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Abstract. We present a novel method for estimation of articulated mo-
tion in depth scans. The method is based on a framework for regulariza-
tion of vector- and matrix- valued functions on parametric surfaces.

We extend augmented-Lagrangian total variation regularization to
smooth rigid motion cues on the scanned 3D surface obtained from a
range scanner. We demonstrate the resulting smoothed motion maps to
be a powerful tool in articulated scene understanding, providing a basis
for rigid parts segmentation, with little prior assumptions on the scene,
despite the noisy depth measurements that often appear in commodity
depth scanners.

Keywords: Parameteric Surfaces, Motion Segmentation, Articulated
Motion.

1 Introduction

Depth scanners are becoming an ever-more prevalent data source for computer
vision applications. Interpretation of such data is still a challenge, especially
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given the wide range of environments and applications in which depth sensors are
expected to be used. While many algorithms classify objects in range data (see
[8,23,33,17] and references therein), obtaining meaningful cues for the general
settings in an efficient way is still a topic of intense research.
Motion cues are important for scene understanding [6,14]. Obtaining a mean-

ingful dense motion descriptor for 3D data is an important preprocessing step
for the understanding of arbitrary scenes. Articulated motion is one specific
type of motion, common in many natural and man-made scenes. Detection and
understanding of articulated motion have therefore attracted the attention of
numerous research efforts, see [1,41,2,29,26] for a few examples.
When treating rigid and articulated motion, Lie-group theory provides us with

a well-motivated representation of motion. Lie-groups have been used extensively
for motion interpretation [27,38,22,29], tracking [37,35], and modeling [7,18],
among other uses. It is only natural to use them as a dense motion descriptor
to be used in the understanding process of 3D motions. While motion vectors
alone can also be used to represent the scene flow [42], the overparameterized
[25,30] representation we favor leads naturally to interpretation of the scene in
terms of piecewise rigid motions, as we demonstrate in this paper.
In this paper, we present a novel approach for characterizing articulated mo-

tion obtained from depth sensors, without assuming an explicit skeletal model.
Instead, we favor an implicit approach, aggregating motion cues in local neigh-
borhoods in a bottom-up manner. While a similar approach, could have been to
perform diffusion of the Lie-group elements using the Lie-algebra, as suggested,
for example in [29], this is done by an explicit approach to the evolution of the
smoothing process, which is inherently slow. In this paper we try to alleviate the
limitations associated with such approaches.
We do so using a regularization method that is based on an augmented-

Lagrangian scheme for group-valued regularization on parameteric surfaces such
as depth scans. This algorithm extends our recent work on fast total variation
regularization of group-valued images [31], modifying it algorithm to handle
smoothness on parameteric surfaces.
Using this regularization, we are able to create a scale-space re-interpreting

the scene-flow in terms of local rigid transformations. Experiments shown in this
paper demonstrate the usefulness of the resulting images for motion segmenta-
tion from noisy depth data.
The smoothing process we describe and associated preprocessing steps are

highly parallelizable, lending themselves to real-time implementation on parallel
hardware such as graphics processing units (GPUs), as shown for example, in
[31]. The results obtained demonstrate the method’s usefulness in identifying
components of piecewise-rigid motion in real-life, noisy, range data.

Contribution. The contribution of the paper is two-fold: a. We extend the
framework of fast TV regularization to parametric surfaces, both for the scalar
and the group-valued case. b. Based on this framework, we describe a fast method
to obtain and segment rigid motion cues from depth-image videos, demonstrating
its effectiveness on real depth videos.
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In Section 2 we describe the model and functional behind our method. The
algorithm and relevant numerical schemes are given in Section 3. Finally, we
demonstrate the results of our method in Section 4, and discuss the results and
potential uses in Section 5.

2 Model Description

We now describe our setting and model, and the resulting functional. We are
given a depth video of an object undergoing articulated motion so that most of
the object’s visible surface is composed of rigidly moving parts. These parts are
connected by joints, for which the motion is merely assumed to be smooth. At
each frame in the sequence, we have a depth image of the object, with subsequent
frames differing by small, piecewise-rigid motion. For an arbitrary depth video,
a predetermined articulated skeleton cannot be assumed at this low-level vision
phase. Instead, we propose to obtain a strong cue for detecting rigidly moving
parts by spatially regularizing the observed motion in a piecewise-rigid man-
ner. Rigid motions can be described by the elements of the Lie-group SE(3), the
Lie-group of rigid transformations in R3. We expect each point to be loosely asso-
ciated with a local rigid motion, and wish to smooth the field of motion particles
in the 3D scene. We therefore define our motion description by a group-valued
function u(x) ∈ SE(3), where x denotes a point on the surface of the object at
one frame. The resulting piecewise-smooth SE(3) image is highly informative,
and in many cases allows straightforward segmentation of the motion, without
using data-driven classifiers [3] or growing the parts in a bottom-up manner and
letting motion models compete [2,12].

2.1 The Special-Euclidean Group SE(3)

Lie-groups are algebraic groups endowed with a manifold structure. Their struc-
ture allows us to discuss smoothness of motion parameters in a well-defined
manner. We refer the reader to standard literature on the topic for an in-depth
discussion [15]. Because of the group nature of SE(3), the tangent plane at each
point on the Lie-group can be mapped onto the identity element’s tangent plane,
allowing us to define a linear space uniformly throughout the group. This space,
the Lie-algebra associated with a Lie-group, allows us to define differentiation
on the Lie-group.
Specifically, we look at the group of rigid 3D motions, the special-Euclidean

group SE(3),

SE(3) =
{
(Rt) |R ∈ R3×3,RTR = I, t ∈ R

3
}
, (1)

and a map u from points on the object surface onto an embedding of SE(3) in
R
12. This map will be regularized by minimizing the functional we now describe.
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2.2 Group-Valued Regularization on Parametric Surfaces

The functional we wish to minimize should describe the irregularity of the motion
field in terms of the scanned 3D surface with two or more poses. Since our input
is a range image, it makes sense to use the 2D image domain as the integration
domain. Our notion of smoothness, however, should be defined in terms of the
3D surface tangent plane. Thus, the regularization term we seek is intimately
linked to the problem of image processing for images defined on parametric
surfaces [34,19,40]. The measure of smoothness of the associated locally-rigid
motion should take into account the geometry of the 3D surface. We therefore
take the total variation (TV, [32])

ES(u) =

∫
Ω∈R2

‖∇Mu‖dΩ, (2)

to be our measure of regularity, defined in terms of ∇M, the gradient of the
function u on the surface itself. For vector-valued functions, we denote by ‖∇u‖
the Frobenius norm of the Jacobian matrix

(
∂ui
∂xj

)
ij
. In the case where u is a

Lie-group matrix whose elements are isometries, there is justification to use the
embedding space gradient norm ‖∇u‖ and not the group’s intrinsic regularity
measure ‖u−1∇u‖.
We note that expressing the gradient on the surface in terms of the parameter-

ization plane is relatively simple given the first fundamental form of the surface
(see for example, [13], page 102, or the supplementary notes).
In addition, we also require a data term. The simplest data term in use is the

least squares fitting term,

ED =

∫
Ω∈R2

‖u− u0‖2dΩ =

∫
Ω∈R2

‖u−10 u− Id‖2dΩ, (3)

where ‖·‖ is the Frobenius norm, and u0 is the given input function, for example
a local motion estimate given by local iterative closest point search [4,9], or by
least-square fitting a rigid motion model to a deformation result based on other
algorithms [5,24]. We note that by inverting u0, this distance is the same as
the distance often used between SE(3) elements [20]. We suggest an efficient
non-rigid registration method in Subsection 3.3, which can be easily extended
to include robust data terms.
The overall cost function we intend to minimize will be of the form

min
u ∈ SE(3)

ES(u) + λED(u), (4)

where λ describes the relative strength of the data term. We describe in Section 3
a fast minimization algorithm for this cost function.

3 Numerical Methods

We now try to minimize the overall cost function (4). In order to enforce the
constraint u ∈ SE(3) we use an auxiliary variable v such that v = u, v ∈
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SE(3). We obtain v = u using an augmented Lagrangian term added to the
cost function. The resulting constraint causes the optimization with respect to v
to become a projection operation per-pixel, using singular value decomposition
(SVD). This transforms the minimization problem into a saddle-point problem

max
μ

min
v ∈ SE(3), u

∫
Ω

‖∇Mu‖+ r

2
‖v − u‖2 + μT (v − u) + ‖u− u0‖2dΩ (5)

Unlike previous approaches for augmented Lagrangian TV regularization [36],
our approach differs in the measure of smoothness we use. We note that while
the update step for v comes from minimizing the cost function, it is highly linked
to the intuitive choice of updating u and then projecting it, as well as to opti-
mization by proximal operators [11], and can be made provably convergent with
minor modifications, as shown in [31]. We now modify the augmented Lagrangian
TV framework for the smoothness term described in (2).

3.1 Augmented Lagrangian TV Optimization of Vector Valued
Functions on Parametric Surfaces

Let us start with the simpler case of a general vectorial function u, and for-
mulate an efficient iterative scheme for smoothing (in the TV sense) functions
on a parametric surface. In our case, this surface will be obtained from a range
scanner, and the parametrization domain will be the image plane with its coor-
dinates system. In order to efficiently regularize images on parametric surfaces,
we sample the parametrization domain on a Cartesian grid.
The scheme we present is based on the augmented Lagrangian TV optimiza-

tion scheme [36]. We use an auxiliary variable p to describe the surface-domain
gradient, rather than the image-domain gradient. That is, we add an auxiliary
variable p = JM∇u, and optimize with respect to it using a shrinkage operator,
similar to the image-domain TV case [36]. JM denotes the Jacobian relating
image coordinates and surface coordinates. We enforce the gradient constraint
by adding an augmented Lagrangian term with Lagrange multipliers. We up-
date u,p, and the Lagrange multiplier iteratively. For the vector-valued TV case,
minimizing the functional now becomes a solution of the saddle-point problem

max
μ2

min
u,p

∫
Ω

‖p‖+ r2
2
‖JM∇u− p‖2 + μT2 (JM∇u− p) + λ‖u− u0‖2dΩ, (6)

where μ2 is our Lagrange multiplier for the gradient constraint. The optimization
of (6) with respect to u is given by a diffusion equation

−r2 div
(
JTM (JM∇u− p)

)
+ div JTMμ2 + 2λ (u− u0) = 0. (7)

Optimization with respect to p can be expressed in closed form [39,36] by a
shrinkage operator,

p = max

(
0, 1− 1

r2

1

‖w‖
)
w,w = JM∇u− μ2

r2
, (8)

Finally, updating μ2 is given according to the augmented Lagrangian method
[28,16].
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3.2 Augmented Lagrangian Regularization of Group-Valued Maps
on Parametric Surfaces

Using an augmented Lagrangian term in order to enforce the constraint of u =
v ∈ SE(3), the overall functional reads

max
μ,μ2

min
v ∈ SE(3)

u

∫
Ω

[ ‖p‖+ r
2
‖u− v‖2 + μT (u− v)+

r2
2
‖JM∇u− p‖2 + μT2 (JM∇u− p) + λ‖u− u0‖2

]
dΩ. (9)

Minimization with respect to u is done as in the same as in subsection 3.1.
Minimization with respect to p is given by equation 8. We update μ according
to the augmented Lagrangian method [28,16].
Optimization with respect to v is using the same projection operator per-pixel

as in [31]. Looking at optimization with respect to v, we obtain

argmin
v∈SE(3)

r

2
‖v − u‖2 + 〈μ, u− v〉 = argmin

v∈SE(3)

r

2

∥∥∥v − (μ
r
+ u

)∥∥∥2

= Proj
SE(3)

(μ
r
+ u

)
, (10)

where ProjSE(3) (·) denotes the orthogonal projection operator onto SE(3), given
by an SVD operation, setting the singular values of v to all-ones.
An algorithmic description of the resulting scheme is given as Algorithm 1. For

further numerical details, the reader is referred to the supplementary material.

Algorithm 1. Fast TV regularization of group-valued images on parametric
surfaces
1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), according to (7).
3: Update pk(x), according to (8).
4: Update vk(x), by projection onto the matrix group, using SVD.
5: Update μk(x), μk2(x), according to the augmented Lagrangian scheme.
6: end for

3.3 Estimating Non-rigid Motion in Depth Videos

In order to estimate the non-rigid motion occuring between two subsequent time-
frames of a depth video, we first apply a simple non-rigid registration process,
similar to the approach suggested by Li et al. [21], followed by the estimation
of a locally-rigid motion model, as described in the supplementary material. In
general, any motion estimation method can be used.
Since the overall motion field can involve both piecewise rigid and non-rigid

motion components, and because of the noisy scan results often obtained from
commodity depth scanners, the estimated instantaneous motion is quite noisy, as
can be seen in Figure 2. The motion field should be post-processed so as to obtain
locally-rigid interpretation. This can be obtained by the regularization process
described in Section 3.2. The overall algorithm is summarized as Algorithm 2.
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During the third step of the algorithm different λ values can be used so as to
obtain a scale-space of motion interpretation, for detecting salient candidates for
rigid parts, or as features for learning-based motion segmentation.

Algorithm 2. Regularized estimation of rigid motion from depth video

1: for k = 1, 2, . . . , until convergence do
2: Estimate motion field between depth frames according to a non-rigid ICP.
3: Estimate u0(x) at each point using least median squares fitting.
4: Regularize u0(x) using Algorithm (1).
5: end for

4 Results

We now demonstrate the results of our algorithm on both synthetic and real data.
In Figure 1, we demonstrate results based on a synthetic hand model undergoing
motion. We used the non-rigid registration model to track the surface over several
frames so as to obtain a sufficiently large motion. While the detected motion
is not completely piecewise-rigid due to skinning artifacts, occlusions, etc, the
fingers are detected quite well. Using a standard mean-shift algorithm on the
log-coordinates of the rotation matrices, we obtain segmentation of the fingers
and the phalanges that undergo motion.
In Figure 2, we demonstrate TV regularization of SE(3) for several frame

pairs in a depth sequence by a Kinect sensor. Visualization is done using log-
coordinates of the rotation matrix. The resulting estimated rigid motion allows
segmentation of body parts and finger phalanges. In Figure 3 we use the mean-
shift clustering algorithm [10] on the SE(3) images’ projection onto the small
rotations standard linearization basis in order to segment the main moving parts.
Despite the simple choice of the segmentation algorithm, that does not take into
account the geometry of the surface and linearizes the Lie-group in the simplest
possible manner, the segmentation of the moving parts is clear. It is expected
that utilizing geometric prior on the regions size will prevent artifacts such as

Fig. 1. TV regularization based on Equation (9) of an SE3-valued image placed on
a rendered depth surface. Left-To-Right, Top-To-Bottom: An overlay of the two con-
secutive time-frames used to obtain motion estimation, the estimated and regularized
SE(3) images, and a resulting segmentation using mean-shift.
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Fig. 2. TV regularization based on Equation (9) of an SE3-valued image given on
a scanned depth surface. . Each row represents results on two different frames from
a depth sequence. Left-To-Right, for each frame: An overlay of the two consecutive
time-frames used to obtain motion estimation, the estimated SE(3) measurement, and
regularized image. Raw depth data is used to estimate the motion. The regularized
SE(3) image hints at joint locations for parts that were moving at the time the depth
frames were taken. Note in the last example, using a slightly stronger regularization, a
nonrigid object (a shirt) is still separated clearly from the arms.

Fig. 3. Segmentation based on mean-shift clustering of the SE(3) image. Left-to-right:
The motion between the two frames, the segmentation obtained using the raw esti-
mated SE(3), and the segmentation obtained using the regularized result, showing a
segmentation of the moving limb parts.

Fig. 4. A scale-space obtained by changing the fidelity coefficient through the values
λ = 5, 2.5, 1.5, 0.8

oversegmentation. In the examples shown here, QVGA resolution (320 × 240)
was used. The estimation of motion coefficients takes in Matlab about 5 seconds
on an Intel i3 CPU. The regularization is similar algorithmically to [31], which
took about a tenth of a second to compute on GPU. Preliminary results support
this efficiency claim.
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5 Conclusions

In this paper we extended the notion of fast SE(3)-valued image regularization
to parametric surfaces. This allowed us to selectively smooth articulated motion
based on noisy depth data. In many cases this regularized representation can
provide a partition of an object into rigid parts, as shown in several examples.
In future work, we intend to further explore the resulting scale-space of SE(3)
images and their use for scene understanding and 3D object segmentation as
well as investigate several priors and data terms.
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