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Abstract. We introduce an (equi-)affine invariant geometric structure
by which surfaces that go through squeeze and shear transformations can
still be properly analyzed. The definition of an affine invariant metric
enables us to evaluate a new form of geodesic distances and to construct
an invariant Laplacian from which local and global diffusion geometry
is constructed. Applications of the proposed framework demonstrate its
power in generalizing and enriching the existing set of tools for shape
analysis.

1 Introduction

Shape analysis has been one of the principal research fields in computer vision
for many years. Numerous methods are based on modeling shapes as Riemnnian
manifolds, from which it is possible to derive many geometric invariances. Dif-
ferential geometry and diffusion geometry have been bold players in this growing
field. Schwartz et al. [22] proposed to embed a non-rigid shape in an Euclidean
domain both conformal and isometric, followed by Elad et al. [14] that discussed
embeddings in higher dimensions, and presented a practical representation of
shapes referred to as canonical forms. Later on Elad et al. [13] and Bronstein et
al. [5] showed that for some surfaces, such as faces, a spherical domain better
captures intrinsic properties. In 2005 Memoli et al. [17] pointed the importance
of Gromov-Hausdorff distance for shape analysis, followed by Bronstein et al. [6]
who introduced a variational framework that minimizes the Gromov-Hausdorff
distance by a direct embedding between two non-rigid shapes which does not
suffer from an unbounded distortion of an intermediate ambient space. Diffusion
geometry, referred to as spectral geometry, based on heat diffusion on manifolds
and the properties of the Laplace Bertrami operator have become growingly
popular in shape analysis in the past years. Driving inspiration from Berard et.
al. 1994 work [2], Lafon et al. [10] proposed in 2006 a probabilistic analysis of
algorithms using graph Laplacians. In 2007, Rustamov [21] showed how shapes
can be analyzed using the eigen-functions of the Laplace Beltrami operator, and
later on Gebal et. al. [15] discussed auto diffusion functions. Sun et al. [24] used
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the decay of heat as a feature, known as Heat Kernel Signatures, which was
further used by [18] as volumetric descriptors. Diffusion geometric constructs
in general were found to be more robust than their geodesic counterparts [7],
hence they have found successful applications in many shape analysis tasks, such
as [19].

However, all of these constructions depend on the definition of the Riemannian
metric tensor. So far, the default choice of the metric induced by the Euclidean
embedding of the shape has been used. Such a metric and all the related con-
structions is invariant to inelastic deformations of the shape and global Euclidean
transformations (rotations, reflections and translations). In this paper, we show
a different construction of a metric that has a wider class of invariance, being
also invariant to equi-affine transformations. It contains the metric evaluation
we presented in [29] and [30] for both diffusion and differential geometry.

The rest of the paper is organized as follows. In Section 2 we provide the math-
ematical background of Euclidean and diffusion geometry, followed by Section 3
where we elaborate on the equi-affine metric. Section 4 is dedicated to numerical
aspects, and several applications are presented in Section 5. We conclude the
paper in Section 6.

2 Mathematical Background

2.1 Differential Geometry

We model a surface (X, g) as a compact complete two dimensional Riemannian
manifold X with a metric tensor g, evaluated on the tangent plane TxX of point
x in the natural basis using the inner product 〈·, ·〉x : TxX × TxX → R. We
further assume that X is embedded into E = R

3 by means of a regular map
x : U ⊆ R

2 → R
3, so that the metric tensor can be expressed in coordinates as

gij = 〈 ∂x
∂ui

,
∂x

∂uj
〉, (1)

where the ui’s are the coordinates of U , which yields the infinitesimal displace-
ment dp

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (2)

Minimal geodesics, or shortest paths, are the minimizers of all path length

dX(x, x′) = min
C∈Γ (x,x′)

�(C) (3)

over the set of all admissible paths Γ (x, x′) between the points x and x′ on the
surfaceX , where due to completeness assumption, a minimizer always exists (not
necessary unique). Many algorithms have been proposed for the computation of
geodesic distances. They differ by accuracy and complexity. In this paper we
focus on the family of algorithms simulating wavefront propagation known as
fast marching methods [16].
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2.2 Differential Operators

Laplace Beltrami operator (LBO), named after Eugenio Beltrami, is the general-
ization of the Laplace operator. It is a linear operator, defined as the divergence
of the gradient of a scalar function f : X → R on a manifold

Δgf = divg gradgf. (4)

The operator can be extended to tensors, but it is beyond the scope of this note.
In local coordinates u of a chart [11] , the LBO assumes the form of

Δgf =
1

√|g|
∂

∂uα

(√
|g|gαβ ∂

∂uβ
f

)
, (5)

where X(u1, u2, · · · , un) = (
X1, X2, ·, Xn

)
is the embedding of an n-dimentional

manifold. Since our focus will be two dimensional affine invariants, we constrain
ourself to two dimensions

X(u1, u2) =
(
x(u1, u2), y(u1, u2), z(u1, u2)

)
. (6)

2.3 Diffusion Geometry

The Laplace-Beltrami operator gives rise to the partial differential equation
(
∂

∂t
+Δg

)
f(t, x) = 0, (7)

called the heat equation. The heat equation describes the propagation of heat on
the surface and its solution f(t, x) is the heat distribution at a point x in time t.
The initial condition of the equation is some initial heat distribution f(0, x); if X
has a boundary, appropriate boundary conditions must be added. The solution
of (7) corresponding to a point initial condition f(0, x) = δ(x− x′), is called the
heat kernel and represents the amount of heat transferred from x to x′ in time
t by the diffusion process. Using spectral decomposition, the heat kernel can be
represented as

ht(x, x
′) =

∑

i≥0

e−λitφi(x)φi(x
′) (8)

where φi and λi are, respectively, the eigenfunctions and eigenvalues of the
Laplace-Beltrami operator satisfying Δφi = λiφi (without loss of generality,
we assume λi to be sorted in increasing order starting with λ0 = 0). Since the
Laplace-Beltrami operator is an intrinsic geometric quantity, i.e., it can be ex-
pressed solely in terms of the metric of X , its eigenfunctions and eigenvalues
as well as the heat kernel are invariant under isometric transformations of the
manifold.

The value of the heat kernel ht(x, x
′) can be interpreted as the transition

probability density of a random walk of length t from the point x to the point
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x′. This allows to construct a family of intrinsic metrics known as diffusion
metrics,

d2t (x, x
′) =

∫
(ht(x, y)− ht(x

′, y))2 dy

=
∑

i>0

e−λit(φi(x) − φi(x
′))2, (9)

which measure the “connectivity rate” of the two points by paths of length t.
The parameter t can be given the meaning of scale, and the family {dt} can

be thought of as a scale-space of metrics. By integrating over all scales, a scale-
invariant version of (9) is obtained,

d2CT(x, x
′) = 2

∫ ∞

0

d2t (x, x
′)dt

=
∑

i>0

1

λi
(φi(x)− φi(x

′))2. (10)

This metric is referred to as the commute-time distance and can be interpreted
as the connectivity rate by paths of any length. We will broadly call construc-
tions related to the heat kernel, diffusion and commute time metrics as diffusion
geometry.

3 Equi-affine Metric

An affine transformation x �→ Ax+b of the three-dimensional Euclidean space
can be parametrized by a regular 3 × 3 matrix A and a 3 × 1 vector b. since
all constructions discussed here are trivially translation invariant, we will omit
the vector b. The transformation is called special affine or equi-affine if it is
volume-preserving, i.e., detA = 1.

As the standard Euclidean metric is not affine-invariant, the Laplace-Beltrami
Operators associated with X and AX are generally distinct, and so are the
resulting diffusion geometries. In what follows, we are going to substitute the
Euclidean metric by its equi-affine invariant counterpart. That, in turn, will
induce an equi-affine-invariant Laplace-Beltrami Operator and define equi-affine-
invariant diffusion geometry.

The equi-affine metric can be defined through the parametrization of a curve
[8,23]. Let C be a curve on X parametrized by p. By the chain rule,

dC

dp
= x1

du1
dp

+ x2
du2
dp

d2C

dp2
= x1

d2u1
dp2

+ x2
d2u2
dp2

+ x11

(
du1
dp

)2

+

2x12
du1
dp

du2
dp

+ x22

(
du2
dp

)2

, (11)
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where, for brevity, we denote xi =
∂x
∂ui

and xij = ∂2x
∂ui∂uj

. As volumes are pre-

served under the equi-affine group of transformations, we define the invariant
arclength p through

det(x1,x2, Cpp) = 1. (12)

Plugging (11) into (12) yields

dp2 = det(x1,x2,x11du
2
1 + 2x12du1du2 + x22du

2
2), (13)

from where we readily have an equi-affine-invariant pre-metric tensor

ĝij = g̃ij |g̃|−1/4
, (14)

where g̃ij = det(x1,x2,xij). The pre-metric tensor (14) defines a true metric only
on strictly convex surfaces [8]; in more general cases, it might cease from being
positive definite. In order to deal with arbitrary surfaces, we extend the metric
definition by restricting the eigenvalues of the tensor to be positive. Representing
ĝ as a 2 × 2 matrix admitting the eigendecomposition Ĝ = UΓUT, where U is
orthonormal and Γ = diag{γ1, γ2}, we compose a new first fundamental form
for non-vanishing Gaussian curvature matrix G = U|Γ|UT. The metric tensor
g is positive definite and is equi-affine invariant.

4 Numerical Considerations

4.1 Local Fitting

In order to compute the equi-affine metric we need to evaluate the second-order
derivatives of the surface with respect to some parametrization coordinates.
While this can be done practically in any representation, here we assume that the
surface is given as a triangular mesh. For each triangular face, the metric tensor
elements are calculated from a quadratic surface patch fitted to the triangle itself
and its three adjacent neighbor triangles. The four triangles are unfolded to the
plane, to which an affine transformation is applied in such a way that the central
triangle becomes a unit simplex. The coordinates of this planar representation
are used as the parametrization u with respect to which the first fundamental
form coefficients are computed at the barycenter of the simplex (Figure 1). This
step is performed for every triangle of the mesh and is summarized in [30].

4.2 Affine Geodesics

Calculating geodesic distances was intensively explored in past decades. Sev-
eral fast and accurate numerical schemes [27,16,25,26] can be used for this pur-
pose. We use the FMM technique, after locally rescaling each edge according
to the equi-affine metric. The (affine invariant) length of each edge is defined
by L2(dx, dy) = g11dx

2 + 2g12dxdy + g22dy
2. Specifically, for our canonical tri-

angle with vertices at (0, 0), (1, 0) and (0, 1) we have L2
1 = g11, L

2
2 = g22 and

L2
3 = g11 − 2g12 + g22. Each edge may appear in more than one triangle. In our

experiments we use the average length as an approximation, while verifying that
the triangle inequality holds.
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Fig. 1. Left to right: part of a triangulated surface about a specific triangle. The three
neighboring triangles together with the central one are unfolded flat to the plane. The
central triangle is canonized into a right isosceles triangle; three neighboring triangles
follow the same planar affine transformation. Finally, the six surface coordinate values
at the vertices are used to interpolate a quadratic surface patch from which the metric
tensor is computed.

4.3 Finite Elements Method (FEM)

Having the discretized first fundamental form coefficients, our next target is to
discretize the Laplace-Beltrami Operator. Since our final goal is not the operator
itself but its eigendecomposition, we skip the explicit construction of the Lapla-
cian and discretize its eigenvalues and eigenfunctions directly. This is achieved
using the finite elements method (FEM) proposed in [12] and used in shape
analysis in [20]. For that purpose, we translate the eigendecomposition of the
Laplace-Beltrami Operator Δφ = λφ into a weak form

∫
ψkΔφda = λ

∫
ψkφda (15)

with respect to some basis {ψk} spanning a (sufficiently smooth) subspace of
L2(X). Specifically, we choose the ψk’s to be the first-order finite element func-
tions obtaining a value of one at a vertex k and decaying linearly to zero in
its 1-ring (the size of the basis equals to the number of vertices in the mesh).
Substituting these functions into (15), we obtain

∫
ψkΔφda =

∫
〈∇ψk,∇φ〉x da =

∫
gij(∂iφ)(∂jψk) da = λ

∫
ψkφda.(16)

Next, we approximate the eigenfunction φ in the finite element basis by φ =∑
l=1 αlψl. This yields

∫
gij

(

∂i
∑

l

αlψl

)

(∂jψk) da = λ

∫
ψk

∑

l

αlψl da,

or, equivalently,

∑

l

αl

∫
gij(∂iψl)(∂jψk) da = λ

∑

l

αl

∫
ψkψl da.
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Fig. 2. Four eigenfunctions of the standard (second through fifth columns) and the pro-
posed equi-affine-invariant (four rightmost columns) Laplace-Beltrami operator. Two
rows show a shape and its equi-affine transformation. For convenience of visualization,
eigenfunctions are textured mapped onto the original shape.

The last equation can be rewritten in matrix form as a generalized eigendecom-
position problem Aα = λBα solved for the coefficients αl, where

akl =

∫
gij(∂iψl)(∂jψk) da,

bkl =

∫
ψkψl da,

and the local surface area is expressed in parametrization coordinates as da =√
gdu1du2. The resulting eigendecomposition can be used to define an equi-

affine-invariant diffusion geometry. Eigenfunctions, heat kernels, and diffusion
distances remain invariant under volume-preserving affine transformations of
the shape (Figures 2–3).

Evaluating the proposed metric is bounded by the number of adjacent neigh-
bors of each vertex, from which we conclude that the new metric is evaluated
in linear time with relation of the number of vertices. Spectral decomposition is
performed using the power method, implemented in MATLAB, and in practice
we only need few (below 200) eigenvectors.

5 Applications

To evaluate the performance of the proposed approach for the construction of
local descriptors, we used the Shape Google framework [28] based on standard
and affine-invariant Heat Kernel Sigantures. HKS and AI-HKS were computed at
six arbitrary scales (t = 1024, 1351.2, 1782.9, 2352.5, and 4096). Bags of features
were computed using soft vector quantization with variance taken as twice the
median of all distances between cluster centers. Approximate nearest neighbor
method [1] was used for vector quantization. Both the standard and the affine-
invariant Laplace-Beltrami Operator discretization were computed using finite
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Fig. 3. Heat kernel signatureht(x, x) anddiffusionmetric ball (second and third columns,
respectively), and their equi-affine invariant counterparts (fourth and fifth columns, re-
spectively). Two rows show a shape and its transformation. For convenience of visualiza-
tion, the kernel and the metric are overlaid onto the original shape. Plots under the figure
show the corresponding metric distributions before and after the transformation.

elements. Heat kernels were approximated using the first 100 eigenpairs of the
discrete Laplacian. The geometric vocabulary size was set to 64.

Evaluation was performed using the SHREC 2010 robust large-scale shape
retrieval benchmark methodology [4]. The dataset consisted of two parts: 793
shapes from 13 shape classes with simulated transformation of different types
(Figure 4) and strengths (60 per shape) used as queries, and additional 521
shapes from a large variety of objects. The total dataset size was 1314. Re-
trieval was performed by matching 780 transformed queries to shape classes.
Each query had one correct corresponding null shape in the dataset. Perfor-
mance was evaluated using precision/recall characteristic. Precision P (r) is de-
fined as the percentage of relevant shapes in the first r top-ranked retrieved
shapes. Mean average precision (mAP), defined as mAP =

∑
r P (r) · rel(r),

where rel(r) is the relevance of a given rank, was used as a single measure of
performance. Intuitively, mAP is interpreted as the area below the precision-
recall curve. Ideal performance retrieval performance results in first relevant
match with mAP=100%. Performance results were broken down according to
transformation class and strength.
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Fig. 4. Examples of query shape transformations used in the shape retrieval experiment
(left to right): null, isometry, topology, affine, affine+isometry, sampling, local dilation,
holes, microholes, Gaussian noise, shot noise

Tables 2–1 show that in contrast to the Euclidean metric, the equi-affine
metric preserves the high accuracy rate of shape retrieval for all deformations,
including equi-affine. In some deformations we can see an improvement, which
we attribute to the smoothing effect of the second order interpolation. As this
metric is based on second derivatives it is less robust to noise than its Euclidean
adversary. Yet, since the numeric is based on the weak form (FEM) of the LBO,
the integration improves robustness. Adding that to the usage of low frequen-
cies from the eigendecomposition, explains the competitive results even without
performing noise reduction and/or resampling as a preprocessing step.

The equi-affine metric can be used in many existing methods that compute
geodesic distances. In what follows, we show several examples for using the
new metric in known applications such as Voronoi tessellation and non-rigid
matching.

Voronoi tessellation is a partitioning of (X, g) into disjoint open sets called

Voronoi cells. A set of k points (xi ∈ X)
k
i=1 on the surface defines the Voronoi

cells (Vi)
k
i=1 such that the i-th cell contains all points in X closer to xi than

to any other xj in the sense of the metric g. Voronoi tessellations created with
the equi-affine metric commute with equi-affine transformations as visualized in
Figure 5.

Table 1. Performance (mAP in %) of Shape Google with HKS descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Equi-Affine 100.00 86.89 73.50 57.66 46.64
Iso.+Equi-Affine 94.23 86.35 76.84 70.76 65.36
Topology 100.00 100.00 98.72 98.08 97.69
Holes 100.00 96.15 92.82 88.51 82.74
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 97.44 87.88 78.78
Sampling 100.00 100.00 100.00 96.25 91.43
Noise 100.00 100.00 100.00 99.04 99.23
Shot noise 100.00 100.00 100.00 98.46 98.77
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Table 2. Performance (mAP in %) of Shape Google with equi-affine-invariant HKS
descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 99.23
Affine 100.00 100.00 100.00 100.00 97.44
Iso.+Equi-Affine 100.00 100.00 100.00 100.00 100.00
Topology 96.15 94.23 91.88 89.74 86.79
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 94.74 82.39 73.97
Sampling 100.00 100.00 100.00 96.79 86.10
Noise 100.00 100.00 89.83 78.53 69.22
Shot noise 100.00 100.00 100.00 97.76 89.63

Fig. 5. Voronoi cells generated by a fixed set of 20 points on a shape undergoing
an equi-affine transformation. The standard geodesic metric (left) and its equi-affine
counterpart (right) were used. Note that in the latter case the tessellation commutes
with the transformation.

Two non-rigid shapes X,Y can be considered similar if there exists an isomet-
ric correspondence C ⊂ X×Y between them, such that ∀x ∈ X there exists y ∈ Y
with (x, y) ∈ C and vice-versa, and dX(x, x′) = dY (y, y

′) for all (x, y), (x′, y′) ∈ C,
where dX , dY are geodesic distance metrics on X,Y . In practice, no shapes are
perfectly isometric, and such a correspondence rarely exists; however, one can
attempt finding a correspondence minimizing the metric distortion,

dis(C) = max
(x,y)∈C
(x′,y′)∈C

|dX(x, x′)− dY (y, y
′)|. (17)

The smallest achievable value of the distortion is called the Gromov-Hausdorff
distance [9] between the metric spaces (X, dX) and (Y, dY ),
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Fig. 6. The GMDS framework is used to calculate correspondences between a shape
and its isometry (left) and isometry followed by an equi-affine transformation (right).
Matches between shapes are depicted as identically colored Voronoi cells. Standard
distance (first row) and its equi-affine-invariant counterpart (second row) are used as
the metric structure in the GMDS algorithm. Inaccuracies obtained in the first case
are especially visible in the legs and arms.

dGH(X,Y ) =
1

2
inf
C

dis(C), (18)

and can be used as a criterion of shape similarity.
The choice of the distance metrics dX , dY defines the invariance class of this

similarity criterion. Using geodesic distances, the similarity is invariant to in-
elastic deformations. Here, we use geodesic distances induced by our equi-affine
Riemannian metric tensor, which gives additional invariance to affine transfor-
mations of the shape.
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Bronstein et al. [3] showed how (18) can be efficiently approximated using a
convex optimization algorithm in the spirit of multidimensional scaling (MDS),
referred to as generalized MDS (GMDS). Since the input of this numeric frame-
work are geodesic distances between mesh points, all that is needed to obtain
an equi-affine GMDS is one additional step where we substitute the geodesic
distances with their equi-affine equivalents. Figure 6 shows the correspondences
obtained between an equi-affine transformation of a shape using the standard
and the equi-affine-invariant versions of the geodesic metric.

6 Conclusion

We introduced an equi-affine-invariant metric that can cope with surfaces that do
not have vanishing Gaussian curvature. We showed a wide range of applications,
from shape retrieval through Voronoi tesselation to correspondence search, based
on differential geometry tools and spectral analysis. The limitation of the method
is the fixed scale restriction that will be solved in the future.
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FP7- ERC program, grant agreement no. 267414. MB was supported by the
Swiss High-Performance and High-Productivity Computing (HP2C).
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