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Abstract

Detection and modeling of self-similarity and symmetry
is important in shape recognition, matching, synthesis, and
reconstruction. While the detection of rigid shape symme-
tries is well-established, the study of symmetries in non-
rigid shapes is a much less researched problem. A partic-
ularly challenging setting is the detection of symmetries in
non-rigid shapes affected by topological noise and asym-
metric connectivity. In this paper, we treat shapes as metric
spaces, with the metric induced by heat diffusion properties,
and define non-rigid symmetries as self-isometries with re-
spect to the diffusion metric. Experimental results show the
advantage of the diffusion metric over the previously pro-
posed geodesic metric for exploring intrinsic symmetries of
bendable shapes with possible topological irregularities.

1. Introduction
Symmetry or geometric self-similarity plays a funda-

mental role in Nature and is tightly tied to shape analy-
sis and understanding. The exact definition of symmetry
heavily depends on what we understand by the geometry
of the shape. Broadly speaking, intrinsic geometry de-
scribes the properties of the shape which are invariant to in-
elastic deformations, while extrinsic geometry is associated
with rigid transformations. In the pattern recognition and
computer vision literature, there exists a significant number
of papers dedicated to finding symmetries in images [24],
and two-dimensional [1, 2] and three-dimensional shapes
[19, 27, 29, 30]. Traditionally, symmetries are described by
extrinsic geometry using rotations and reflections. While
being adequate for rigid shapes, such a description is in-

appropriate for non-rigid ones. Extrinsic symmetry can be
broken as a result of shape deformations such as bends,
while its intrinsic symmetry is preserved [32, 33].

While finding shape representations that are invariant
to bending has been intensively studied in recent years
[5, 11, 13, 15, 16, 23, 25, 26, 35, 37], very little has been
done in the research of regularity and self-similarity of
non-rigid shapes. Raviv et al. [32] first defined and pro-
posed a computational framework of exploring exact and
approximate intrinsic self-similarities via the consideration
of geodesic distances. They used the numerical scheme
presented in [5, 6] for computation of minimum-distortion
correspondence between metric spaces. In [29] Ovsjanikov
et al. showed how eigenfunctions of the Laplace-Beltrami
operator can be used for identifying reflective symmetries.
They transformed intrinsic symmetries to (approximate)
Euclidean ones in a feature space created by the Laplace-
Beltrami eigenfunctions. The reader is also referred to re-
cent papers on such spectral signatures [3, 20, 34, 35, 37].
Xu et al. [39] showed how a voting scheme can be used
to find partial reflective symmetry in 3D shapes and how
to use such symmetries for mesh segmentation and part
repair. Topology and connectivity changes resulting e.g.
from noise and acquisition artifacts can have a dramatic in-
fluence on intrinsic geometry defined by the geodesic dis-
tances. Since the geodesic is the shortest path, even a small
change in the topology can cause a significant change in the
geodesic metric by affecting the length of many geodesics,
thus the approach proposed in [32] is sensitive to topology
changes. Ovsjanikov et al. [29] explain why topology noise
appears in high frequencies, hence its influence can be re-
duced in their method. Yet, they can not guarantee robust-
ness to major topology changes.
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In [8] it was shown that diffusion geometry, arising from
the study of heat propagation on the surface, can gracefully
handle topological and connectivity problems. In this pa-
per we introduce diffusion symmetries of non-rigid shapes
which are robust to topology changes. We apply [8] topol-
ogy aware embeddings for the topology robust exploration
of self-similarities.

The rest of this paper is organized as follows: In Section
2, we present the mathematical background of diffusion ge-
ometry. In Section 3, we define exact and approximate dif-
fusion symmetries. followed by Section 4 where we elabo-
rate on Gromov-Hausdorff distance. Section 5 is dedicated
for the numerical framework, followed by Section 6 where
we present experimental results. Section 7 concludes the
paper.

2. Diffusion geometry
Well-known in other fields for decades, diffusion geome-

try has been popularized in data analysis by Lafon and Coif-
man [10, 21]. Informally, the diffusion distances have an
effect of averaging over all possible paths connecting two
points, while the geodesic distance is the length of just the
minimal one. As a consequence, the former is more ro-
bust than the geodesic distance in cases where topological
changes are present [28, 38].

Formally, the diffusion distance, is related to the heat
equation, (

∆X +
∂

∂t

)
u = 0, (1)

governing the distribution of heat u on the surface. Here,
∆X denotes the Laplace-Beltrami operator, a generaliza-
tion of the Laplacian to non-Euclidean domains. (Note that
we define ∆X as a positive-semidefinite operator, hence its
positive sign in (1)). The fundamental solution ht(x, z) of
the heat equation (1), also called the heat kernel, is the so-
lution with a point heat source at x ∈ X used as the initial
condition at t = 0. The heat kernel ht(x, z) describes the
heat distribution at time t at point z ∈ X .

For compact manifolds, the Laplace-Beltrami operator
has discrete eigendecomposition of the form

∆Xφi = λiφi, (2)

where λ0, λ1, ... are eigenvalues and φ0, φ1, ... are the cor-
responding eigenfunctions. Using this basis, the heat kernel
can be presented as [18]

ht(x, z) =
∞∑
i=0

e−λitφi(x)φi(z) (3)

Note that for a single connected component λ0 = 0, λi ≥ 0
and φ0 = const.

The diffusion distance is the family of metrics

d2
X,t(x, y) = ‖ht(x, ·) − ht(y, ·)‖2

L2(X) (4)

=
∫
X

|ht(x, z) − ht(y, z)|2dz

=
∞∑
i=1

e−2λit(φi(x) − φi(y))2,

parametrized by scale t. Since the diffusion distance is de-
rived from the Laplace-Beltrami operator which is an in-
trinsic property of the shape, it is an intrinsic metric and is
therefore bending-invariant.

3. Symmetry
The metric model of shapes allows to formalize the no-

tions of invariance, self-similarity, and symmetry. From the
metric viewpoint, a shape is invariant under a transforma-
tion if the metric structure is unaffected by the transforma-
tion. More formally, two shapes (X, d) and (Y, d̃), where
d, d̃ are the respective metric, are isometric if there exists
a bijective map ϕ : X → Y (called isometry) such that
d̃◦(ϕ×ϕ) = d. In particular, the shape (X, d) is self-similar
or self-isometric if there exists a permutation (bijective map
f from X to itself) which is an isometry with respect to d,
i.e., d ◦ (f × f) = d.

It can be easily shown that symmetries form a subgroup
of the group of permutations (Π(X), ◦), where Π(X) =
{g : X 1:1→X} and ◦ is the function composition operator.
We denote the group of symmetries of X by

Sym(X, d) = {f ∈ Π(X) : d ◦ (f × f) = d}. (5)

3.1. Approximate symmetries

Because the true symmetry is a idealized rather than nat-
urally occurring phenomenon, a relaxation of the notion of
symmetry is required [40]. In the Euclidean case, approx-
imate symmetry can be defined as a non-trivial Euclidean
transformation i satisfying i(X) ≈ X . In the more general
setting, the relaxation of the notion of symmetry is possi-
ble by allowing d ◦ (f × f) ≈ d in the definition of self-
isometry. More formally, we say that the shape (X, d) is ε-
self-isometric if there exists a permutation f ∈ Π(X) with
distortion

dis(f, d) = ‖d ◦ (f × f) − d‖∞ (6)
= max

x,x′∈X
|d(x, x′) − d(f(x), f(x′))| ≤ ε.

We denote the family of all ε-self-isometries of (X, d) by

Isoε(X, d) = {f ∈ Π(X) : dis(g, f) ≤ ε}. (7)

In particular, for ε = 0 we get the symmetry group
Iso0(X, d) = Iso(X, d). Note that unlike Iso(X, d),
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Isoε(X, d) is not a group for ε > 0, since it does not satisfy
the closure property: a composition of two ε-self-isometries
is in general a 2ε-self-isometry.

3.2. Local asymmetry

In many cases, the shape asymmetry is as important
as symmetry, as it indicates some abnormality of a shape.
Given an ε-symmetric shape and one of its approximate
symmetries f ∈ Isoε(X, d), we can compute the contribu-
tion of each point to the shape asymmetry as the local shape
asymmetry,

asym(X,d)(f, x) = max
x′∈X

|dX(x, x′) − dX(f(x), f(x′))|, (8)

quantifying the distortion of f at a point x. Points with large
local asymmetry are responsible for symmetry breaking.
Global shape asymmetry can be calculated as the supre-
mum of all local ones, which is the same as the distortion
dis(f, d).

3.3. Symmetry space

Though we cannot use a group structure to represent ap-
proximate symmetries, we can still explore the space of per-
mutation Π(X), where each function g has its distortion
dis(g, d).

The space of functions Π(X) can also be endowed with
a standard metric that measures the distance between two
permutations f and g on X , defined as

dΠ(X)(f, g) = max
x∈X

d(f(x), g(x)) = d(f(X), g(X)), (9)

which, in turn, depends on the choice of the metric d. We
refer to the set

BΠ(X)(g, r) = {f ∈ Π(X) : dΠ(X)(g, f) ≤ r} (10)

as the closed metric ball (intrinsic or extrinsic, according to
the choice of the metric in the definition of dΠ(X)) of radius
r centered at g. (We will omit r referring to a ball of some
unspecified radius).

Since true symmetries do not have any distortion (i.e.
dis(g, d) = 0), they are the global minimizers of the dis-
tortion function dis(g, d). Moreover, they are also local
minimizers of the distortion, in the sense that for every
approximate symmetry g, there exists a sufficiently small
neighborhood BΠ(X)(g), such that any f ∈ BΠ(X)(g),
dis(f) ≥ dis(g). While trivial for true symmetries, this
description motivates our selection of local minima for ap-
proximate symmetries, even when the distortion does not
vanish.

We therefore define approximate symmetries as

Symε(X, d) = {g ∈ Isoε(X, d) : dis(g, d) ≤ dis(f, d)
∀f ∈ BΠ(X)(g)}. (11)

Numerically, we observed that for a small ε, the number of
local minima is similar to the number of true symmetries of
a symmetric shape.

4. Gromov-Hausdorff distance
An early attempt to compare shapes as metric spaces

was done by Elad and Kimmel [11] who proposed to em-
bed pairwise geodesic distances into a third fixed metric
space (Z, dZ). Usually, a low dimension Euclidean space
is a good candidate from the computational point of view.
Such a minimum distortion embedding was referred to as
canonical form, and can be explicitly calculated by mini-
mizing

min
ϕ:X→Z

max
x,x′∈X

|dX(x, x′) − dZ(ϕ(x), ϕ(x′)|. (12)

Assuming the embedding distortion is low enough, the com-
parison of (X, dX) and (Y, dY ) can be reduced to rigid
matching of canonical forms, e.g. using the Hausdorff dis-
tance,

dZH(ϕ(X), ψ(Y )) = (13)
max{ max

y∈ψ(Y )
min

x∈ϕ(X)
dZ(x, y), max

x∈ϕ(X)
min

y∈ψ(Y )
dZ(x, y)}.

A general theoretical framework for metric spaces compar-
ison was proposed by Gromov [9, 15], and introduced to
shape analysis by Mémoli ans Sapiro [26]. Since it is gen-
erally impossible to select a common metric space (Z, dZ)
accommodating all shapes, Gromov suggested to optimize
also for Z, resulting in the following distance, referred to as
the Gromov-Hausdorff distance,

dGH(X,Y ) = inf
ϕ:X→Z
ψ:Y→Z

Z

dZH(ϕ(X), ψ(Y )), (14)

where ψ and ϕ are isometric mappings. The Gromov-
Hausdorff distance can be alternatively expressed in terms
of correspondences between the two metric spaces [9] as

dGH(X,Y ) =
1
2

inf
C

dis(C), (15)

where C ⊂ X×Y is a correspondence between the spaces,
and dis(C) is its distortion

dis(C) = sup
(x,y),(x′,y′)∈C

|dX(x, x′) − dY (y, y′)|. (16)

Note that for C to be a valid correspondence, for each x ∈
X there must exists at least one y ∈ Y such that (x, y) ∈ C,
and vice versa for each y ∈ Y there must exists at least one
x ∈ X such that (x, y) ∈ C.

In [5] it was shown how (15) can be efficiently approx-
imated using a convex optimization framework. In this
paper, we adopt this scheme for the computation of self-
isometries.
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5. Numerical framework
For practical computation of symmetries, the surface X

has to be discretized and sampled at N points, constituting
an r-covering (i.e., X =

∪N
n=1BX(xn, r), where BX de-

notes a closed ball on X induced by the metric dX ). We
denote this sampling by Xr = {x1, ..., xN} ⊆ X . A good
sampling strategy can be achieved using the (2 optimal) far-
thest point sampling algorithm [17], which guarantees that
Xr is also r-separated, i.e. dX,t(xi, xj) ≥ r for any i 6= j.
X is approximated by a triangular mesh X̂ built upon the
vertices Xr.

5.1. Approximation of distances

The diffusion metric is computed according to (4). For
this purpose, we first compute the discrete approximation of
the Laplace-Beltrami operator on the mesh, which has the
following generic form

(∆X̂f)i =
1
ai

∑
j

wij(fi − fj), (17)

where f : X̂ → R is a scalar function defined on the mesh
X̂ and represented as a vector of function values at the ver-
tices of the mesh, wij are weights, and ai are normalization
coefficients. In matrix notation, Equation (17) can be writ-
ten as

∆X̂f = A−1Lf, (18)

where A = diag(ai) and L = diag
(∑

l 6=i wil

)
− (wij).

There exists several discretizations of the Laplace-
Beltrami operator [4, 12, 34, 41], for which A and L are
defined. Here we adopt the cotangent weight scheme [31],
in which ai is set to be half of the area of the circumcentric
dual of vertex i, and wij = cotαij+cotβij , where αij and
βij are the angels opposite to the edge between the i’th and
j’th vertices, if one exists and zero otherwise.

By solving the generalized eigendecomposition problem
[22]

Lφ = λAφ, (19)

the k smallest eigenvalues λ0, ..., λk and corresponding
eigenfunctions φ0, ..., φk : X̂ → R of the discretized
Laplace-Beltrami operator are computed.

5.2. Coarse matching

Discrete permutations on Xr can be represented as N -
tuples of the form π = (π1, ..., πN ) ∈ {1, ..., N}N . Find-
ing all permutations with a distortion lower than ε requires
computation of the distortion of O(N !) possible mappings.
However, the search space can be greatly reduced by ruling
out mappings that can not have low distortion. We observe
that for a good candidate of an approximate symmetry, the

intrinsic properties of the surface, such as local intrinsic ge-
ometry around xi should be similar to that around xπi . In
order to quantify this behavior, for each xi ∈ Xr we com-
pute the histogram hi = hist({d̂ij : d̂ij ≤ ρ}) of the ap-
proximate distances (d̂ij = dX(xi, xj)) in a ρ-ball centered
at xi [14, 23, 32].

In order to reduce the number of possible permutations
we chose a small number of points to represent the sym-
metry using farthest point sampling strategy on diffusion
distances. Experiments showed that resampling the surface
starting from the second sampled point produces a better
sampling because the location of the first point is arbitrary
and its support may occlude a better one. Each point has
many possible matches and clustering of the candidates is
performed. Two points are in the same cluster if and only if
there exists a chain of points on the surface with similar dis-
tance histograms. Earth mover’s distance [36] can be used
as the distance between histograms.

For a given point xwe compute its histogram hx and find
all points y with a similar histogram, denoted by

Hδ(x) = {y : d(hx, hy) ≤ δ}, (20)

where d is the distance between the histograms, and δ is
calculated a priori according to the histogram distance be-
tween neighboring points. We perform ε separation of the
set Hδ(x) to subsets Hiδ(x) according to

y, z ∈ Hiδ(x) iff y, z ∈ Hδ(x) and ∃ {yk}m1 ∈ Hδ(x)
s.t. y1 = y, ym = z, ∀1 ≤ k ≤ m− 1 (21)
dX(yk, yk+1) ≤ ε.

Once possible sets are constructed, we search for a
global correspondence between candidates of each set.
Since the number of sets is small, the search becomes fea-
sible. In many practical problems, exhaustive search is pos-
sible. In cases where search complexity is still prohibitive
we use a branch and bound algorithm similar to [14]. While
complexity remains the same, the search space becomes ex-
tremely small in practice.

5.3. Generalized MDS

Once a coarse match is found, it is used as an initializa-
tion of the second refinement stage. Solving (15) requires
to find a correspondence which distorts the metric the least.
Following the discretization in [5], for N mesh points xi on
X̂ we search for x′i locations, (not necessarily coincide with
the mesh vertices), with similar diffusion distances between
them, minimizing

min
x′
1,...,x

′
N∈X̂

max
i,j=1,...,N

∣∣∣d̂ij − d̂X(x′i, x
′
j)

∣∣∣2 . (22)
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We use the convex optimization scheme presented in [5], re-
ferred to as generalized multidimensional scaling (GMDS),
to solve (22).

6. Experimental results
In order to show the advantages using diffusion dis-

tances, we performed several experiments on meshes taken
from the TOSCA dataset [7]. The first coarse matching ex-
ploration stage took a couple of seconds per surface, and the
second stage using GMDS refinement procedure took less
than a minute for approximately 2000 points on a Pentium
Core 2 Duo 3.0 GHz CPU. We used several time steps to
calculate the diffusion distances. Best results were received
for t = 100.

Figure 1 shows the best five coarse symmetries of a hu-
man body undergoing several topology changes. The re-
flective symmetry (E) is found as well as additional twists
(B,C,D). In a small number of points false negatives appear,
and these can be rejected using either the GMDS procedure,
adding descriptors, or increasing the sample size.

Figure 2 depicts symmetries constructed by using
GMDS. We used L2 instead of L∞ in the process, which
provided better numerical results. Each blue line represents
a possible match from a set of 128 matches. We show sev-
eral matches on semi-transparent human bodies. We calcu-
lated self-matching on three different meshes with and with-
out topology changes, of different strengths (A-C), using
geodesic and diffusion distances. Four experiments were
performed for each mesh, and the quality of the correspon-
dence with and without a topology change, for geodesic and
diffusion distances, was measured in terms of the geodesic
distances from the ground truth. For ground truth xi points
and x̂i calculated positions we quantified the correspon-
dence quality by

dC(x, x̂) =
ΣidX(xi, x̂i)
n · Diam(X)

, (23)

where Diam(X) is the diameter of X and n is the number
of points used in the optimization stage, which produces a
scaling and sampling invariant measure.

Correspondence quality is summarized in Table 1. With-
out topology changes both diffusion distances and geodesic
distances produce good results, but with the presence of
topology changes the performance of geodesic distances is
highly degraded while diffusion distances keep their accu-
racy. For example, in mesh (C) the topology change caused
a decrease in correspondence accuracy by 33% using dif-
fusion distances, and by more than 4 times when using
geodesic distances.

Figure 3 depicts the local shape asymmetry of a human
body with local asymmetry introduced by deforming one of
the palms followed by adding a topology change, marked

w/o topology w/ topology
Geo Diff Geo Diff

A 0.0091 0.0094 0.0156 (71%) 0.0126 (34%)
B 0.0187 0.0125 0.0243 (30%) 0.0125 (11%)
C 0.0160 0.0222 0.0901 (463%) 0.0222 (33%)

Table 1. Correpondense quality measured by dC(x, x̂) (23) on
three different meshes with and without a topology change, using
geodesic and diffusion distances. We added the percentage de-
crease in accuracy, due to topology changes, in parentheses. The
meshes can be seen in Figure 2.

with a black circle. Even though the body does not exhibit
non-trivial extrinsic symmetries, we were still able to find
its local intrinsic asymmetry, marked with an arrow. High
asymmetry values are shaded in blue. We extracted a non-
trivial intrinsic symmetry that appeared as an intrinsic re-
flection, and then used that mapping to detect the abnor-
mality at the palm. The method had difficulties locating
asymmetric parts using geodesic distances, yet succeeded
using diffusion distances.

Figure 4 presents an extrinsic reflective symmetry calcu-
lated from pairs of matching points. We assumed the shape
was extrinsically symmetric, and calculated the reflective
plane using Principle Component Analysis (PCA) on the
centers of the connecting lines between matched points.
Adding a topology change rotated the reflective plane by
almost 10 degrees when geodesic distances were in use, but
only by one degree while using diffusion distances.

For a given metric d, which is t time depended, and a
given ε, we can sample the space of all possible symmetries
Symε(X, d). We measure the distance between mappings
according to (9), and embed this abstract space into R2 us-
ing multidimensional scaling (MDS) method.

Since the space is obviously non-Euclidean, there are
distortions in the process, yet, the visual results are infor-
mative. In Figure 5 we continued sampling the symmetries
of a human body from Figure 1. We computed 155 poten-
tial candidates, calculated their distortion, embedded them
in R2 using classical MDS, and interpolated their distortion
on a plane. We see that the symmetry space itself has one
approximate reflective symmetry, indicating that a reflec-
tive symmetry is the only true symmetry of the shape. In
addition, in Figure 6 we present the influence of ε on the
symmetry space.

7. Conclusions

We presented a method to extract approximate intrinsic
symmetries of bendable surfaces which are topology aware,
using diffusion distances. We showed how local asymmetry
values can be used for detecting shape abnormalities, and
presented a visualization of the entire symmetry space.
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Figure 1. Coarse symmetries of a human body. Similar parts appear in similar colors, and the total distortion is indicated as a numerical
value. The distortion less identity symmetry is (A). The full reflective symmetry is (E) while (B), (C), and (D) represent possible symmetries
with partial reflection. Black circles on the left picture mark points where topology changes were introduced.

Figure 2. GMDS self-embeddings. Matching points are connected with a blue line on partial transparent human bodies. (A) poses small
topology changes, (B) mediocre , and (C) extreme ones. Black circles are drawn over connectors which caused topology changes.

Figure 3. Calculating local asymmetry values for a possible reflective symmetry, using geodesic distances (right) and diffusion distances
(left). The right palm was stretched and a topology change was inflicted on the legs. A black circle represents the inflicted topology change,
and an arrow represents the high asymmetry area of the object. Blue color represents local asymmetry. The asymmetry in the palm was
detected using diffusion distances (left) but could not be isolated using geodesic distances (right).

8. Acknowledgements

This research was supported in part by The Israel Sci-
ence Foundation (ISF) grant number 623/08, and by The
USA Office of Naval Research (ONR) grant. Sapiro is par-
tially supported by ARO, NGA, ONR and NSF.

References
[1] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence,

similarity, and symmetries of geometric objects. Discrete
and Computational Geometry, 3:237–256, 1988. 1

[2] M. J. Atallah. On symmetry detection. IEEE Trans. Com-
puters, c-34(7), July 1985. 1

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Comput.,

6



Figure 4. Extrinsic reflective symmetry calculated from matching pairs of points using geodesic (left) and diffusion (right) distances. A
topology noise is marked in a black circle, and matching points by a red line. Compared to an accurate reflective plane, the topological
noise rotated the plane by 9.8 degrees while using geodesic distances, and by 1.2 degrees for diffusion distances.

Figure 5. The symmetry space of a the human body from Figure 1 embedded in R2. Red represent low distortion embeddings (symmetries).
The red line shows the reflective symmetry of the space itself. We measured the distance between functions according to (9).

Figure 6. ε influence on the symmetry space of the human body from Figure 2 embedded in R2. As ε grows, more symmetries appear, but
the symmetry space remains symmetric.

15(6):1373–1396, 2003. 1
[4] A. Bobenko and B. Springborn. A discrete laplace–beltrami

operator for simplicial surfaces. Discrete and Computational
Geometry, 38(4):740–756, 2007. 4

[5] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Effi-
cient computation of isometry-invariant distances between
surfaces. SIAM Journal on Scientific Computing, 28/5:1812–
1836, 2006. 1, 3, 4, 5

[6] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Gener-
alized multidimensional scaling: a framework for isometry-
invariant partial surface matching. Proceedings of the Na-

tional Academy of Sciences (PNAS), 103(5):1168–1172, Jan-
uary 2006. 1

[7] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numer-
ical Geoemtry of non-rigid shapes. Springer-Verlag, 2008.
5

[8] A. M. Bronstein, M. M. Bronstein, R. Kimmel, M. Mah-
moudi, and G. Sapiro. A Gromov-Hausdorff framework with
diffusion geometry for topologically-robust non-rigid shape
matching. International Journal of Computer Vision (IJCV),
2009. 2

[9] D. Burago, Y. Burago, and S. Ivanov. A course in metric

7



geometry, volume 33 of Graduate studies in mathematics.
American Mathematical Society, 2001. 3

[10] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler,
F. Warner, and S. W. Zucker. Geometric diffusions as a
tool for harmonic analysis and structure definition of data:
Diffusion maps. Proc. National Academy of Sciences,
102(21):7426–7431, 2005. 2

[11] A. Elad and R. Kimmel. On bending invariant signatures
for surfaces. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 25(10):1285–1295, 2003. 1, 3

[12] M. Floater and K. Hormann. Surface parameterization: a tu-
torial and survey. Advances in multiresolution for geometric
modelling, 1, 2005. 4

[13] R. Gal, A. Shamir, and D. Cohen-Or. Pose-oblivious shape
signature. IEEE Transactions on Visualization and Computer
Graphics, 13(2):261–271, 2007. 1

[14] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Ro-
bust global registration. In Proc. Eurographics Symposium
on Geometry Processing (SGP), pages 197–206, 2005. 4

[15] M. Gromov. Structures métriques pour les variétés rieman-
niennes. Number 1 in Textes Mathématiques. 1981. 1, 3
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[22] B. Lévy. Laplace-Beltrami eigenfunctions towards an al-
gorithm that “understands” geometry. In Int’l Conf. Shape
Modeling and Applications, 2006. 4

[23] M. Mahmoudi and G. Sapiro. Three-dimensional point cloud
recognition via distributions of geometric distances. Graph-
ical Models, 71(1):22–31, 2009. 1, 4

[24] G. Marola. On the detection of axes of symmetry of sym-
metric and almost symmetric planner images. IEEE Trans.
on Pattern Analysis and Machine Intelligence (PAMI), 11(1),
Jan. 1989. 1

[25] F. Mémoli. Spectral Gromov-Wasserstein distances for shape
matching. In Workshop on Non-Rigid Shape Analysis and
Deformable Image Alignment (NORDIA), october 2009. 1

[26] F. Mémoli and G. Sapiro. A theoretical and computational
framework for isometry invariant recognition of point cloud

data. Foundations of Computational Mathematics, 5:313–
346, 2005. 1, 3

[27] N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and approxi-
mate symmetry detection for 3D geometry. In Proc. Interna-
tional Conference and Exhibition on Computer Graphics and
Interactive Techniques (SIGGRAPH), pages 560–568, 2006.
1

[28] M. Ovsjanikov, A. M. Bronstein, M. M. Bronstein, and
L. Guibas. Shape google: a computer vision approach for
invariant retrieval of non-rigid shapes. In Proc. Workshop on
Non-rigid Shapes and Deformable Image Alignment (NOR-
DIA)., 2009. 2

[29] M. Ovsjanikov, J. Sun, and L. Guibas. Global intrinsic sym-
metries of shapes. In Proc. Eurographics Symposium on Ge-
ometry Processing (SGP), volume 27, 2008. 1

[30] M. Pauly, N. Mitra, J. Wallner, and H. P. L. Guibas. Dis-
covering structural regularity in 3d geometry. In Proc. Inter-
national Conference and Exhibition on Computer Graphics
and Interactive Techniques (SIGGRAPH), pages 1–11, 2008.
1

[31] U. Pinkall and K. Polthier. Computing discrete minimal
surfaces and their conjugates. Experimental mathematics,
2(1):15–36, 1993. 4

[32] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel.
Symmetries of non-rigid shapes. In Proc. Workshop on Non-
rigid Registration and Tracking (NRTL)., Oct. 2007. 1, 4

[33] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kim-
mel. Full and partial symmetries of non-rigid shapes. Inter-
national Journal of Computer Vision (IJCV), 2009. 1

[34] M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spag-
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