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Abstract. Detecting similarity between non-rigid shapes is one of the
fundamental problems in computer vision. While rigid alignment can be
parameterized using a small number of unknowns representing rotations,
reflections and translations, non-rigid alignment does not have this ad-
vantage. The majority of the methods addressing this problem boil down
to a minimization of a distortion measure. The complexity of a matching
process is exponential by nature, but it can be heuristically reduced to
a quadratic or even linear for shapes which are smooth two-manifolds.
Here we model shapes using both local and global structures, and provide
a hierarchical framework for the quadratic matching problem.

Keywords: Shape correspondence, Laplace-Beltrami, diffusion geome-
try, local signatures.

1 Introduction

The paper addresses the problem of finding point-correspondences between non-
rigid almost isometric shapes. The correspondence is required for various ap-
plications such as shape retrieval, registration, deformation, shape morphing,
symmetry, self-similarity detection, to name a few.

A common approach to detect correspondence between shapes differing by a
certain class of transformations consists of employing invariant properties un-
der those transformations to formulate a measure of dissimilarity between the
shapes, and minimize it in order to find the correct matching. Here we use
a matching scheme based on local and global surface properties, namely, local
surface descriptors and global metric structures. The proposed method is demon-
strated with two different types of metrics - geodesic and diffusion, and different
surface descriptors, that include histograms of geodesic and diffusion distances,
heat kernel signatures [33], and related descriptors based on the Laplace-Beltrami
operator [12].

The main issue we address is the matching complexity. Given two shapes
represented by triangular meshes, direct comparison of their pointwise surface
descriptors and metric structures is combinatorial in nature (see [24] for the met-
ric comparison problem). Our main contribution is a multi-resolution matching
algorithm that can handle a large number of points, and still produces a corre-
spondence consistent in terms of both pointwise and pairwise surface properties.
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According to the proposed scheme, at the lowest resolution we solve the exact
correspondence problem, up to the approximation introduced by the optimiza-
tion algorithm. We then propagate this information to higher resolutions thus
refining the solution.

The rest of the paper is organized as follows: a brief review of some previous
efforts is presented in the next section. Section 2 presents the correspondence
problem formulation, followed by Section 3, reviewing relevant mathematical
background. Section 4 presents the suggested multi-resolution algorithm. Sec-
tion 5 contains numerical results, and comparison to the state-of-art algorithms,
followed by Section 6 that concludes the paper.

1.1 Non-Rigid Correspondence in a Brief

Zigelman et al . [39], and Elad and Kimmel [13] suggested a method for matching
isometric shapes by embedding them into a Euclidian space using multidimen-
sional scaling (MDS), thus obtaining isometry invariant representations, followed
by rigid shape matching in that space. Since it is generally impossible to embed
a non-flat 2D manifold into a flat Euclidean domain without introducing some
errors, the inherited embedding error affects the matching accuracy of all meth-
ods of this type. For that end, Jain et al . [17] and Mateus et al . [21] suggested
alternative isometry-invariant shape representations, obtained by using eigende-
composition of discrete Laplace operators. The Global Point Signature (GPS)
suggested by Rustamov [31] for shape comparison employs the discrete Laplace-
Beltrami operator, which, at least theoretically, captures the shape’s geometry
more faithfully. The Laplace-Beltrami operator was later employed by Sun et al .
[33], and Ovsjanikov et al . [25], to construct their Heat Kernel Signature (HKS)
and Heat Kernel Maps, respectively. Zaharescu et al . [37] suggested an extension
of 2D descriptors for surfaces, and used them to perform the matching. While
linear methods, such as [37,25] produce good results, once distortions start to
appear, ambiguity increases, and alternative formulations should be thought of.
Adding the proposed approach as a first step in one of the above linear dense
matching algorithms can improve the final results. Hu and Hua [16] used the
Laplace-Beltrami operator for matching using prominent features, and Dubrov-
ina and Kimmel [12] suggested employing surface descriptors based on its eigen-
decomposition, combined with geodesic distances, in a quadratic optimization
formulation of the matching problem. The above methods, incorporating pair-
wise constraints, tend to be slow due to high computational complexity. Wang et
al . [36] used a similar problem formulation, casted as a graph labeling problem,
and experimented with different surface descriptors and metrics.

Memoli and Sapiro [24], Bronstein et al . [6], and Memoli [22,23] compared
shapes using different approximations of the Gromov-Hausdorff distance [14].
Bronstein et al . [7] used the approach suggested in [6] with diffusion geometry,
in order to match shapes with topological noise, and Thorstensen and Keriven
[35] extended it to handle surfaces with textures. The methods in [24,22,23]
were intended for surface comparison rather than matching, and as such they
do not produce correspondence between shapes. At the other end, the GMDS
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algorithm [7] results in a non-convex optimization problem, therefore it requires
good initializations in order to obtain meaningful solutions, and can be used as a
refinement step for most other shape matching algorithms. Other algorithms em-
ploying geodesic distances to perform the matching were suggested by Anguelov
et al . [1], who optimized a joint probabilistic model over the set of all possible
correspondences to obtain a sparse set of corresponding points, and by Tevs et
al . [34] who proposed a randomized algorithm for matching feature points based
on geodesic distances between them. Zhang et al . [38] performed the matching
using extremal curvature feature points and a combinatorial tree traversal algo-
rithm, but its high complexity allowed them to match only a small number of
points.Lipman and Funkhouser [20] used the fact that isometric transformation
between two shapes is equivalent to a Möbius transformation between their con-
formal mappings, and obtained this transformation by comparing the respective
conformal factors. However, there is no guarantee that this result minimizes the
difference between pairwise geodesic distances of matched points.

Self-similarity and symmetry detection are particular cases of the correspon-
dence detection problem. Instead of detecting the non-rigid mapping between
two shapes, [28,26,18] search for a mapping from the shape to itself, and thus
are able to detect intrinsic symmetries.

2 Problem Formulation

The problem formulation we use is based on comparison of local and global sur-
face properties that remain approximately invariant under non-rigid ε-isometric
transformations. Given a shape X , we assume that it is endowed with a metric
dX : X × X → R+ ∪ {0}, measuring distances on X , and pointwise structure
fX : X → Rd, which is represented by a set of d-dimensional descriptors.

Given two shapes X and Y , endowed with metrics dX , dY and descriptors
fX , fY , we would like to find correspondence that best preserves these properties.
We denote the correspondence between X and Y by a mapping C : X × Y →
{0, 1} such that

C(x, y) =
{

1, x ∈ X corresponds to y ∈ Y ,
0, otherwise. (1)

In order to measure how well the correspondence C preserves the geometric
structures of the shapes we use the following dissimilarity function based on
global and local shape properties,

dis (C) = dislin (C) + λ · disquad (C) . (2)

The first term, dislin (C), measures the dissimilarity between the descriptors of
the two shapes

dislin (C) =
∑

x∈X,y∈Y
dF (fX(x), fY (y)) C(x, y), (3)
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where dF is some metric in the descriptor space. dislin (C) is a linear function of
the correspondence C. The second term, disquad (C), measures the dissimilarity
between the metric structures of the two shapes

disquad (C) =
∑

x,x̃∈X
y,ỹ∈Y

(dX(x, x̃) − dY (y, ỹ))2C(x, y)C(x̃, ỹ), (4)

and it is a quadratic function of C. The parameter λ ≥ 0 (Eq. (2) ) determines
the relative weight of the linear and the quadratic terms in the total dissimilarity
measure. The optimal matching, denoted here by C∗, is obtained by minimizing
the dissimilarity measure dis (C). In order to avoid a trivial solution C∗(x, y) =
0, ∀x, y, we introduce constraints defined by the type of the correspondence we
are looking for. For example, when a bijective mapping from X to Y is required,
the appropriate constraints on C are

∑
x∈X

C(x, y) = 1, ∀y ∈ Y,
∑
y∈Y

C(x, y) = 1, ∀x ∈ X (5)

The resulting optimization problem can be written as

min
C

{dislin (C) + λ · disquad (C)} s.t. (5) (6)

Note that the dissimilarity measure dis (C) is a quadratic function of the corre-
spondence C. In [12], it was shown how to formulate (6) as a quadratic program-
ming problem with binary variables C(x, y). The optimization problem described
above belongs to the class of Integer Quadratic Programming (IQP) problems,
also referred to as Quadratic Assignment Problems (QAP), when used with (5).
In general, IQP and QAP problems are NP-Hard. Therefore, in order to mini-
mize dis (C), one has to resort to either some relaxation technique or a heuristic
approach (see e.g. [27]). While matching points using local structures alone (by
setting λ = 0, for instance) is a linear problem, and thus can be solved ef-
ficiently, it can not guarantee global invariance in the presence of noise and
symmetries. A better solution can be found by considering global structures.
Unfortunately, solving the quadratic assignment problem for a large number
of variables is almost infeasible, even after relaxation. In Section 4 we apply
a hierarchical approach for calculating an approximate solution of the above
optimization problem.

3 Mathematical Background

3.1 Choice of Metric

Differential geometry: Smooth surfaces, also known as Riemannian manifolds,
are differential manifolds equipped with an inner product in the tangent space,
which provides geometric notions such as angels, lengths, areas and curvatures
without resorting to the ambient space, and are referred to as intrinsic measures.
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The simplest example of an intrinsic metric is the geodesic metric, defined by
the length of the shortest path on the surface of a shape,

dX(x, x′) = inf
γ∈Γ (x,x′)

�(γ), (7)

where Γ (x, x′) is the set of all admissible paths between the points x and x′ on
the surface X ,and �(γ) is the length of the path γ. There exist several numerical
methods to evaluate (7) [19,32,5]. We use fast marching method, that simulates
a wavefront propagation on a triangular mesh, associating the time of arrival of
the front with the distance it traveled.
Diffusion geometry: Heat diffusion on the surface X is described by the heat
equation, (

ΔX +
∂

∂t

)
u(t, x) = 0, (8)

where a scalar field u : X× [0,∞) → R is the heat profile at location x and time
t, and ΔX is the Laplace-Beltrami operator.

For compact manifolds, the Laplace-Beltrami operator has a discrete eigen-
decomposition of the form

ΔXφi = λiφi, (9)

where λ0, λ1, ... are eigenvalues and φ0, φ1, ... are the corresponding eigenfunc-
tions, which construct the heat kernel

ht(x, z) =
∞∑
i=0

e−λitφi(x)φi(z). (10)

The diffusion distance is defined as a cross-talk between two heat kernels [9]

d2
X,t(x, y) = ‖ht(x, ·) − ht(y, ·)‖2

L2(X) =
∫
X

|ht(x, z) − ht(y, z)|2dz

=
∞∑
i=0

e−2λit (φi(x) − φi(y))2 . (11)

Since diffusion distances are derived from the Laplace Beltrami operator, they
are also intrinsic properties, and, according to [3,11,10], also fulfill the metric
axioms.

3.2 Choice of Descriptors

Distance histograms: Given two surfaces X and Y and their metrics dX and dY
respectfully, we can evaluate the distances between any two points on each one
of the shapes using either choices of metrics. For isometries, a good candidate
that matches point x ∈ X to y ∈ Y will have similar distances to all other corre-
sponding points. Assuming the surface is well sampled, the distance histograms
of corresponding points x ∈ X and y ∈ Y have to be similar. Comparison of
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histograms is a well studied operation. While straight forward bin-to-bin com-
parison may work, we refer the reader to more robust algorithms such as the
earth moving distances (EMD) [30].

Heat kernel signatures: Another local descriptor based on the heat equation, was
presented by Sun et al . [33]. It was employed by Bronstein et al . [8] for shape
retrieval, and was recently adapted to volumes by Raviv et al . [29]. Sun et al. [33]
proposed using the diagonal of the heat kernel kt(x, x) (10) at multiple scales
as a local descriptor, and referred to it as heat kernel signatures (HKS). The
HKS remains invariant under isometric deformations of X , and it is insensitive
to topological noise at small scales. It is also informative in the sense that un-
der certain assumptions one could reconstruct the surface (up to an isometry)
from it. Furthermore, the HKS descriptor can be efficiently computed from the
eigenfunctions and eigenvalues of the Laplace-Beltrami operator.

Intrinsic symmetry-aware descriptors: Another possible choice for a surface de-
scriptor is one based on the eigendecomposition of the Laplace-Beltrami opera-
tor, suggested in [12]. In [12], the focus was on matching intrinsically symmetric
non-rigid shapes, and on the fact that in this case there exist more than one
possible matching of the two shapes, that preserves their global and local sur-
face properties.The solution proposed in [12] consists of defining distinct sets of
descriptors for several possible correspondences, and minimizing the distortion
dis(C) separately for each of them, to obtain distinct matchings. Thus, when
using these descriptors within an hierarchical framework, we can also find more
than a single matching of the two shapes, while obtaining denser correspondence.

3.3 Integer Quadratic Programming

A quadratic program (QP) is an optimization problem with quadratic objective
function and affine constraint functions

min 1
2x

TEx + qTx + r s.t. Gx 	 h, Ax = b. (12)

The above problem is called convex when the matrix E is positive semi-definite.
The Integer Quadratic Programming (IQP) has similar form, with the additional
constraint on the variables x: xi ∈ {0, 1} (binary variables). While convex QP
has one global minimum and can be solved efficiently, IQP is an NP-Hard prob-
lem. Two common methods are used to solve an QAP problem [4]. The first
is a heuristic approach based on a search procedure. For example, [12] used a
branch-and-bound procedure to solve the optimization problem in Eq. (6). This
approach usually provides good results assuming the local structures are both
robust and unique, and there is no intrinsic symmetry. The second approach is
based on relaxation. It is a three step solution, consisting of relaxing the inte-
ger constraints, solving a continuous optimization problem and projecting the
solution back into integers. As expected, this procedure is highly influenced by
the initial conditions. As for complexity, the relaxed IQP problem remains NP-
Hard. We use branch-and-bound for initial alignment, and then refine it using a
continuous optimization technique.
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Fig. 1. In the first step (left) we construct a quadratic correspomdence matrix from all
points in X into all points in Y . In each iteration (right) we search for possible matches
between points in X from the previous iteration (blue circle) and new sampled points
in X (green Xs) and their corresponding neighborhoods (black circles) in Y .

4 Hierarchical Formulation

Solving (6) reveals the main drawback of the quadratic problem formulation. As
noted in [12], the dimensionality of the problem allows us to handle up to several
dozens of points. Let us assume that X and Y have N and M vertices, respec-
tively. The number of possible correspondences between X and Y is therefore
NM , and thus, the dimension of the matrix E in the quadratic problem (12) is
NM × NM . Even for a small number of points, e.g. 30, the problem becomes
almost infeasible.

Since the problem is not strictly combinatorial by nature, but rather derived
from a smooth geometric measure, there should be a way to reduce the com-
plexity. We suggest reducing the high dimensionality of the problem using an
iterative scheme. At the first step we follow [12] and solve (6) using a branch-and-
bound procedure [2]. Each point x ∈ X is now matched to a point c(x) ∈ Y by
the mapping c. We denote y = c(x) if C(x, y) = 1. In each iteration we search for
the best correspondence between x and c(x) neighborhood, instead of all points
y ∈ Y , in a manner similar to [36]. Between iterations we add points x ∈ X and
y ∈ Y using the 2-optimal Farthest Point Sampling (FPS) strategy [15], evaluate
the neighborhood in Y of the new points, reevaluate the neighborhood of the
old points, and continue until convergence. In Figure 1 we show a diagram of
the process.

We solve the relaxed version of (6), using quazi-Newton optimization, and
project the solution to integers between iterations. Convergence is guaranteed, but
only to a local minimum, as for all QAP problems. The solver can now handle up to
several hundred of points. Let us further analyze the complexity. We consider the
first step to beO(N+M) as we use a constant (usually around 20) points from each
mesh, and only FPS is required, which can be evaluated in linear time. Assuming
that each neighborhood in Y consists of K vertices, and a linear growth in each
iteration of the matched points from X , then, for the j’th iteration, the quadratic
correlation matrix has jK × jK members which has a complexity of O(j2K2),
and the entire iterative framework takes O(ΣN

j=1j
2K2) = O(N3K2). Since each

iteration requires a correlation matrix of size j2K2, the number of matched points
can be significantly higher than the results shown in [12].
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5 Results

In this section we provide several matching results obtained using our hier-
archical procedure. Figure 2 shows the matching obtained with the proposed
framework, combined with different descriptors and metrics, at several hierar-
chies. The matching was performed using 10 points at the coarse scale, and 30
- 64 points at the finest scale. Figure 2(a) shows the result of matching two
cat shapes using geodesic distance histogram descriptors and geodesic distance
metric. Figure 2(b) shows the matching result obtained using diffusion distances
instead of geodesic ones, and Figure 2(c) - the result obtained using Heat Kernel
Signatures [33] and diffusion distances. Note that the last two matchings are
in fact reflected ones (follows from the intrinsically symmetric shape matching
ambiguity described in [12]). When using the proposed algorithm with Laplace-
Beltrami operator-based descriptors [12] and geodesic distances, we were able to
obtain both possible correspondences between two cat shapes - the true corre-
spondence and the reflected one. The results are shown in Figure 2(d). As can
be seen, all setups provide good results, and we can conclude that the proposed
hierarchical framework is independent of the choice of descriptors.

We compared the hierarchical method to [12]’s quadratic matching and [6]’s
GMDS framework. Both are based on global structures. Since we followed [12]
formulation as our first step, our initial matchings are the same. But, since the
complexity of [12] rises rapidly, it can not be used to match more then a few
dozen points. In addition, even for a low number of points we have a major
quality advantage over [12], since the matched points on the second mesh can
move, and are not restricted to the initial sampling. In Figure 3 we see that
the ear and the nose of the cat were matched using 10 points, and relocated
after several iterations. We also compared the hierarchical matching and the
quadratic matching calculation times. The result are shown in Figure 4, for
different number of matched points. The quadratic matching succeeded to match
only up to 22 points in a reasonable time - less than 4 minutes, while the proposed
hierarchical method was able to find 60 matches in shorter time.

Bronstein et al . [6] proposed to minimize the Gromov-Hausdorf distance be-
tween shapes, which in theory provides the best correspondence between approx-
imate isometries. Since their framework is based on non-convex optimization,
the first alignment is critical. We evaluated GMDS results using its own initial-
izer and our quadratic first step, which provided better results. We repeated the
experiments shown in 2(a) and measured the geodesic distances between the cor-
responding points versus the ground truth correspondence. We improved the L∞
error by 26% and the mean error by 6.25%. It is not surprising, since usually the
best correspondence can not be originated from a global structure alone. One
can think, for example, on a trivial experiment where only the head rotates. The
best correspondence will suffer a distortion in the neck alone, but GMDS will
suffer from a distortion in all points.
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(a) Geodesic distance histograms descriptors and geodesic distance metric

(b) Diffusion distance histograms and diffusion distance metric

(c) Heat Kernel Signatures and diffusion distance metric

(d) The Laplace-Beltrami operator-based descriptors and geodesic distance metric;
the upper row - same orientation correspondence, the lower row - the reflected one.

Fig. 2. Matching results obtained with the proposed framework combined with differ-
ent descriptors and metrics, at several hierarchies. The hierarchical framework works
well with all setups, and it performs equally well with all types of descriptors.
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Fig. 3. Using geodesic distances as a global structure, and geodesic based histograms
as a local one, the wrong ear-to-nose match gets closer to the correct one during
subsequent iterations.

Fig. 4. Graph of calculation time as a function of number of matched points, showing
results of the proposed hierarchical method, alongside the quadratic matching algo-
rithm.

6 Conclusions

We presented a hierarchical framework, based on quadratic programming, that
solves non-rigid matchings between shapes. While being NP-Hard in general, we
solve the assignment problem by taking into account the smooth structure of our
shapes using an iterative scheme. We provided numerical results, and compared
it to state of art methods.
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