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Abstract
Motion segmentation for articulated objects is an important topic of research. Yet such a segmentation should be
as free as possible from underlying assumptions so as to fit general scenes and objects.
In this paper we demonstrate an algorithm for articulated motion segmentation of 3D point clouds, free of any
assumptions on the underlying model and yet firmly set in a well-defined variational framework.
Results on scanned images show the generality of the proposed technique and its robustness to scanning artifacts
and noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling

1. Introduction

Surface segmentation is a well-known research topic in the
computer graphics and computer vision communities [AF98,
AKM∗06, CGF09, SF11]. Examples for the use of surface
segmentation include 3D scene analysis [SF11], part-based
recognition [HKDH04] and 3D video compression [Len99],
among others.

In many cases, motion cues provide us with a very strong
hint on the structure and association of object parts in the
scene. Thus, they serve a fundamental role in 3D object
analysis and scene interpretation, which are important for
many computer vision tasks. It comes as little surprise that
motion based segmentation of surfaces is in itself an ac-
tive branch of surface segmentation [AF98, AKP∗04, JT05,
LWC06, TVD08, WB10, ABH∗10].

In computer graphics algorithms for motion-based seg-
mentation are known as dynamic mesh algorithms or skele-
tonization algorithms. This term is often used with a pre-
sumed correspondence, known to some extent between the
surfaces. As this assumption is not plausible in many cases,
we wish to avoid it in motion-based segmentation.

† This research was supported by European Community’s FP7-
ERC program, grant agreement no. 267414.

Moreover, the raw input in most applications is based on
depth scanners such as structured light systems, laser range
sensors, or time-of-flight sensors. This is especially true with
the introduction of commodity depth scanners. Data from
depth sensors does not have a meaningful predetermined
topology – determining this topology is in itself scene seg-
mentation, which should not be a preprocessing step, but
rather part of scene understanding as a whole. The most ba-
sic representation of the input is that of a cloud of points
without any sampling or mesh structure.

Lie group theory plays an important part in motion under-
standing [PBP95,TPM08,RS10], analysis [LGF09,BaAP10]
and synthesis [PBP95, vKC98, PLZ∗08, KCD09]. They pro-
vide a well-defined axiomatic approach for motion inter-
pretation. It is only natural to find uses for them in vari-
ational schemes for 3D motion analysis [RBB∗11], where
they provide a natural tool for motion understanding. Such
tools should also play a role in analysis of point cloud data.

In this paper we treat the topic of variational motion-based
segmentation for articulated objects sampled as point clouds.
We propose a general framework for motion segmentation,
that is based on a minimal set of assumptions, using diffu-
sion of Lie-group elements on point clouds. We show that
with reasonable discretization schemes, this framework can
apply to detection of articulated parts in noisy range scans
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available from commodity range scanners as well as other
sources.

Specifically, we do not make in this paper any assump-
tions on the topology of the object to be segmented beyond
the notion that it is a surface, or several surfaces, sampled in
a reasonably consistent manner. Unlike many algorithms for
pose estimation and articulated object segmentation, we do
not assume that the object consists solely of rigidly-moving
parts. Rather, we merely assume that if points do belong to a
rigid part they should undergo the same rigid transformation
between object poses. We allow for points not to belong to
rigid parts, but prefer a piecewise-rigid interpretation of the
motion if one exists.

Recently, Rosman et al. [RBB∗11] suggested a framework
for variational motion segmentation that is independent of
assumptions on the topology of the parts. Yet, the proposed
method was still based on triangulated surfaces for the diffu-
sion of rigid transformations. In this paper we free ourselves
of such assumptions, providing a complete pipeline for mo-
tion estimation based on point clouds with a general struc-
ture, and show that the framework works with noisy data
scanned using off-the-shelf equipment.

We formulate a diffusion process on point clouds involv-
ing group-valued functions defined on the points, and use
this process in order to regularize in a piecewise smooth
manner the transformations between several sampled poses
of the same surface. This allows us to analyze the surface
and detect rigidly-moving parts in the 3D scene in the most
general way possible.

We formulate our assumptions and resulting model in
Section 2. The algorithm, along with discussion of relevant
numerical schemes are given in Section 3. The results of our
algorithm are shown in Section 4. Section 5 concludes the
paper.

2. Model Formulation

We now develop the proposed model, while stating our un-
derlying assumptions, which are as lenient as possible. We
assume that we are given a set of point clouds sampled from
a surface at different poses. These samples may be partial,
and with sampling errors as well as topological noise. We
expect the surface to be regular in most places, allowing us
to discuss smoothness and continuity of functions, given a
reasonable sampling of the surface. Moreover, since our al-
gorithm is defined with implicit segmentation in mind, we
do not wish to presume a specific structure of the object, but
assume the surface has a reasonable structure, whose parts
are not too delicate compared to the motions involved and
the sampling of the surface. If the sampling is dense enough,
we wish for this structure to be inferred from local neigh-
borhoods in the given point clouds in an implicit manner,
without specific surface fitting steps, save for local steps of-
ten taken as part of mesh-free discretization methods.

Furthermore, since the segments to be detected are not
known in advance, some of the points may not even be-
long to well defined rigidly moving parts. Instead, we merely
expect points that belong to the same part to be moving
together between different scans of the same object. Even
when rigid parts do exist, the contours of each part need not
form a closed simple curve.

One simplification we make in this paper is that of a rel-
atively complete common surface which is mapped into the
other surface poses. This allows us to describe the detec-
tion of rigid parts as a diffusion process defined on this com-
mon surface, while still allowing for small partially occluded
parts to be handled by carefully defining our notion of reg-
istration between poses. This assumption is valid, however,
since the motions allowed are still large enough to provide
cues for segmentation, as will be shown in Section 4.

The small set of assumptions we have made and our
search for an axiomatic approach for the problem of motion
segmentation lead us to the model we now describe, along
with its associated cost function and minimizing PDEs. We
first make a short detour and describe the relevant notion
of Lie-groups. Describing rigid motion using Lie-groups al-
lows us to discuss regularity of motion in a well-defined
way, and will allow us to describe smoothing and piecewise-
smoothness of transformations fields on surfaces. We will
then proceed to detail our model.

2.1. A Brief Introduction to Lie Groups

We now give a brief description of Lie-groups, and refer the
interested reader to the literature (see [Hal04], for example).
A Lie-group is a manifold endowed with an algebraic group
structure. Due to its manifold structure, a Lie-group can be
locally described by a tangent plane. Because of the group
structure of the Lie-group, the tangent plane can be home-
omorphically mapped onto the tangent plane at the identity
element.

The resulting linear space, known as a Lie-algebra, pro-
vides us with a uniform way of treating smoothness and
similarity between neighboring elements, and more specif-
ically, allows us to define differential regularization of trans-
formation fields mapping some smooth domain onto the Lie-
group.

In our case, the Lie-group that describes rigid transfor-
mations in an n-dimensional space is the special-Euclidean
group SE(n). This group is defined in matrix form as the
group

SE(n) =
{(

R t
0 1

)
,RT R = In×n, t ∈ Rn

}
, (1)

with matrix multiplication as the group action.
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The associated Lie-algebra is the space se(n)

se(n) =
{(

A v
0 0

)
,AT =−A,v ∈ Rn

}
, (2)

2.2. Motion Segmentation via Group-valued
Regularization

We now describe the proposed model. We assume each pose
of the object to be a surface, or a set of surface fragments
due to occlusions, self-occlusions, or sampling artifacts. We
choose one of these poses to be a common domain (remov-
ing this assumption is possible but is beyond the scope of
this work). Let S1 be the surface pose chosen as our param-
eterization domain. Several additional poses are available of
the object. These are denoted by {Si}, i = 2, . . .N, and need
not have the same topological structure as S1.

We do, however, expect a large overlap between surface
S1 and the other poses {Si}. Furthermore, for the type of
objects and scenes we are interested in, we expect the trans-
formation between S1 and Si to be locally-rigid on much of
the surface S1. Such transformations retain the distances in-
side a local neighborhood, and can generally be described by
a rotation, followed by a translation. Regions where the as-
sumption of a single rigid transformation between each two
poses holds are known as rigid parts. Detecting rigid parts
is important in many understanding and recognition tasks,
due to the large number of approximately articulated objects
around us, and is the focus of this paper.

We describe the local transformation between S1 and each
other pose surface Si as a map gi(x) : Si →G from the sur-
face onto a transformation group of all the rigid transforma-
tions. Ideally, in the context of articulated motion segmenta-
tion we expect the same transformation to apply to each of
the points in a rigidly moving part. Thus, we wish to define
a model describing the detection of rigidly moving parts as
piecewise smooth regularization of maps on the surface S1.

A natural choice for parameterizing rigid transformations
is the Lie-group SE(3). This Lie-group, along with the cor-
responding Lie-algebra provides us with a representation on
which we can define smoothness measures for maps through
the generalized Dirichlet functional [ES64],

EDir =
∫
S1

‖g−1∇g‖2
F dx, (3)

where dx denotes the area element on the surface and g−1∇g
describes the Jacobian in terms of local coordinates on
SE(3) of the map g with respect to points on S1.

This functional provides us with a tool for discussing the
smoothness of maps onto manifolds such as the transforma-
tion groups. Yet, our goal is to find a segmentation of the
surface, which is is strongly related to piecewise-smooth reg-
ularization via the Mumford-Shah functional [MS89]. This
model can be approximated (via a Γ-convergence process)

by the Ambrosio-Tortorelli scheme using optimization func-
tions of the form

EAT =
∫
S1

v2‖g−1∇g‖2
F + ε‖∇v‖2 +

(1− v)2

4ε
dx, (4)

where v is a diffusivity function accepting values in the in-
terval [0,1]. This function is easily extended to the case of
multiple surfaces with transformation maps describing the
transformation between pose S1 and each of the other poses
Si,

EAT =

∫
S1

v2
N

∑
i=2

‖g−1
i ∇gi‖2

F + ε‖∇v‖2 +
(1− v)2

4ε
dx, (5)

The optimality condition for the regularity term is given
by its Euler-Lagrange equations. In order to avoid computing
the Christoffel symbols and the associated high-order deriva-
tive operators on noisy sampled surfaces we first transform
the data to a locally Euclidean approximation using the Ro-
drigues formula, effectively flattening the manifold of SE(3)
into a local representation. In this locally-Euclidean param-
eterization, the optimality conditions with respect to gi and
v become the diffusion equations,

δEAT
δgi

= v2∆S1 gi (6)

δEAT
δv

= 2v
N

∑
i=2

‖g−1
i ∇gi‖2

F +2ε∆S1 v+
(v−1)

2ε
. (7)

In order for this regularity measure to make sense, we
must require the transformations to fit the surface S1 into
the other poses Si in some sense. On the other hand, con-
strained minimization is not appropriate in our case, where
the correspondences are not know. We therefore incorporate
a second energy term favoring correct data fitting,

EDATA =
∫
S1

N

∑
i=2

Ψ
(
‖gi(x)(x)− yi (x)‖2

)
dx, (8)

where yi (x) is a latent variable signifying the assumed corre-
spondence of point x on surface i, according to the transfor-
mation gi(x), and Ψ(·) is a robust fitting function. Given x
and gi (x) the update of yi (x) is a corresponding point search,
similar to the ones encountered in the context of iterative
closest point (ICP) algorithms [BM92, CM92].

Rigid transformations have locally 6 degrees of freedom
whereas a single point matching only provides 3 contraints.
This constitutes an overparameterized motion estimation
process [NBK08], with the missing constraints provided ei-
ther by fitting a finite neighborhood around the point, or by
forcing overall smoothness of the resulting transformation
field. The former case is clearly analogous to the Lucas-
Kanade registration algorithm [LK81], and the latter resem-
bles the Horn-Schunck algorithm [HS81].

We suggest to use a combined global-local approach
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[BWS05] approach. Updating the transformations so as to
locally match the other surfaces Si results in an ICP-like fit-
ting term at each point x,

EICP = (9)∫
S1

∫
x′∈N (x) ∑N

i=2 Ψ
(
‖gi(x)

(
x′
)
− yi

(
gi(x)x′

)
‖2
)

dx′dx,

Weighting the ICP data term with the Ambrosio-Tortorelli
smoothness term gives us a cost function suitable to the
model we have describe,

E = λEAT +EICP. (10)

We will discretize this functional over point clouds and min-
imize it in Section 3.

2.3. Group-valued Regularization on Point Clouds

As mentioned before, in order to discuss group-valued reg-
ularization and motion segmentation, the continuous model
defined above should be made relevant for the data at hand.
In this context we acknowledge the fact that the sampled sur-
faces are usually incomplete and noisy, and that the sam-
pling will not be uniform. The discretization of the oper-
ators and flows we will choose should therefore be robust
to topological errors and occlusions. Luckily, working di-
rectly with the point clouds allows us to discretize the PDEs
given in equations 6,7 without any assumptions on the global
scene structure. In addition, the data term should take into
account the possibility of partial matching between incom-
plete scans of an object. In general, such concerns have been
thoroughly investigated in the implementation of ICP algo-
rithms [RL01]. If the missing parts are relatively small, we
can easily use robust data fitting in order to avoid the influ-
ence of this incorrect matches by treating them as outliers.
This approach suffices in the case of scans taken from short
video sequences where the motions are relatively small, and
are used to detect candidates for rigid parts. In more general
cases, a more complete approach for partial ICP should be
incorporated, but this is beyond the scope of this work. Let
Si be sampled as a point clouds {(si) j}N

i=1. The maps gi are
now defined discretely by elements of SE(3) at each sampled
surface point. Discrete operators are defined on functions on
(s1). Specifically, we require a definition of the Laplacian,
gradient, and a semilocal fitting process on point clouds.
These are discussed in Section 3.

3. Algorithmic Description

We now detail our algorithm for motion segmentation of
point clouds. This algorithm minimizes the functional de-
scribed in Section 2 with respect to the diffusivity function
v and the transformation elements gi(x). The complete algo-
rithm is described as Algorithm 1.

Algorithm 1 Fast TV regularization of matrix-valued data
Require: Point clouds si, i = 1, . . . ,N

1: Initialize correspondences between point clouds based
on tracking or motion capture markers.

2: for k = 1,2, . . . , until convergence do
3: Update functions gi,v in an alternating minimization

fashion,
• Update gi(x) according to Equation 6 and accord-

ing to Equation 12 in a fractional-step manner.
• Update v(x) according to Equation 7.

4: end for

3.1. Differential operators on point clouds

In order to minimize functionals on surfaces described by
point clouds, differential operators on point clouds must first
be defined. Several techniques are available for computing
differential operators on point clouds. One set of methods
approaches the problem by approximating the tangent plane
at each point, and then reconstructing a local operator on the
surface based on this approximation. Discretization schemes
based on this approach include the work of Belkin et al.
[BSW09], and are strongly related to moving least squares
approaches for surface estimation [Lev03].

Yet another approach avoids the need for tangent plane
estimation by looking at a narrow-band around the surface.
Techniques in this group include the closest point method
[RM08] as well as other mesh-free techniques often used in
physical simulations.

In our algorithm we chose approximations of the local
tangent plane for the differential operators involved. We used
the scheme suggested by Belkin et al. [BSW09] in order to
compute the Laplacian weights. We use polynomial fitting
weights in order to approximate function derivatives at each
neighborhood. For this purpose we take the nearest neigh-
boring points of each point without any outlier rejection or
reweighting. We note that better results are to be expected,
especially in the case of noisy data, but a thorough investiga-
tion of such scheme would be data dependent and is beyond
the scope of this work.

3.2. An Ambrosio Tortorelli Scheme for
Transformations on Point Clouds

Once the gradient and the Laplacian are defined on a point
cloud, it is quite simple to use an Ambrosio-Tortorelli
scheme on a point cloud. In our case, we take the same
approach as suggested in [RBB∗11], of first transforming
neighboring points onto the tangent plane at point g(x), per-
forming the diffusion step, and transforming back. We write
a diffusion step in the same notation as for fractional steps
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approach [Yan71],

(gi)
(n+ 1

2 )
j = exp

(gi)
(n)
j

(
∆t
2 ∑

k∈N ( j)
w jklog

(gi)
(n)
j
(gi)

(n)
k

)
,

(11)

where w jk are the weights given by the Laplacian matrix
for the point cloud s1. As previously mentioned, our Lapla-
cian operator based on the scheme suggested by Belkin et
al. [BSW09], although other schemes are applicable.

We then optimize with respect to the registration of neigh-
borhood N ( j) by taking a partial ICP step,

(gi)
(n+1)
j = (gi)

(n+ 1
2 )

j − ∆t
2

δEICP(g
(n+ 1

2 )
i )

δg
(n+ 1

2 )
i

, (12)

where the optimization step is done by gradient descent
on the linearized rotation matrix and translation coefficient,
followed by projection onto SE(3). This update is in the
spirit of fractional steps algorithms [Yan71], and specifically
the registration-regularization cycle is akin to demons algo-
rithms [Thi98, PCA99].

The update with respect to the ICP term requires a notion
of a surface patch on the surface Si that corresponds to the
neighborhood of point x. Choosing the corresponding point
in a robust manner strongly affects the convergence of ICP
algorithms. Removal of outliers in the correspondence and
pruning correspondences to prevent bias has been studied
extensively, see for example [RL01]. Choosing the right ex-
pression for a surface-to-surface distance is also known to be
crucial, see for example works by Mitra et al. [MGPG04]. In
our implementation, due to the relatively good initialization,
simple point-to-point distance function with only distance-
based rejection of correspondences proved sufficient.

In addition we optimize the functional with respect to v
based on Equation 7. We use the same Laplacian approxi-
mation as for the update of the functions {gi}. Optimization
with respect to v requires, however, the computation of the
gradient norm on the surface. As mentioned previously, we
approximate the gradient of each map by building a local
polynomial approximation for functions using neighboring
point values and differentiating with respect to the locally-
estimated tangent coordinates.

3.3. Initialization for Motion Segmentation

Since the functionals we minimize are not convex, special
care must be taken to assure reasonable initialization of the
algorithm. In order to initialize the algorithm, the functions
gi should be estimated for every point in the point cloud s1.
This can be done in several ways, as we now describe.

Initialization based on motion capture markers In a
scenario where motion capture markers or nonrigid descrip-
tors are available, we can propagate the sparse motion data

into a dense correspondence. This correspondence will be
used to estimate the initial solution for our algorithm. One
way to obtain such an initial dense motion field is by Lapla-
cian interpolation on the point cloud [Rus11]. We used the
same Laplacian operator as we use in the rest of our algo-
rithm in order to obtain an initial dense flow field using the
motion capture markers as a (Dirichlet) boundary condition
and solving the heat equation on the point cloud for each of
the 3D motion components. This field is then used to initial-
ize a local ICP search.

Initialization based on tracking In the case where the in-
put is a 3D video, we can use temporal consistency to initial-
ize the correspondence. While a local ICP process without
spatial coherence can be used for motion analysis [RWT∗11]
for short sequences, for longer sequences, spatial coherence
of the transformation can be crucial in order to avoid gross
errors in the initialization. As initialization in our experi-
ments on Kinect sensor data we use two approaches. One
is a simple a local-ICP process from frame to frame that
proved to be relatively error-prone, as seen in Figure 2. An-
other approach is initialization based on the coherent point
drift [MS10] algorithm, which was used in Figure 3. Other,
more elaborate approaches are also possible, including non-
rigid registration algorithms [LSP08]. The use of such tech-
niques was not necessary for reasonably slow motions, and
is beyond the scope of this paper.

4. Results

We now show a few results of our algorithm. We demon-
strate the segmentation of real point clouds obtained from
laser scanners and Microsoft Kinect depth sensors. The ex-
amples are implemen In Figures 1–3 we use vector quan-
tization (VQ, [Max60, Llo82]), in terms of the embed-
ding SE(3) ⊂ R12, with multiple initializations in order to
demonstrate the resulting transformations. In the examples
shown, 40 initializations of vector quantization are used,
at which point a minimal quantization cost is practically
achieved and new hypotheses do not feature lower costs.

While vector quantization can be used in itself to pro-
vide segmentation of motion, using it over the raw estimated
transformation create various artifacts. These are seen in the
examples, where our piece-wise smooth regularization solu-
tion manages to fix these artifacts.

In addition, we show the Ambrosio-Tortorelli diffusivity
field, where several of the main boundaries between parts
can be seen.

In Figure 1 we demonstrate results from the SCAPE
dataset [ASK∗05]. The results are based on the algorithm
with initialization using 200 initial matches, and use the first
5 frames of the dataset.

In Figures 2,3 we demonstrate results from a Kinect sen-
sor. The transformation maps were initialized using frame-

c© The Eurographics Association 2012.

81



G. Rosman, A. M. Bronstein and M. M. Bronstein and R. Kimmel / Art. Mot. Segm. of Pt Clouds by Grp.-Val. Regular.

Figure 1: Visualization of the detected transformations before and after smoothing, using 6 frames from the SCAPE dataset.
Colors show the vector quantization results on the transformations embedded into R12

to-frame 3D tracking. Figure 2 demonstrates results on ar-
bitrarily segmented part of the upper arm, with initialization
based on local, patch-based, ICP between frames. For this
experiment, 4 frames were taken. Figure 3 demonstrates re-
sults on a human hand doing a waving motion, with initial-
ization based on the coherent point drift algorithm [MS10],
with 6 frames taken for the segmentation. These results show
the applicability of the proposed framework also for analy-
sis of depth video from noisy data sources in an automated
manner.

5. Conclusions

In this paper we demonstrate the possibility of using a gen-
eral variational model involving a piecewise smooth regular-
ization model and a registration-based data term for analysis
of articulated objects and for finding the articulated parts us-
ing motion cues alone.

Specifically, we have shown that this very general frame-
work, despite its differential formulation, is useful also for
real data coming fron noisy data sources such as commodity
range scanners.

In future work we intend to take this framework and incor-
porate the optimization scheme into a more general online
analysis algorithm, as well as utilize additional segmentation
priors in order to robustify the algorithm.
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Figure 3: Top row: Visualization of the detected transformations before and after regularization, based on a point cloud from
a Kinect sensor at 70cm. Colors show the vector quantization results on the transformations embedded into R12, greyscale
shows the depth in regions that were not subject to the algorithm. Left: VQ visualization of the initial state obtained by the CPD
algorithm. Right: visualization of the resulting state after optimization. Note the merged sections of the ring and middle finger,
as well as additional artifacts vector quantization before the regularization. Bottom row: Left: Two surface reconstructions of
the point cloud obtained from the Kinect. Note the relatively high noise level in the surface reconstructions. Right: The diffusivity
function v.
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