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Abstract

We introduce an (equi-)affine invariant diffusion geom-
etry by which surfaces that go through squeeze and shear
transformations can still be properly analyzed. The defini-
tion of an affine invariant metric enables us to construct an
invariant Laplacian from which local and global geomet-
ric structures are extracted. Applications of the proposed
framework demonstrate its power in generalizing and en-
riching the existing set of tools for shape analysis.

1. Introduction

Diffusion geometry is an umbrella term referring to ge-
ometric analysis of diffusion or random walk processes.
Such methods, first introduced in theoretical geometry [2]
have matured into practical applications in the fields of
manifold learning [4] and shape analysis [8]. In the shape
analysis community, diffusion geometry methods were used
to define low-dimensional representations for manifolds
[4, 17], build intrinsic distance metrics and construct shape
distribution descriptors [17, 9], define spectral signatures
[16] (shape-DNA), and local descriptors [19]. Diffusion
embeddings were used for finding correspondence between
shapes [10] and detecting intrinsic symmetries [14] .

In many settings, the construction of diffusion geometry
boils down to the definition of a Laplacian operator. Such
an operator should possess certain invariance properties de-

sired in a specific application.

In this paper, we construct (equi-)affine-invariant diffu-
sion geometry for 3D shapes. Affine invariance is impor-
tant in many applications in the analysis of images [12]
and 3D shapes [6]. We first construct an affine-invariant
Riemannian metric that allows us define an affine-invariant
Laplacian, with which we in turn define affine invariant
diffusion geometry for surfaces. This new geometry en-
ables efficient computational tools that handle both non-
rigid approximately-isometric deformations of the surface
together with equi-affine transformations of the embedding
space. We demonstrate the usefulness of our construction
in a range of shape analysis applications, such as retrieval,
correspondence, and symmetry detection.

2. Background

Let X denote a compact two-dimensional Riemannian
manifold (possibly with boundary) representing the outer
boundary of a physical solid object in the 3D space. The
Riemannian metric tensor g is defined as a local inner prod-
uct 〈·, ·〉x on the tangent plane TxX at each point x ∈ X .
Given a smooth scalar field f : X → R, its gradient ∇f
at point x is defined through the relation f(x + dr) =
f(x) + 〈∇f(x), dr〉x, where dr ∈ T ∗xX is an infinitesi-
mal tangent vector. The positive semi-definite self-adjoint
Laplace-Beltrami operator ∆g associated with the metric



tensor g is defined by the identity∫
f∆gh da = −

∫
〈∇f,∇h〉xda (1)

holding for any pair of smooth scalar fields f, h : X → R;
here da denotes the standard area measure on X . When-
ever possible, we will omit the subscript g and refer to the
Laplace-Beltrami operator simply as to ∆.

Assuming further that the manifold is embedded isomet-
rically in R3 and (possibly, locally) parametrized by a reg-
ular map x : U → R3 over a planar domain U , the metric
tensor g assumes the form of a 2×2 positive-definite matrix
called the first fundamental form, whose elements are given
by the inner products gij = ∂xT

∂ui

∂x
∂uj

.
The Laplace-Beltrami operator can be expressed in the

parametrization coordinates as

∆ = − 1
√
g
∂i
√
ggij∂j , (2)

where we use Einstein’s summation convention, according
to which g = det(gij) denotes the determinant of the met-
ric, gij are the components of the inverse metric tensor,
and repeated indices are summed over. When the metric
is Euclidean (gij = I), the operator reduces to the famil-

iar ∆f = −
(
∂2f
∂u2

1
+ ∂2f

∂u2
2

)
(note that we define the Lapla-

cian with the minus sign in order to ensure its positive semi-
definiteness).

The Laplace-Beltrami operator gives rise to the partial
differential equation(

∂

∂t
+ ∆

)
f(t, x) = 0, (3)

called the heat equation. The heat equation describes the
propagation of heat on the surface and its solution f(t, x) is
the heat distribution at a point x in time t. The initial condi-
tion of the equation is some initial heat distribution f(0, x);
if X has a boundary, appropriate boundary conditions must
be added. The solution of (3) corresponding to a point ini-
tial condition f(0, x) = δ(x− x′), is called the heat kernel
and represents the amount of heat transferred from x to x′

in time t due to the diffusion process. Using spectral de-
composition, the heat kernel can be represented as

ht(x, x
′) =

∑
i≥0

e−λitφi(x)φi(x
′) (4)

where φi and λi are, respectively, the eigenfunctions and
eigenvalues of the Laplace-Beltrami operator satisfying
∆φi = λiφi (without loss of generality, we assume λi to be
sorted in increasing order starting with λ0 = 0). Since the
Laplace-Beltrami operator is an intrinsic geometric quan-
tity, i.e., it can be expressed solely in terms of the metric

of X , its eigenfunctions and eigenvalues as well as the heat
kernel are invariant under isometric transformations of the
manifold.

The value of the heat kernel ht(x, x′) can be interpreted
as the transition probability density of a random walk of
length t from the point x to the point x′. This allows to
construct a family of intrinsic metrics known as diffusion
metrics,

d2t (x, x
′) =

∫
(ht(x, ·)− ht(x′, ·))

2
da

=
∑
i>0

e−λit(φi(x)− φi(x′))2, (5)

which measure the “connectivity rate” of the two points by
paths of length t.

The parameter t can be given the meaning of scale, and
the family {dt} can be thought of as a scale-space of met-
rics. By integrating over all scales, a scale-invariant version
of (5) is obtained,

d2CT(x, x′) = 2

∫ ∞
0

d2t (x, x
′)dt

=
∑
i>0

1

λi
(φi(x)− φi(x′))2. (6)

This metric is referred to as the commute-time distance and
can be interpreted as the connectivity rate by paths of any
length. We will broadly call constructions related to the heat
kernel, diffusion and commute time metrics as diffusion ge-
ometry.

3. Affine-invariant diffusion geometry

An affine transformation x 7→ Ax + b of the three-
dimensional Euclidean space can be parametrized by a reg-
ular 3 × 3 matrix A and a 3 × 1 vector b since all con-
structions discussed here are trivially translation invariant,
we will omit the vector b. The transformation is called
special affine or equi-affine if it is volume-preserving, i.e.,
det A = 1.

As the standard Euclidean metric is not affine-invariant,
the Laplace-Beltrami operators associated with X and AX
are generally distinct, and so are the resulting diffusion ge-
ometries. In what follows, we are going to substitute the
Euclidean metric by its equi-affine invariant counterpart.
That, in turn, will induce an equi-affine-invariant Laplace-
Beltrami operator and define equi-affine-invariant diffusion
geometry.

The equi-affine metric can be defined through the
parametrization of a curve [3, 18]. Let C be a curve on



X parametrized by p. By the chain rule,

dC

dp
= x1

du1
dp

+ x2
du2
dp

d2C

dp2
= x1

d2u1
dp2

+ x2
d2u2
dp2

+ x11

(
du1
dp

)2

+

2x12
du1
dp

du2
dp

+ x22

(
du2
dp

)2

, (7)

where, for brevity, we denote xi = ∂x
∂ui

and xij = ∂2x
∂ui∂uj

.
As volumes are preserved under the equi-affine group of
transformations, we define the invariant arclength p through

det(x1,x2, Cpp) = 1. (8)

Plugging (7) into (8) yields

dp2 = det(x1,x2,x11du
2
1 + 2x12du1du2 + x22du

2
2), (9)

from where we readily have an equi-affine-invariant pre-
metric tensor

ĝij = g̃ij |g̃|−1/4 , (10)

where g̃ij = det(x1,x2,xij). The pre-metric tensor (10)
defines a true metric only on strictly convex surfaces [3]; in
more general cases, it might cease from being positive defi-
nite. In order to deal with arbitrary surfaces, we extend the
metric definition by restricting the eigenvalues of the tensor
to be positive. Representing ĝ as a 2×2 matrix admitting the
eigendecomposition Ĝ = UΓUT, where U is orthonormal
and Γ = diag{γ1, γ2}, we compose a new first fundamen-
tal form matrix G = U|Γ|UT. The corresponding metric
tensor g is positive definite and is equi-affine invariant.

Plugging this g into (1), we obtain an equi-affine-
invariant Laplace-Beltrami operator ∆g . Such an operator
defines an equi-affine-invariant diffusion geometry, i.e., the
eigenfunction, heat kernel, and diffusion metrics it gener-
ates remain unaltered by a global volume-preserving affine
transformation of the shape (Figures 2–3).

4. Discretization
In order to compute the equi-affine metric we need to

evaluate the second-order derivatives of the surface with re-
spect to some parametrization coordinates. While this can
be done practically in any representation, here we assume
that the surface is given as a triangular mesh. For each tri-
angular face, the metric tensor elements are calculated from
a quadratic surface patch fitted to the triangle itself and its
three adjacent neighbor triangles. The four triangles are un-
folded to the plane, to which an affine transformation is ap-
plied in such a way that the central triangle becomes a unit
simplex. The coordinates of this planar representation are

Figure 1: Left to right: part of a triangulated surface about a
specific triangle. The three neighboring triangles together with the
central one are unfolded flat to the plane. The central triangle is
canonized into a right isosceles triangle; three neighboring trian-
gles follow the same planar affine transformation. Finally, the six
surface coordinate values at the vertices are used to interpolate a
quadratic surface patch from which the metric tensor is computed.

used as the parametrization u with respect to which the first
fundamental form coefficients are computed at the barycen-
ter of the simplex (Figure 1). This step is performed for
every triangle of the mesh.

Having the discretized first fundamental form coeffi-
cients, our next goal is to discretize the Laplace-Beltrami
operator. Since our final goal is not the operator itself but its
eigendecomposition, we skip the construction of the Lapla-
cian and discretize its eigenvalues and eigenfunctions di-
rectly. This is achieved using the finite elements method
(FEM) proposed in [5] and used in shape analysis in [15].
For that purpose, we translate the eigendecomposition of
the Laplace-Beltrami operator ∆φ = λφ into a weak form∫

ψk∆φda = λ

∫
ψkφda (11)

with respect to some basis {ψk} spanning a (sufficiently
smooth) subspace of L2(X). Specifically, we choose the
ψk’s to be the first-order finite element function obtaining
the value of one at a vertex k and decaying linearly to zero
in its 1-ring (the size of the basis equals to the number of
vertices in the mesh). Substituting these functions into (11),
we obtain∫

ψk∆φda =

∫
〈∇ψk,∇φ〉x da

=

∫
gij(∂iφ)(∂jψk) da = λ

∫
ψkφda. (12)

Next, we approximate the eigenfunction φ in the finite ele-
ment basis by φ =

∑
l=1 αlψl. This yields∫

gij(∂i
∑
l

αlψl)(∂jψk) da = λ

∫
ψk
∑
l

αlψl da,

or, equivalently,∑
l

αl

∫
gij(∂iψl)(∂jψk) da = λ

∑
l

αl

∫
ψkψl da.



The last equation can be rewritten in matrix form as a gen-
eralized eigendecomposition problem Aα = λBα solved
for the coefficients αl, where

akl =

∫
gij(∂iψl)(∂jψk) da,

bkl =

∫
ψkψl da,

and the local surface area is expressed in parametrization
coordinates as da =

√
gdu1du2.

5. Applications and results
The proposed equi-affine-invariant Laplacian is a prac-

tical tool that can be employed in the construction of local
and global diffusion geometric structures used in standard
approaches in shape analysis, substituting the traditional
non-invariant Laplace-Beltrami operator. In what follows,
we detail the construction of such structures and show ap-
plications in shape retrieval, correspondence, matching, and
symmetry detection.

5.1. Shape retrieval

Sun et al. [19] proposed using the diagonal of the
heat kernel, ht(x, x), as a local descriptor of the shape,
referred to as the heat kernel signature (HKS). In prac-
tice, the descriptor is computed by sampling the time pa-
rameter t at a discrete set of points, t1, . . . , tn, and col-
lecting the corresponding values of ht(x, x) into a vector
p(x) = (ht1(x, x), . . . , htn(x, x)). The HKS descriptor
is isometry-invariant, easy to compute, and is provably in-
formative [19]. The affine-invariant HKS descriptors can
be used in one-to-one feature-based shape matching meth-
ods [19], or in large-scale shape retrieval applications using
the bags of features paradigm [13]. In the latter, the shape
is considered as a collection of “geometric words” from a
fixed “vocabulary” and is described by the statistical distri-
bution of such words. The vocabulary is constructed off-
line by clustering the descriptor space. Then, for each point
on the shape, the descriptor is replaced by the nearest vo-
cabulary word by means of vector quantization. Counting
the frequency of each word, a bag of features is constructed.
The similarity of two shapes is then computed as the dis-
tance between the corresponding bags of features.

To evaluate the performance of the proposed approach
for the construction of local descriptors, we used the Shape
Google framework [13] based on standard and equi-affine-
invariant HKS. Both descriptors were computed at six
scales (t = 1024, 1351.2, 1782.9, 2352.5, and 4096). Bags
of features were computed using soft vector quantization
with variance taken as twice the median of all distances be-
tween cluster centers in a vocabulary of 64 entries. Ap-
proximate nearest neighbor method [1] was used for vec-
tor quantization. Both the standard and the affine-invariant

Figure 3: Heat kernel signature ht(x, x) and diffusion metric ball
(second and third columns, respectively), and their affine-invariant
counterparts (fourth and fifth columns, respectively). Two rows
show a shape and its equi-affine transformation. For convenience
of visualization, the kernel and the metric are overlaid onto the un-
transformed shape. Plots under the figure show the corresponding
metric distributions before and after the transformation.

Laplace-Beltrami operator discretization were computed
using finite elements. Heat kernels were approximated us-
ing the first smallest 100 eigenpairs.

Evaluation was performed using the SHREC 2010 robust
large-scale shape retrieval benchmark methodology. The
dataset consisted of two parts: 793 shapes from 13 shape
classes with simulated transformation of different types
(Figure 4) and strengths (60 per shape) used as queries,
and the remaining 521 shapes used as the queried cor-
pus. Transformations classes affine and isometry+affine
were added to the original SHREC query set, represent-
ing, respectively, equi-affine transformations of different
strengths of the null shape and its approximate isometry.
The combined dataset consisted of 1314 shapes. Retrieval
was performed by matching 780 transformed queries to the
534 null shapes. Each query had one correct correspond-
ing null shape in the dataset. Performance was evaluated
using precision/recall characteristic. Precision P (r) is de-
fined as the percentage of relevant shapes in the first r top-
ranked retrieved shapes. Mean average precision (mAP),
defined as mAP =

∑
r P (r) · rel(r), where rel(r) is the

relevance of a given rank, was used as a single measure of
performance. Intuitively, mAP is interpreted as the area be-
low the precision-recall curve. Ideal retrieval performance
(mAP=100%) is achieved when all queries return relevant
first matches. Performance results were broken down ac-
cording to transformation class and strength.

Tables 1–2 show that the equi-affine version of the
ShapeGoogle approach obtains slightly higher precision
than the original ShapeGoogle in all SHREC’10 transfor-



Figure 2: Four eigenfunctions of the standard (second through fifth columns) and the proposed equi-affine-invariant (four rightmost
columns) Laplace-Beltrami operators. Two rows show a shape and its equi-affine transformation. For convenience of visualization,
eigenfunctions are overlaid onto the untransformed shape.

Figure 4: Examples of query shape transformations used in the shape retrieval experiment (left to right): null, isometry, topology, affine,
affine+isometry, sampling, local scale, holes, microholes, Gaussian noise, shot noise.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 100.00 99.23
Affine 100.00 100.00 100.00 100.00 97.44
Iso.+Affine 100.00 100.00 100.00 100.00 100.00
Topology 96.15 94.23 91.88 89.74 86.79
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 94.74 82.39 73.97
Sampling 100.00 100.00 100.00 96.79 86.10
Noise 100.00 100.00 89.83 78.53 69.22
Shot noise 100.00 100.00 100.00 97.76 89.63

Table 1: Performance (mAP in %) of Shape Google with equi-
affine-invariant HKS descriptors.

mations. We attribute this phenomenon to the smoothing
effect of the second order interpolation. In addition, equi-
affine ShapeGoogle exhibits nearly perfect retrieval under
equi-affine transformations in affine transformations, where
the original approach fails.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 100.00 100.00
Affine 100.00 86.89 73.50 57.66 46.64
Iso.+Affine 94.23 86.35 76.84 70.76 65.36
Topology 100.00 100.00 98.72 98.08 97.69
Holes 100.00 96.15 92.82 88.51 82.74
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 97.44 87.88 78.78
Sampling 100.00 100.00 100.00 96.25 91.43
Noise 100.00 100.00 100.00 99.04 99.23
Shot noise 100.00 100.00 100.00 98.46 98.77

Table 2: Performance (mAP in %) of Shape Google with HKS
descriptors.

5.2. Global structures

The equi-affine-invariant Laplacian can also be em-
ployed in the construction of global geometric structures.
By plugging it into (5), a family of equi-affine-invariant
diffusion distances is obtained. Similarly, a truly affine-



invariant version of the commute time metric is obtained by
using the equi-affine-invariant operator in (6). These met-
ric structures can be used in the Gromov-Hausdorff frame-
work [7, 11], in which shapes are modeled as metric spaces,
and the similarity of two shapes (X, dX) and (Y, dY ) is es-
tablished by looking at the minimum-distortion correspon-
dence between them. A correspondence is defined as a sub-
set C ⊂ X × Y such that for all x ∈ X there exists y ∈ Y
such that (x, y) ∈ C, and vice versa, for all y ∈ Y there
exists x ∈ X such that (x, y) ∈ C. The distortion of C is
defined as

dis(C) = max
(x,y),(y,y′)∈C

|dX(x, x′)− dY (y, y′)|.(13)

The Gromov-Hausdorff distance is given as the minimum
of the distortion over all possible correspondences,

dGH(X,Y ) =
1

2
min
C

dis(C), (14)

and serves as a criterion for shape similarity in the sense
that two shapes with dGH(X,Y ) ≤ ε are at most 2ε-
isometric, and, vice versa, two ε-isometric shapes have at
most dGH(X,Y ) ≤ 2ε. A byproduct of this problem is the
minimum-distortion correspondence C.

Figure 5 shows the correspondences obtained between
an equi-affine transformation of a shape using the standard
and the equi-affine-invariant versions of the diffusion met-
ric. Minimization of a least-squares version of (14) was
performed using the generalized multidimensional scaling
(GMDS) algorithm. In the case of the standard diffusion
metric, the embedding distortion grew by over 6 times as
the result of the transformation, while in the case of the pro-
posed invariant diffusion metric, the increase was by mere
16%.

5.3. Intrinsic symmetry detection

Ovsjanikov et al. [14] proposed detecting intrinsic sym-
metries of a shape by analyzing the eigenfunctions of the
Laplace-Beltrami operator. Intrinsic symmetry is mani-
fested in the existence of a self-isometry f : X → X ,
under which the metric structure of the shape is preserved,
i.e., d = d ◦ (f × f), where d is the commute time met-
ric. Ovsjanikov et al. [14] observe that for any intrinsic
reflection symmetry f , simple eigenfunctions of ∆ satisfy
φi◦f = ±φi. Thus, the symmetries ofX can be parameter-
ized by the sign signature (s1, s2, . . .); si ∈ {−1, 1} such
that φi ◦ f = siφi.

Given a truncated sign signature (s1, . . . , sK), define an
energy

E(s1, . . . , sK) =

∫
min
x′∈X

K∑
i=1

1

λi
(siφi(x)− φi(x′))2da.

Figure 5: The GMDS framework is used to calculate correspon-
dence between a shape and its isometry (left) and isometry fol-
lowed by an equi-affine transformation (right). Matches between
shapes are depicted as identically colored Voronoi cells. Standard
diffusion distance (first row) and its equi-affine-invariant counter-
part (second row) are used as the metric structure in the GMDS
algorithm. Inaccuracies obtained in the first case are especially
visible in the abdominal region.

It is easy to show that E = 0 for sign signatures corre-
sponding to intrinsic symmetries, and E ≈ 0 for approxi-
mate symmetries satisfying d ≈ d ◦ (f × f). The symmetry
itself is recovered as

f(x) = argmin
x′∈X

K∑
i=1

1

λi
(siφi(x)− φi(x′))2.

Employing our equi-affine-invariant Laplacian, the detec-
tion of intrinsic symmetries can be made under affine trans-
formations of the shape.

Figure 6 shows an example of intrinsic symmetry de-
tection with the method of [14] using standard (first row)
and the proposed affine-invariant (second row) Laplace-
Beltrami operator on an intrinsically symmetric centaur
shape that underwent a mild isometric and affine transfor-
mation. In this experiment, we use the five first non-trivial
eigenfunctions and show the approximate symmetries cor-
responding to the sign signatures producing the smallest
values of E (sign signature +++++ corresponding to the
identity transformation was ignored). While no meaningful
symmetries are detected in the first case, using our affine-
invariant Laplace-Beltrami operator we were able to detect
three approximate symmetries of the shape: hands and for-
ward legs reflection (left), rear legs reflection (center), and
full body reflection (right).



Figure 6: Symmetry detection with the method of [14] using
standard (first row) and the proposed affine-invariant (second row)
Laplace-Beltrami operator. Red lines depict the point correspon-
dence f . For each sign signature, the corresponding error E is
shown.

6. Conclusions
We introduced an equi-affine-invariant Laplace-Beltrami

operator on two-dimensional surfaces, and showed that it
can be utilized to construct affine-invariant local and global
diffusion geometric structures. Performance of the pro-
posed tools was demonstrated on shape retrieval, correspon-
dence, and symmetry detection applications. Our results
show that affine-invariant diffusion geometries gracefully
compete with, and sometimes even outperform, their clas-
sical counterparts under isometric changes and in the pres-
ence of geometric and topological noise, while significantly
outperforming the latter under affine transformations.

Extension of the proposed equi-affine framework into
fully affine invariance (including scale) could be accom-
plished by either exploiting the scale invariance property
of the commute time distance, or the consideration of scale
invariant signatures, two approaches we plan to study in the
future.
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