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Abstract

Structured light depth reconstruction is among the most
commonly used methods for 3D data acquisition. Yet, in
most structured light methods, modeling of the acquired
scene is crude, and is executed separately from the decoding
phase. Here, we bridge this gap by viewing the reconstruc-
tion process via a probabilistic model combining illumina-
tion and shape. Specifically, an alternating minimization
algorithm for structured light reconstruction is presented,
incorporating a sparsity-based prior for the local surface
model. Integrating this 3D surface prior into a probabilistic
view of the reconstruction phase results in a robust estima-
tion of the scene depth.

We formulate and minimize reconstruction error and
demonstrate performance of the algorithm on data from a
structured light scanner. The results demonstrate the ro-
bustness of our algorithm to scanning artifacts under low
SNR conditions and object motion.

1. Introduction
Structured light and active illumination range scanners

have become an important tool for scene understanding

[12, 19, 16], robotics [21, 10, 26], object modeling [8, 2], in-

door scene mapping [22], and human computer interaction

[32], among other tasks. The scanner usually consists of

a calibrated camera-projector pair; where coded light pat-

terns emitted by the projector are acquired by the camera

and allow robust triangulation and depth reconstruction. For

a review of existing structured light techniques see, for ex-

ample, [29].

Many of the techniques used to reconstruct 3D depth

via structured light incorporate ad-hoc assumptions on the

scene structure and the 3D imaging process. These include,

for instance, smoothness of the acquired surface [40, 17], or

temporal objects behavior [11, 40, 17]. Yet, modeling these

assumptions in a more complete way is crucial when the

captured illumination patterns are of low SNR, due to long

scanning range and short camera exposure times. Further-

more, such assumptions can help when dealing with motion

artifacts, where some of the captured images are subject to

abrupt intensity changes due to motion of depth disconti-

nuities or albedo boundaries. Failing to model the imaging

process in a realistic manner may lead to outliers in the re-

constructed depth image, as is often observed in structured

light scanners.

Here, we improve upon results obtained by structured

light based scanners [25, 29], especially in face of chal-

lenging illumination conditions, by providing strong pri-

ors for the imaging model and surface shape. Moreover,

while strong shape priors are utilized for range image cor-

rection, i.e., surface denoising and completion, the approach

we suggest incorporates shape and illumination priors into

the reconstruction itself, giving us a principled approach of

combining powerful surface priors and probabilistic under-

standing of the acquisition process. Here we introduce a

patch-based image similarity prior, similar to those success-

fully utilized for images, depth images, and surface process-

ing [1, 7, 35, 31, 39].

2. Regularized Structured Light Model

In shape from structured light, one is attempting to re-

construct the geometric structure of the scene, by illumi-

nating the scene with a set of projected patterns IP =

{I(i)P }Ni=1, where N is the number of patterns, and taking

a set of images IC = {I(i)C }Ni=1 of the scene using a cam-

era. We denote the optical centers of the camera and pro-

jector by points C and P respectively. The overall setup is

shown in Figure 1. In our formulation, we denote the es-

timated range image as z(x), where x ∈ R
2 denotes the

(two-dimensional) camera image coordinates.

We assume a Lambertian surface model for objects in the

scene, and a projector emitting directional light in a tempo-

ral sequence of patterns. The main source of imaging noise

is assumed to be the sensor. The lighting conditions we deal

with are such that the photon count per image sensor pixel is
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high enough so that the image noise model is approximately

Gaussian, yet the signal is weak enough so that correctly

decoding the coded light patterns poses a challenge. This

is the typical scenario in real structured light systems with

temporal multiplexed code, aimed for example at capturing

motion, thus requiring short exposure intervals.

Figure 1. An example of a structured light system setup.

Assuming a global illumination component and a pro-

jector illumination component, we can model every pixel’s

intensity at each frame i as

I
(i)
C (x) = a(x)I

(i)
P (Πz(x)) + b(x) + n(i) (x) , (1)

n(i) (x) ∼ N
(
0, σ2

I

)
.

a(x) and b(x) are pixel-wise coefficients that depend on

the global illumination of the scene, the surface properties,

object albedo, projector properties, and so forth. Πz(x) de-

notes the depth-dependent transformation from pixel x to a

corresponding pixel on the projector image. It is obtained

by backprojecting the camera ray to depth z and projecting

the point into the projector optical center. n(i) (x) is the

pixel noise, assumed to be additive white Gaussian noise,

independent and identically distributed (i.i.d.) in space and

time.

We wish to formulate and maximize a probability func-
tion of the depth given the known camera images and pro-
jected textures. By applying Bayes’ rule, and removing con-

stant factors we obtain

z = argmax
z,a,b

P (z, a, b|IP , IC)

= argmax
z,a,b

P (z, a, b, IP , IC)

P (IP , IC)
(2)

= argmax
z,a,b

P (IP , IC , a, b|z)P (z)

P (IP , IC)

= argmax
z,a,b

P (IP , IC , a, b|z)P (z)

= argmin
z,a,b

(−logP (IP , IC , a, b|z)− logP (z)) .

We incorporate the maximum-likelihood choice of a, b into
P (IP , IC |z), minimizing the negative log-probability over
a and b,

min
z,a,b

[− log (P (IP , IC , a, b|z))] = (3)

min
z

⎛
⎜⎝min

a,b

⎡
⎢⎣∑

i

(
a(x)I

(i)
P (Πz(x)) + b(x)− I(i)C (x)

)2
σ2
I

⎤
⎥⎦
⎞
⎟⎠ .

The optimal values of a and b for this least-squares fitting
problem are given in analytical form by solving the normal
equations using IC ,IP at points x,Πz(x) respectively,

(
a
b

)
=

(
μPP μP

μP N

)−1 (
μCP

μC

)
, (4)

μP =
∑

I
(i)
P (Πz(x)) , μC =

∑
I
(i)
C (x) ,

μCP =
∑

I
(i)
C (x) I

(i)
P (Πz(x)) ,

μPP =
∑(

I
(i)
P (Πz(x))

)2
.

In order to obtain an efficient algorithm for computing

and optimizing photoconsistency in the structured light

case, we note that we can incorporate the computation of

the maximum-likelihood expressions for a, b into a plane-

sweep operation [5] when seeking the optimum value of z.
Inserting the optimal a, b as a function of z and noting

the conditional independence (given z) of neighboring pixel
values IC(x), IP (Πz(x)) provides us with a functional to
minimize with respect to z(x), similar to [34],

argmin
z

∫
x

min
a,b

(− log (P (IP , IC , a, b|z))) dx+ ψ (z) =

argmin
z

∫
x

ρSL (z; IC , IP ,x) dx+ ψ (z) . (5)

The expression ρSL (z; IC , IP ,x) denotes a penalty for

the photoconsistency assumption. This term is often opti-

mized per pixel by several steps, including binarization of

the code letters, decoding of the code, and depth reconstruc-

tion. These separate steps, however (for any specific code)

are sub-optimal, even if efficient to compute.

The term ψ (z) denotes our choice for approximating

the negative log-probability prior for the surface shape,
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− logP (z). There are several possible choices of surface

shape priors. These can incorporate either smoothness as-

sumptions and more elaborate geometric priors, assump-

tions on local shape of patches on surfaces, or reasoning

on natural depth image statistics [38]. We now describe two

such possible regularization priors for depth images.

Total-Variation regularization The minimum area [4]

and total-variation [28] (TV) priors, and related smooth-

ness measures have been suggested in several forms for reg-

ularization of range images [23] and surface reconstruction

[15, 33]. TV regularization for structured light can be ex-

pressed as

argmin
z

∫
x

ρSL (z; IC , IP ,x) + c̃‖∇z‖dx, (6)

where ‖∇z‖ is the total variation of the range image, for

some coefficient c̃. This form of regularization is strongly

related to MRF-based structured light [34].

Patch-based Priors for Structured Light Another pos-

sibility for modeling range images involves assuming a

local model for each patch of the surface. Regularizing

the surface then expresses itself via the parameters of this

model. This includes modelling via polynomials or simi-

lar functions, leading to the moving-least-squares [18] ap-

proach, or expressing the patch via a functional basis with

sparse coefficients, leading to sparsity-based regularization.

Priors for depth images based on patch-estimators are de-

scribed, for example, in [31, 13, 20, 35].

In our case, we assume that the depth image can be lo-

cally viewed as a sparse combination of basis functions. We

note by ψ̃ (·) our prior for surface patches. This leads to a

patch-based regularizer of the reconstruction,

argmin
z

∫
x

ρSL (z; IC , IP ,x) dx+ c̃1
∑
j

ψ̃ (Pjz) , (7)

where Piz denotes extraction of a small neighborhood i
from the surface z. For example, for an L1-sparse repre-
sentation prior, Equation 5 becomes

argmin
z,αj

∫
x

ρSL (z; IC , IP ,x)+ (8)

c̃1

(∑
j

‖Pjz −Dαj‖2 + λ‖αj‖1
)
,

where D denotes a dictionary for depth image patches,

Pj denotes a matrix extracting block j from the image in

column-stacked notation, and αj denotes the representation

of patch Pjz in that dictionary.

3. Alternating Minimization Algorithm for
Regularized Structured Light

We assume the coded light pattern can be recon-

structed by minimizing per-pixel the decoding error func-

tion ρSL(x, IC , IP ; z). While this reconstruction is usu-

ally obtained by binarization and decoding of the time-

multiplexed code, we view it as a photoconsistency term

between the structured light patterns and the resulting cam-

era image intensities [24], when estimating the illumina-

tion conditions. Note that this function depends only on

the depth value and camera intensities per pixel. In order to

regularize the solution we suggest to use an alternating min-

imization, adding an auxiliary variable to model each patch.

We decouple the problems of regularization and structured

light decoding, minimizing the functional in Equation 5,

which is of a half-quadratic form [9]. Minimization with

respect to αj given z results in a per-patch denoising algo-

rithm of Pjz, similar to the approach taken in [14]. We now

describe the different steps of the algorithm, which is given

as Algorithm 1.

Solving for z The update of z depends on the struc-

tured light patterns, and may not even be continuous. Since

the similarity term relating z and Dαj is quadratic, we can

rewrite the term for each pixel x in z as the sum of a pho-

toconsistency measure and a sum of squared distances from

versions of z(x) in all of the patches containing this pixel,

with an aggregate weight w(x),

zn+1(x) = argmin
z

ρSL(z) + c̃1w(x)‖z − z̃(x)‖2. (9)

A solution can be obtained by sweeping the set of possi-

ble z values, similar to stereo [5]. Doing this plane-sweep

is highly suitable for parallel implementation on graphics

processing units (GPUs) [37]. Note that plane-sweeps are

discrete by nature, as are the coded patterns in many cases.

In order to obtain convergence, and allow sub-pixel preci-

sion, we minimize a linearly-interpolated photoconsistency,

along with the quadratic distance in the second term of

Equation 9. The depth estimated at each pixel is set ac-

cording to the minimum of the interpolated cost function.

Solving for αj Given a patch estimate Pjz, an update of

the patch resorts to a standard sparse representation prob-

lem. Specifically, if we take our sparse prior to be of an L1

type, we can update αj using iterative shrinkage [3],

αn+1
j = Sλt

(
αn
j − 2tDT

(
Dαn

j − Pjz
))
, (10)

where t is a gradient descent step, chosen to be small
enough, and Sλt (·) denotes the soft shrinkage operator,

Sλt (y) =

⎧⎨
⎩

0, |y| ≤ λt
y − λt, y > λt
y + λt, y < −λt

(11)

While faster iterative methods exist for L1 minimization

(see [36] for a few examples), because of the alternating

minimization nature of our scheme, more complex steps

may not lead to faster convergence. We therefore chose to

use the original iterative shrinkage scheme.
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Algorithm 1 Alternating Minimization Sparse Structured

Light

1: for k = 1, 2, . . . , until convergence do
2: Update αk

j (x) for all j, according to Equation (10).

3: Update zk(x), according to Equation (9).

4: end for

3.1. Learning a Sparse Depth Prior

In order to learn a surface model from range images,

several properties of the data must be taken into account.

Since reconstruction errors are of an outlier nature, algo-

rithms such as KSVD [7] that assume an additive white

Gaussian noise model require pre-processing and outlier re-

moval. Furthermore, since many of the patches in range

scans are of smooth surfaces, and since the KSVD algo-

rithm is initialization-dependent, care must be taken to pro-

vide a diversified initial dictionary. We focus the algorithm

on the scarcer edge patches by clustering the data first using

the mean-shift algorithm [6]. The resulting dictionary ob-

tained from a set of 50 range scans is shown in Figure 2. We

note that the examples used for testing are not part of this

dataset, avoiding overfitting for a specific subject. While

the training data is from a specific class of human faces,

the learned primitives are quite general, as can be seen in

Figure 2. We leave the effect of different dictionary and

training data choices for future research.

Figure 2. An example of the dictionary of 300 words obtained

from a set of 50 range scans.

4. Results
In order to test the proposed scheme, we use a standard

structured light setup similar to [30], with 10 striped pat-

terns, along with an all-ones and all-zeros pattern. The cam-

era images are sampled at 320×240, and projector patterns

are shot using a 1024×768 DLP projector. In order to simu-

late low-SNR conditions, we have added Gaussian noise to

the camera images before reconstruction. Results are shown

in Figure 3 for the case of structured-light images with in-

tensity Gaussian noise of standard deviations 5 and 10.

In order to quantitatively validate our method, we take

as ground truth an almost-noiseless range image of the head

statue, and measure range errors compare to it. We com-

pare both L1 and robustified L2, truncated at 10 millime-

ters, and compared to median post-processing, taken with

the smallest filter size that removed range outliers from the

face, in order to avoid oversmoothing. The results of this

comparison are given in Table 1. For 320× 240 images, the

dictionary trained was of patch size 8× 8.

We compare our results to several approaches. A com-

mon way of removing reconstruction artifacts is by median

filtering, as was done in [27]. Yet another approach treats

the problem as a denoising problem with a strong prior

and impulse noise assumption. An example of this type of

method would be to take the same depth prior we use, but

solve a denoising problem with an L1 fidelity term.

argmin
z

∫
x

‖z − z0‖dx+ c̃1
∑
j

ψ̃ (Pjz) , (12)

where z0 is the reconstruction results without a prior. This

approach would be similar, in a sense, to the depth image

denoising suggested in [35]. This approach is marked in

Table 1 under the Sparse Denoise column. In addition, it

would be interesting to try a weaker prior for reconstruction

such as TV regularization as suggested in Section 3. This

approach is shown in the table as column TV. For all of the

methods, parameters were chosen so as to obtain optimal ro-

bust L2 results, while preventing remaining depth outliers.

The table demonstrates the effectiveness of the proposed al-

gorithm. While the computational cost of our algorithm is

quite high with current Matlab code, the algorithm is highly

parallelizable and one future line of work involves fast par-

allel implementation of this algorithm.

In Figure 4 we demonstrate the results of our algorithm

on artifacts caused by head motion in the vertical direction.

Even though the assumption of constant a(x), b(x) breaks,

the algorithm overcomes many of the errors caused by re-

construction followed by outlier removal. The size of the

median filter is chosen to be the smallest size that filters the

motion artifacts over the eyes and mouth regions, a 7 × 7
filter in this case. We note that at this filter size, the mouth

and nose areas merge, while artifacts remain on the eyelids.

5. Conclusions
In this paper we presented a novel model for regularized

structured light reconstruction. Incorporating a sparse sur-

face prior into a physically-motivated probabilistic outlook
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Noise Raw Median TV Sparse Sparse Raw Median TV Sparse Sparse

Level Denoising Reconst. Denoising Reconst.

L2 error L2 error L2 error L2 error L2 error L1 error L1 error L1 error L1 error L1 error

2.5 1.4608 0.8411 0.8744 0.8680 0.8191 0.5996 0.4255 0.4240 0.4298 0.3379
5 2.6443 1.1033 1.1508 1.1768 0.9584 1.2013 0.5696 0.5689 0.6356 0.4135

7.5 3.9080 1.5315 1.715 1.8136 1.3489 2.1032 0.7384 0.7164 0.9489 0.5603
10 4.9841 1.9399 2.3866 2.758 1.7490 3.0949 0.9840 1.216 1.288 0.7571

Table 1. Error measurement at various noise levels, for structured light reconstruction, and noise reduction by median post-processing,

reconstruction with TV prior, reconstruction followed by sparse denoising, and reconstruction using a sparse prior as shown in Algorithm 1.

Errors are shown as robust L2 (truncated at 10mm) and L1 errors, in millimeters, over the region of the scanned object.

on structured light decoding, we demonstrate accurate re-

sults in scenarios where the usual approach for decoding

structured light tends to fail.

The results obtained merit the coupling of a strong sur-

face prior with a probabilistic model for structured light re-

construction, and motivate further exploration of the bene-

fits of the proposed method as well as investigating the use

of this approach for different types of depth scanners. An

additional line of work involves implementing the current

algorithm in an efficient manner, exploiting the high level

of parallelism available in each phase.
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Figure 3. First row, left-to-right: An example textured pattern, reconstruction results, reconstruction with median filtering, reconstruction

with sparse prior, where camera images were added Gaussian noise with standard deviation of 5, with close-up on the right eye region and

the nose and mouth region. Second row, left-to-right: ground-truth reconstruction obtained from noiseless reconstruction, same sequence

of results, where camera images were added Gaussian noise with standard deviation of 10. Third row, left-to-right: 3D raw reconstruction

results, reconstruction with median post-processing and with a sparse prior for the case of σ = 5 noise. Fourth row, left-to-right: (3D raw

reconstruction omitted since it was too noisy), reconstruction with median post-processing and with a sparse prior for the case of σ = 10
noise. In order to view the range images, color and/or online viewing is suggested.
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Figure 4. Left-to-right: An example with artifacts caused by vertical head motion, a median-filtered result, the result of the proposed

method. Note the merging of the mouth and nose area in the median filter, and the remaining artifacts around the left eye and nose area.
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