography model,
which allows to select a geometrically meaningful coordinate systems for this problem.
Here we elaborate upon this model by adding an Ambrosio-Tortorelli scheme, which
gives a physically meaningful interpretation for the minima obtained in the optimization
process.

In the case of a static scene, the optical flow can be factored into a model determined
by the camera motion and an over-parameterized representation of the scene. The scene
motion is described locally as a homography satisfying the epipolar constraint and pa-
rameterized by the equation of a local planar approximationof the scene. Assuming that
the scene can be approximated by a piecewise smooth manifold, enforcing piecewise
spatial smoothness on the homography parameters becomes anaxiomatically justified
regularization criterion which favors piecewise smooth planar regions.

2 Background

2.1 The Variational Framework

In the variational framework for optical flow, brightness constancy and smoothness as-
sumptions are integrated in an energy functional. Let(u(x, y, t), v(x, y, t)) denote the
optical flow at pixel coordinates(x, y) and timet. Brightness constancy determines the
data term of the energy functional

ED(u, v) =

∫

Ψ
(

I2z
)

, (1)

where
Iz = I(x+ u, y + v, t+ 1)− I(x, y, t) (2)

andΨ(s2) =
√
s2 + ε2 is a convex approximation of theL1 norm for a smallε.

M(a, x, y, t) denotes a generic model of the optical flow at pixel(x, y) and timet,
wherea = (ai(x, y, t))i∈{1,...,n} is a family of functions parameterizing the model, i.e.,

(

u(x, y, t)
v(x, y, t)

)

= M(a, x, y, t). (3)



We begin with the smoothness term proposed by Nir et al. in [18],

ES(a) =

∫

Ψ

(

n
∑

i=1

||∇ai||2
)

. (4)

In order to refine the discontinuities and obtain a physically meaningful regulariza-
tion, we extend the smoothness prior using the Ambrosio-Tortorelli scheme [20, 21].

ES,AT (a) =

∫

v2ATΨ

(

n
∑

i=1

||∇ai||2
)

+ ǫ1(1− vAT )
2 + ǫ2‖∇vAT ‖2, (5)

wherevAT is a diffusivity function, ideally serving as an indicator of the discontinuities
set in the flow field. Choosingǫ1 = 1

ǫ2
and gradually decreasingǫ2 towards0 can be

used to approximate the Mumford-Shah [22] model viaΓ -convergence process, but we
do not pursue this direction in this paper.

While the Ambrosio-Tortorelli scheme has been used in the context of optical flow
[23–25], in our case this seemingly arbitrary choice of regularization and segmentation
has a physical meaning. The regularization of the flow becomes a segmentation process
of the visible surface in the scene into planar patches, each with his own set of plane
parameters. In addition, it helps us obtain accurate edges in the resulting flow.

Furthermore, the generalized Ambrosio-Tortorelli schemeallows us to explicitly
reason about the places in the flow where the nonlinear natureof the data manifold
manifests itself. Suppose we have a piecewise-planar, static, scene, and an ideal solu-
tion (a∗, v∗AT ) wherea∗ is piecewise constant, and the diffusivity functionv∗AT is 0 at
planar region boundaries and1 elsewhere. At such a solution, we expect two neighbor-
ing points which belong to different regions to have a very small diffusivity valuevAT

connecting them, effectively nullifying the interaction between different planes’ pa-
rameters. Furthermore the cost associated with this solution is directly attributed to the
discontinuity set measure in the image. The proposed ideal solution therefore becomes
a global minimizer of the functional, as determined by the measure of discontinuities in
the2 1

2
-D sketch [26]. This is directly related to the question raised by Trobin et al. [27]

regarding the over-parameterized affine flow model and its global minimizers.
The complete functional now becomes:

E(a) = ED(M(a, x, y, t)) + αES,AT (a). (6)

In the remainder of this paper, we will propose a motion modelenforcing the epipolar
constraint and show how to minimize the proposed functional.

2.2 Epipolar Geometry

Let us introduce some background on epipolar geometry, so asto motivate the choice
of the motion model. A complete overview can be found in [28, 29].

Given two views of a static scene, the optical flow is restricted by the epipolar
constraint. Figure 1 shows that a pixelm in the left image is restricted to a linel′ called
an epipolar line in the right image. All the epipolar lines inthe left (resp. right) image
go throughe (resp.e′), which is called the left (resp. right) epipole.



In projective geometry, image points and lines are often represented by 3D homo-
geneous coordinates

m =







λ





x

y

1



 |λ ∈ R⋆







. (7)

Image points and their corresponding epipolar lines are related by the fundamental ma-
trix F

l
′ = Fm. (8)

Consider a planeπ, visible from both cameras, and the planar homographyHπ

which corresponds to the composition of the back-projection from the left view to a
plane(π) and the projection from(π) to the right view (see Figure 1). The homography
Hπ gives rise to a useful decomposition of the fundamental matrix

F = [e′]×Hπ, (9)

where[e′]× is a matrix representation of the cross product withe
′.
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Fig. 1. Epipolar geometry

3 Estimation of the Fundamental Matrix

One of the main challenges in estimating optical flow using the epipolar geometry is to
retrieve an accurate and robust estimation of the fundamental matrix. Mainberger et. al.
[30] showed that robustness of the fundamental matrix estimation could be achieved by
using dense optical flow instead of applying RANSAC or LMedS methods to a sparse
set of matches. Hence, we use as initialization the Horn-Schunck with Charbonnier
penalty function optical flow implementation provided by Sun et al. [31], modified to
use color images. This represents a baseline nonlinear optical flow method, as in [31].
In addition to allowing the computation of the fundamental matrix, this initialization
also serves as a starting point for our optical flow computation algorithm.



Many methods aimed at estimating the fundamental matrix canhandle large num-
bers of correspondences. Among those, we choose a robust M-estimation method based
on the symmetric epipolar distance, the implementation of which is made very efficient
by the use of the Levenberg-Marquardt algorithm, as explained in [32].

4 A Flow Model Based on Local Homographies

We now proceed to develop the model and motivation for the flowequations. Suppose
the camera is calibrated, with projection matrices

P(t) = P0 =
(

I |0
)

, P(t+ 1) = P1 =
(

R |t
)

. (10)

whereR is a rotation matrix andt is a translation vector expressing camera motion
between the two consecutive frames att andt+ 1. We assume that locally, the scene is
well approximated by the plane

v
T
x+ d = 0 (11)

where(xT, d)T = (x, y, 1, d)T denotes the 3D scene point visible at pixelx in homo-
geneous coordinates. The corresponding point ofx at timet+ 1 is

x
′ = P1

(

x

d

)

= Rx+ td = (R− tv
T)x (12)

in homogeneous coordinates.v designates the normal of the local planar approximation
of the scene, and−(vT

x)−1 is the depth of the scene at timet. The planar homography
expressed in (12) gives a geometrically meaningful motion model parameterized byv.
From now on, considerv as a function of the pixel coordinates. Under the assump-
tion that the scene can be approximated by a piecewise smoothmanifold,v must be
piecewise smooth.

We now derive the motion parameterization. In general, the camera parameters are
not known, but we can re-parameterize the planar homographyusinge′ andF . In the
following derivation we assume a calibrated view for simplicity’s sake. LetH(x, y, t)
denote the planar homography motion model. We have

H ∝ R− tv
T. (13)

For any compatible planar homographyH0 (cf. [29], 13.1.1.1, we will provide a specific
choice later on),

∃(v0, µ) : H0 = µ(R− tv0
T) (14)

H = H0 − µt(v − v0)
T. (15)

As t ande′ are parallel, we can also write

H = H0 + e
′−µe′

T
t

||e′||2 (v − v0)
T. (16)



Hence,H(x, y, t) can be parameterized by the function

a(x, y, t) =
−µe′

T
t

||e′||2 (v(x, y, t) − v0), (17)

so that
H(x, y, t) = H0 + e

′
a(x, y, t)T. (18)

The parameterizationa is the unknown field we want to compute in order to model and
estimate the optical flow. The piecewise smoothness ofa is a direct consequence of the
piecewise smoothness ofv, as testified by (17). More precisely, minimization of the
Ambrosio-Tortorelli regularization term favors segmentation of the visible surface into
planar patches where the data evidence permits it.

When the cameras are not calibrated, the relationship between the parameteriza-
tion a andv is still linear. In fact, the calibration matrices mainly affect the relative
weighting of the model parameters smoothness. Our experiments show that even with-
out controlling the relative smoothness of the model parameters, the optical flow can be
estimated accurately.

Note that the parameterizationa can also be derived directly from the fundamental
matrix decomposition (9).

ForH0, we can choose the special matrix

H0 = S = [e′]×F . (19)

Each column ofS with the corresponding column ofF ande′ form an orthogonal basis
ofR3 so that (9) is satisfied.S is a degenerate homography which projects points in the
left image to points of the line represented bye

′ in the right image. Next, we use the
notations

x =





x1

x2

x3



 , e
′ =





xe′

ye′

ze′



 , H0 =





h1

T

h2

T

h3

T



 , (20)

to signify the 3D point coordinates, the epipole’s 2D homogeneous coordinates, and the
homography matrix rows, respectively. The parameterization ofH is introduced into the
expression of the optical flow

M(a, x, y, t) =

(

u

v

)

= λ

(

h1

T
x+ xe′a

T
x

h2

T
x+ ye′a

T
x

)

−
(

x

y

)

, λ =
1

h3

T
x+ ze′aTx

. (21)

where

(

x

y

)

are the corresponding pixels in the left image.

4.1 Euler-Lagrange Equations

By interchangeably fixingai, i = 1...n andvAT , we obtain the Euler-Lagrange equa-
tions which minimize the functional.



Minimization with respect to ai. Fixing vAT , we obtain

∀i, ∇ai(ED + αv2ATES) = 0. (22)

the variation of the data term with respect to the model parameter functionai is given
by

∇aiED(u, v) = 2Ψ ′
(

I2z
)

Iz∇aiIz , (23)

where

∇aiIz = λ2xi(xe′h3

T
x − ze′h1

T
x)I+x + λ2xi(ye′h3

T
x − ze′h2

T
x)I+y , (24)

and

I+x = Ix(x+ u, y + v, t+ 1) (25)

I+y = Iy(x+ u, y + v, t+ 1). (26)

For the smoothness term, the Euler-Lagrange equations are

∇aiEs = 2vATΨ

(

n
∑

i=1

||∇ai||2
)

+ 2v2ATdiv



Ψ ′





∑

j

||∇aj ||2


∇ai



 (27)

thus, the energy is minimized by solving the nonlinear system of equations

Ψ ′
(

I2z
)

Iz∇ai
Iz − α∇

(

v2ATΨ
′

(

n
∑

i=1

||∇ai||2
))T

∇ai −

αv2AT div



Ψ ′





∑

j

||∇aj ||2


∇ai



 = 0. (28)

Minimization with respect to vAT . Fixing ai, we obtain

2αvATΨ

(

n
∑

i=1

||∇ai||2
)

+ 2ǫ1(vAT − 1)− ǫ2∆vAT = 0 (29)

4.2 Implementation

Minimization with respect tovAT is straightforward, as the equations are linear with
respect tovAT , therefore we will only elaborate on the minimization with respect toai

The nonlinear Euler-Lagrange equation minimizingai, are linearized by adopting
three embedded loops, similarly to [18]. First, the warped image gradient(I+x , I+y ) is
frozen, and so isλ. At each iterationk, we have

(∇aiIz)
k = xid

k (30)



where

dk = (λk)2(xe′h3

T
x− ze′h1

T
x)(I+x )k

+(λk)2(ye′h3

T
x− ze′h2

T
x)(I+y )k,

and the following approximation is made using first order Taylor expansions

Ik+1
z ≈ Ikz + dk

3
∑

i=1

xidai
k (31)

where
dak = a

k+1 − a
k. (32)

The system of equations (28) becomes

Ψ
′

(

(Ik+1
z )2

)

(

I
k
z + d

k

3
∑

j=1

xjdaj
k

)

xid
k − α div

(

Ψ
′

(

∑

j

||∇aj
k+1||2

)

∇ai
k+1

)

= 0.

A second loop with superscriptl is added to cope with the nonlinearity ofΨ ′.

(Ψ ′)k,lData



Ikz + dk
3
∑

j=1

xjdaj
k,l+1



 xid
k − α div

(

(Ψ ′)k,lSmooth∇ai
k,l+1

)

= 0

where

(Ψ ′)k,lData = Ψ ′





(

Ikz + dk
3
∑

i=1

xidai
k,l

)2


 , (Ψ ′)k,lSmooth = Ψ ′





∑

j

||∇aj
k,l||2



 .

At this point, the system of equations is linear and sparse inthe spatial domain.
The solutiona, as well as the diffusivity termvAT are obtained through Gauss-Seidel
iterations. In the case of the Ambrosio-Tortorelli regularization term, the diffusion term
of the equation is modulated byvAT .

5 Experimental results

We now demonstrate motion estimation results using our algorithm, both visually and in
terms of the average angular error (AAE). No post-processing was applied to the optical
flow field obtained after energy minimization. The algorithmwas tested on image pairs
from the Middlebury optical flow test set [33], as well as all images with a static scene
and publicly available ground truth optical flow from the training set. Results from the
training set are presented in Table 1.

The flow, parameters, and diffusivity field resulting from our method are presented
in Figure 3. The optical flow is shown with color encoding and adisparity map.

Results from the test set are shown in Figure 2. A smoothness parameterα of 400
was used in all experiments, and the Ambrosio-Tortorelli coefficients were set toǫ1 =



20, ǫ2 = 5× 10−5. The proposed method produced the best results to date on thestatic
Yosemite and Urban scenes. The algorithm is not designed, however, for non-static
scenes, where the computed epipolar lines have no meaning. One possible solution to
this shortcoming is to return to a 2D search [13]. Such a combined approach is left for
future work.

In the Teddy and Grove test images, the initialization of ouralgorithm introduced
errors in significant parts of the image, which our method could not overcome. This
behavior is related to the problem of finding a global minimumfor the optical flow,
which is known to have several local minima. Improving the global convergence using
discrete graph-based techniques, has been the focus of several papers (see [34–36],
for example), and is beyond the scope of this work. We expect better initialization to
improve the accuracy to that of the Yosemite and Urban image pairs.

Our optical flow estimation for the Yosemite and Urban sequences gives the best
results to date, achieving an AAE of1.25 for the Yosemite sequence test pair and2.38
for the Urban sequence, as shown in Figure 2. When the fundamental matrix estimate
was improved (by estimating from the ground truth optical flow), we reduced the AAE
to 0.66 for Yosemite!

AAE STD
Grove2 2.41 7.16
Grove3 5.53 15.76
Urban2 2.15 9.22
Urban3 3.84 16.88
Venus 4.29 12.01
Yosemite 0.85 1.24

(a) Middlebury training set

Method AAE Method AAE
Brox et al. [7] 1.59Roth/Black [5] 1.43
Mémin/Pérez [4] 1.58Valgaerts et al. [12] 1.17
Bruhn et al. [8] 1.46Nir et al. [18] 1.15
Amiaz et al. [37] 1.44Our method 0.85

(b) Yosemite sequence

Table 1. AAE comparison for static scenes of the Middlebury trainingset and for the Yosemite
sequence

Fig. 2. Average angular error values of our algorithm, compared on the middlebury test set. The
smoothness coefficient was set toα = 400 in all experiments. Red marks the row of the suggested
algorithm.



(a) Grove2 (b) Optical flow esti-
mation

(c) Parameter field

(d) Disparity estima-
tion

(e) Diffusivity func-
tion

(f) Urban2 (g) Optical flow esti-
mation

(h) Parameter field

(i) Disparity estima-
tion

(j) Diffusivity func-
tion

Fig. 3. Grove2 and Urban2 sequence results

It is interesting to look at the results obtained for scenes with planar regions, such
as the Urban2 (Figure 3) image pair. In Urban2, the scene is composed of many planar
patches, modeled by constant patches in the model parameters. In both these scenes, as
well as others, the resulting diffusivity field clearly marks the contours of planar regions
in the image such as the buildings in Urban2 and the tree and soil ridges in Grove2.

6 Conclusions

A new method for optical flow computation was presented, which hinges on a guiding
principle that optic flow regularization should have a strong theoretical foundation. The
method is applicable to static scenes and retrieves meaningful local motion parameters
related to the scene geometry. At each pixel, the parametersprovide an estimation of
the plane tangent to the scene manifold, up to a fixed shift andscale. To that extent, they
can be seen as a higher level output than optical flow in the computer vision hierarchy.

An interesting aspect of our energy functional, which was already mentioned in
[18], is that given a carefully selected over-complete parameter field, the different pa-
rameters support each other to find a smooth piecewise constant parameter patches,
while the incorporated Ambrosio-Tortorelli scheme prevents diffusion across discon-
tinuities. Furthermore, the Ambrosio-Tortorelli scheme allows us to combine regular-



ization and segmentation, resulting in a physically meaningful regularization process,
while minimizing the dependency on the relative scaling of the coefficients.

Finally, although the performance demonstrated already goes beyond the latest pub-
lished results, there is still much gain to be expected from better fundamental matrix
estimation and algorithm initialization. In addition, when more than two frames are
available and the camera pose is known, augmenting the modelwith time-smoothness
is expected to systematically improve the results.
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4. Mémin, E., Pérez, P.: Hierarchical estimation and segmentation of dense motion fields.
International Journal of Computer Vision46 (2002) 129–155

5. Roth, S., Black, M.J.: On the spatial statistics of optical flow. International Journal of
Computer Vision74 (2007) 33–50

6. Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow. In: Inter-
national Conference on Computer Vision. (1993) 231–236

7. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation
based on a theory for warping. In: European Conference on Computer Vision. Volume 3024.,
Springer (2004) 25–36
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