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Abstract—Reconstruction of 3D objects based on images is
useful in many applications. One of the methods based on
multi-image data is the Photometric Stereo technique relying
on several photographs of the observed object from the same
point of view, each one taken under a different illumination
condition. The common approach is to estimate the gradient
field of the surface by minimizing a functional, integrating the
distance from the camera and thereby obtaining the geometry
of the observed object. We propose an alternative method
that consists of a novel differential approach for multi-image
Photometric Stereo and permits a direct solution of a novel
PDE based model without going through the gradient field
while naturally dealing with shadowed regions. The mathe-
matical well-posedness of the problem in terms of numerical
stability yields a fast algorithm that efficiently converges, even
for pictures of sizes in the order of several megapixels affected
by noise.

Keywords-Photometric Stereo, Partial Differential Equations,
Shadows.

I. INTRODUCTION

The classical computer vision topic of Shape from Shad-
ing (SfS) was recently revitalised by a series of research con-
tributions driven in part by some interesting new applications
[17], [20], [13]. In this context a number of multi-image
depth recovery techniques, based on inverted shading models
have been addressed in the literature [21]. Among these is
the method of Photometric Stereo (PS) which involves cap-
turing multiple images of an object from the same viewpoint
and illuminated independently from different directions. It
has gained popularity due to the feasibility of implementing
controlled scene illumination systems. This method emerges
as one of the most readily implementable depth recovery
methods and recently new ideas have been introduced in
order to solve the PS problems more efficiently, see e.g.
[11].

A. The Shape-from-Shading problem

Let us briefly recall the simplest setting of the SfS
problem model for the orthographic viewing of a Lambertian
surface.

We consider an unknown surface h(x, y) =
(x, y, z(x, y)), defined on the compact domain Ω = ∂Ω∪Ω
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and denote the gradient of z by ∇z = ( ∂z∂x ,
∂z
∂y ). The basic

Lambertian surface assumption yields an image formation
model determined by the inner product between the light
source direction ω and the outgoing normal to the surface
n(x, y), [8]:

R(n)(x, y) = ρ(x, y)
(
ω · n(x, y)

)
(1)

where ρ is the surface albedo and ω = (ω1, ω2, ω3) (with
ω3 > 0) is a unit vector pointing toward a far-away light
source. The surface normal is given by:

n =

(
− ∂z

∂x
,−∂z

∂y
, 1

)
1√

1 + |∇z|2
. (2)

With this notation, from (1) we obtain the following non-
linear model of image formation:

I(x, y) = ρ(x, y)
− ∂z
∂x (x, y)ω1 − ∂z

∂y (x, y)ω2 + ω3√
1 + |∇z(x, y)|2

. (3)

It is clear that this partial differential equation does not
allow the recovery of the correct surface z(x, y) if additional
information is not provided [14]. Indeed, we need sufficient
further data, in the form of boundary conditions and also
complete knowledge of the albedo to successfully recover
z(x, y) [15].

Most of the studies which have addressed the SfS problem
using this formulation with various types of additional data
work in two steps:

1) the estimation of the first derivatives of the surface ∂z
∂x

and ∂z
∂y , see e.g. [7] (usually via some minimization

algorithms);
2) the recovery of the height from the gradient field

over Ω, see e.g. [1] (by integration or by functional
minimisation).

A two-step procedure introduces approximation errors
which could be avoided if direct integration could be per-
formed by considering (3) as a non-linear PDE of the
Hamilton-Jacobi type. Such an approach would allow us to
recover the function z without passing through its gradient
field. In order to directly compute the height of the surface,
several variational approaches have been studied using the
Euler-Lagrange equations associated with functionals of
z(x, y) that involve the given image and iterate based on



some prior information on the surface [7]. Such PDEs have
several drawbacks, most significant of which is the high
order of the partial derivatives involved and the impossibility
to have a solution with regularity less than a C2 function
[6].

In the framework of classical PDEs for single image
data and known albedo there exists a well known direct
approach to SfS which uses level sets [9], [3]. Its primary
drawback is the need to know a-priori the albedo which is
a key assumption in order to make this method work. Here
however we shall consider a more realistic scenario where
ρ(x, y) is an unknown function and surface reconstruction
is performed in a multi-image framework.

B. Photometric Stereo SfS setup

There are several ways to collect information about the
surface in order to counteract the ill-posedness of (1) and to
achieve the reconstruction of the object under observation.
Photometric Stereo can be formulated to exploit the informa-
tion contained in several images of the scene taken from the
same viewpoint under different light source directions [19].
Let n be the number of images where each one corresponds
to different light sources used in the PS setting, and let us
denote PSn to be the associated depth recovery problem.
In this paper we derive the differential formulation of PSn
which relies on the previous setup of the basic orthographic
SfS problem (1) and therefore we study the following non-
linear system of PDEs:

Ii(x, y) = ρ(x, y)
−∇z(x, y) · ω̃i + ωi3√

1 + |∇z(x, y)|2
, (4)

where i = 1, . . . , n and Ii is the image obtained by lighting
up the surface h using the i-th light source ωi.

The classical two-step procedure for PS2 has been ex-
tensively investigated and in particular is analysed in [15],
[10]. These works highlight the fact that it is not possible
to recover ∇z locally even if the albedo is known, since
an ambiguity remains. The local ambiguity is shown to be
removable in most cases by global integrability constraints.
A completely different way to view PS2 is presented in [11].
This formulation exploits the property of the photometric
ratio introduced in [18]. In other terms, the common non-
linearity

√
1 + |∇z(x, y)|2 is removed by division of the

image irradiance equations and in [11] is proved that an
equivalent differential problem
{
b(x, y) · ∇z(x, y) = f(x, y), a.e.(x, y) ∈ Ω;
z(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω, (5)

admits a unique Lipschitz solution (i.e. differentiable almost
everywhere). Here g(x, y) is the boundary condition and we
have that

b(x, y) = (I2(x, y)ω′1−I1(x, y)ω′′1 , I2(x, y)ω′2−I1(x, y)ω′′2 )
(6)

is the characteristics field and

f(x, y) = I2(x, y)ω′3 − I1(x, y)ω′′3 . (7)

In [11], the uniqueness of the solution has been proved
in absence of shadows. In particular, the proof is based on
full knowledge of the boundary condition g(x, y). But this
is not a reasonable assumption as this information can not
be obtained just by taking pictures of the object we want to
reconstruct.

In this paper we exploit the well-posed differential for-
mulation (5) presented in [11] in order to use it for the
PS3 problem in the presence of shadows which add further
complexity to the surface recovery. Our new approach uses
the full PS3 formulation where all the data is available (i.e.
the regions where we have three images with no shadows)
and employs the PS2 problem for parts of Ω where there is
shadow in one of the captured images.

Note that our hypotheses are slightly weaker than the
ones assumed in [5], which addressed the same problem,
but considers a two step procedure and regularization terms
for smooth surfaces. We will focus here on the direct
computation of the height z by solving a system of linear
PDEs.

In Section II we introduce the theoretical formulation
of the new differential approach defining how the problem
with n > 3 can be addressed starting from a complete
formulation of the problem with three images. Using this
formulation we will show how it is possible to overcome
the problem of handling shadowed regions. We also focus
on important mathematical details by sketching the proof of
uniqueness of the weak solution for our new PDE using the
characteristic strip expansion method. In Section III we solve
the problem of PS3 when there are shadowed regions and an
unknown albedo. Section IV is devoted to the explanation
of the numerical schemes used in the numerical test. They
are essentially based on an up-wind and semi-Lagrangian
scheme to follow the propagation of information on Ω. In
Section V the numerical results on a realistic synthetic test
are presented in which shadows are present.

II. DIRECT SURFACE RECONSTRUCTION USING
MULTIPLE IMAGES AND SHADOWS

When using multiple light sources we have an additional
requirement on the lighting directions. A further assumption
needs be made when more than two images are taken into
account. By considering the reflectance equation (1) as a
linear function with respect to the light source vector, we are
constrained to consider only non-coplanar light sources. This
inconvenience has been studied in [12] with respect to the
PS3 problem. It is well known that an image obtained with
a linearly dependent light source with respect to the other
images (in the sense of (1) ) does not add any additional
information [16], [2].



A. Weighted Photometric Stereo for multiple images with
shadows

If we have three linearly independent images obtained by
individually shining three parallel-ray light sources in non-
coplanar directions then we can consider the set of unique
image pairs and have the following system of linear PDEs:





b(1,2)(x, y) · ∇z(x, y) = f (1,2)(x, y)

b(1,3)(x, y) · ∇z(x, y) = f (1,3)(x, y)

b(2,3)(x, y) · ∇z(x, y) = f (2,3)(x, y)

(8)

of the same type as (5), where

b(h,k)(x, y) = (Ik(x, y)ωh1 − Ih(x, y)ωk1 ,

Ik(x, y)ωh2 − Ih(x, y)ωk2 )
(9)

and
f (h,k)(x, y) = Ik(x, y)ωh3 − Ih(x, y)ωk3 (10)

with (h, k) being the combination of two of the first three
natural integers without repetitions.

We can now describe our novel contribution which is to
ensure the well posedness of the PSn problem by exploiting
the linearity of the basic differential formulation (5) and
reducing it to a single PDE which can handle shadowed
regions in a natural fashion. Since (5) does not lose the
well-posedness if we multiply the equations by a function
q(x, y) on both sides (i.e. b(x, y) and f(x, y)), we are able
to define the ingredients of a weighted PSn model (W-PSn)
by considering the functions

bwn (x, y) =
∑

p∈([n]
2 )

qp(x, y)bp(x, y) (11)

and
fwn (x, y) =

∑

p∈([n]
2 )

qp(x, y)fp(x, y) (12)

where
(

[n]
2

)
is the set of pairs of integer indices with

no repetition. For example, if n = 3 we have
(

[3]
2

)
=

{(1, 2), (1, 3), (2, 3)}.
The complete construction of the W-PSn formulation is

therefore
{
bwn (x, y) · ∇z(x, y) = fwn (x, y), a.e. (x, y) ∈ Ω
z(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω.

(13)
We next explain how shadows influence the definition of

the weights (hence of bwn and fwn ).
A key observation we can make is that it is possible to use

weight-functions qp that are vanishing while preserving the
well-posedness of the problem. It is obvious that we do not
care about the signs of the functions qp; the main importance
is related to the set of points where they are null.

Let us observe that the well-posedness of the differential
formulation is guaranteed for image pixels lit in at least two

images and preserved if the same condition holds in the
multi-image, weighted case.

Since we want to exploit the photometric stereo technique,
we assume that each pixel is illuminated in at least two
images thereby avoiding reduction to a PS1 problem. Our
aim is to consider the weights as switches able to locally
nullify the involvement of an image pair in the summations
(11) and (12) when the functions bp and fp for that pair
do not contain relevant information due to the presence of
shadows in the images involved. Since no ambient light is
assumed in our set-up, we consider the point (x, y) ∈ Ω
shadowed in the ith image when Ii(x, y) = 0. Now, by using
the Heaviside function we can easily define the weights as
follows:

q(h,k) = H(Ih(x, y))H(Ik(x, y)). (14)

These functions are not continuous and therefore in order
not to complicate (13) by adding such discontinuous func-
tions, we consider a regularization of (14). By assuming the
shadows to be open sets, we can regularize the weights using
cutoff functions as constructed in [4].

B. Uniqueness of the weak solution of W-PS3

In order to complete the theoretical analysis we will
extend the uniqueness results of the differential problem (13)
in the case of a weak solution. Discussion of discontinuities
and multiple objects is beyond the scope of this paper. Our
purpose is to prove the uniqueness of the solution of (13)
in the Lipschitz function space via the method of charac-
teristics. The meaning of a weak solution here is intended
as a combination of classical solutions, each defined on
a different domain. These domains are then going to be
patched together in such a way that, across the boundaries
between domains on which there are discontinuities in some
derivatives, the equation (13) is satisfied. Let us recall that
the points where the surface z is not differentiable are the
same where the functions bwn and fwn are discontinuous
(jump discontinuity) [11].

Since the complete proof of well-posedness of the W-PS3

model can not be shown due to lack of space, we sketch it
in the following two steps:

1) (R1), the absence of a critical point for the projected
characteristic field, i.e. bw3 (x, y) 6= (0, 0);

2) (R2), the propagation of the information from the
boundary is not prevented between two sets separated
by discontinuity.

III. W-PSn WITH NO BOUNDARY CONDITION

In Section II we extended the PSn model by supposing
knowledge of the boundary condition g(x, y). Clearly such
a hypothesis compromises the use of that model in most
real applications. It is therefore important to find a way to
solve the PSn problem without requiring knowledge of the
boundary condition.



To solve this problem we design a numerical strategy
which involves selecting a single arbitrarily valued initial
seed point within the reconstruction domain and robustly
manipulating the path of the characteristics. We do this in
order to numerically integrate the linear differential problem
(13) so as to let the information travel in the most convenient
directions for the whole domain.

A. Controlling the characteristic field

On the way to defining a numerical strategy we will need
to manipulate the path along which the information travels.
To do this we will exploit the following result:

Theorem Let bp(x, y) be the vector field of (9) where
p ∈

(
[n]
2

)
. Then, ∀p1, p2 ∈

(
[n]
2

)
and ∀(x, y) ∈ Ω we have:

bp1(x, y) · bp2(x, y) 6= ±|bp1(x, y)||bp2(x, y)|. (15)

Proof
In order not to involve too many parameters, let us fix

the indices p1 and p2 as (1, 2) and (1, 3) respectively. In
order to prove that b(1,2) and b(1,3) are never parallel, we
consider the contradiction assuming that there exists a point
(x̃, ỹ) ∈ Ω such that:

b(1,2)(x̃, ỹ)·b(1,3)(x̃, ỹ) = ±|b(1,2)(x̃, ỹ)||b(1,3)(x̃, ỹ)|. (16)

For the sake of clarity we omit the dependence on (x̃, ỹ).
Now, by squaring both sides we have:
[
b
(1,2)
1 b

(1,3)
1 + b

(1,2)
2 b

(1,3)
2

]2
=

[(
b
(1,2)
1

)2
+
(
b
(1,2)
2

)2][(
b
(1,3)
1

)2
+
(
b
(1,3)
2

)2]
(17)

and by writing b(1,2) and b(1,3) explicitly from (9) we get:
[
I2I3(ω′1)2 − I1I2ω′1ω′′′1 − I1I3ω′1ω′′1 + I2

1ω
′′
1ω
′′′
1 +

I2I3(ω′2)2 − I1I2ω′2ω′′′2 − I1I3ω′2ω′′2 + I2
1ω
′′
2ω
′′′
2

]2
=[

(I2ω
′
1 − I1ω′′1 )2 + (I2ω

′
2 − I1ω′′2 )2

]
[
(I3ω

′
1 − I1ω′′′1 )2 + (I3ω

′
2 − I1ω′′′2 )2

]
(18)

Now, let us write the reflectance function (3) by simpli-
fying the notation as follows:

Ij = ρ(x, y)
ij(x, y)√

1 + |∇z(x, y)|2
, j = 1, 2, 3 (19)

and substitute them in (18). We note that the quantity

ρ(x, y)√
1 + |∇z(x, y)|2

(20)

is non vanishing and therefore can be eliminated from both
sides of (18). Finally we can write (18) as follows:
[
i2i3(ω′1)2 − i1i2ω′1ω′′′1 − i1i3ω′1ω′′1 + i21ω

′′
1ω
′′′
1 +

i2i3(ω′2)2 − i1i2ω′2ω′′′2 − i1i3ω′2ω′′2 + i21ω
′′
2ω
′′′
2

]2
=[

(i2ω
′
1 − i1ω′′1 )2 + (i2ω

′
2 − i1ω′′2 )2

]
[
(i3ω

′
1 − i1ω′′′1 )2 + (i3ω

′
2 − i1ω′′′2 )2

]
(21)

and after some algebraic manipulation we get:

i1(ω′′′1 ω
′′
2ω
′
3 − ω′′1ω′′′2 ω

′
3 − ω′′′1 ω

′
2ω
′′
3 +

ω′1ω
′′′
2 ω
′′
3 + ω′′1ω

′
2ω
′′′
3 − ω′1ω′′2ω′′′3 ) = 0. (22)

Assuming that we are considering a non shadowed point for
the first image (i.e. i1 > 0), we have that (22) is satisfied
only if the light sources are collinear since it is equivalent
to the following:

det



ω′1 ω′2 ω′3
ω′′1 ω′′2 ω′′3
ω′′′1 ω′′′2 ω′′′3


 = 0 (23)

which is in contradiction with the photometric stereo as-
sumption.

�
In other words this Theorem says that two different vector

fields bp1 and bp2 can not be parallel. We will use this fact
to control the direction of the characteristics for the case
when n = 3 which can be easily generalised to any number
of images. Let us introduce the set of three-lighted pixels
M through its indicator function as follows:

1M(x, y) = H(I1(x, y))H(I2(x, y))H(I3(x, y)). (24)

We would like to control the summation functions qp
in (11) and (12) such that we can take a linear weighted
combination as given by the following two indexes:

(p∗1, p
∗
2) = argmin

(p1,p2)∈([3]
2 )|b

p1 · bp2 | (25)

with the aim to span the set of all possible directions of the
derivatives by using the two least ill-conditioned directions
bp
∗
1 and bp

∗
2 . This is permitted to us through the linearity of

the basic differential formulation (5).
Since qp(x, y) ≡ 1, ∀(x, y) ∈ M and ∀p ∈

(
[3]
2

)
, we can

sum the equations in (8) as follows:
(
αbp

∗
1 + βbp

∗
2
)
· ∇z = αfp

∗
1 + βfp

∗
2 (26)

where α and β are real coefficients.
We can now fully control the direction in which we

compute the first derivatives of z independently at any pixel
provided no shadows are involved. We will choose (α, β)
in order to control the characteristic direction at a pixel to
be in the most favourable direction as required by some
integration strategy. On an axis aligned discretization grid
we define eight primary directions of integration which can
be seen in Figure 1.

We recognize these as the integration directions resulting
from the possible locations accessible by the numerical
schemes derived in the next section. Once we have chosen a
particular direction d at a point (x, y) ∈M we can compute
values for (α, β) so that

(
b
p∗1
1 (x, y) b

p∗2
1 (x, y)

b
p∗1
2 (x, y) b

p∗2
2 (x, y)

)(
α
β

)
=

(
d1(x, y)
d2(x, y)

)
. (27)
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Figure 1. Here are shown all the main direction useful for the integration
strategy on an axis aligned grid.

Provided that the light sources used to produce the three
images are non-coplanar then Theorem (III-A) guarantees
that the vectors bp

∗
1 and bp

∗
2 are not parallel and thus this 2×2

system is guaranteed to have a unique solution. Furthermore
by virtue of (25) we have ensured that it is well conditioned.
Thus for each point (x, y) ∈M we can compute coefficients
(α, β) such that

(
αbp

∗
1 + βbp

∗
2
)
· ∇z = αfp

∗
1 + βfp

∗
2 , (28)

which is now a pixel specific version of (13).

B. Integration strategy for W-PS3

We aim to minimize the accumulation error during the
numerical integration and therefore we define a strategy in
order to make clear how the surface can be reconstructed
without the use of a-priori boundary conditions.

We have the following steps inspired by the wavefront
expansion principle of fast marching methods over flat
domains:

1) fix an arbitrary value to z for a point towards the center
of the image domain not in shadow, namely (x̄, ȳ) (see
the orange point in Figure 2) and add all of that point’s
neighbors to a list of pixels to be visited;

2) traverse the list of pixels to be visited and update the
value for z for each one by calculating p∗1, p∗2, α and
β after determining what information is available as
required by the forward schemes (30) or (32) derived
in the next section;

3) for each newly visited pixel add its unvisited neighbors
to the list of pixels to be visited;

4) in case of shadows we can change the wavefront
propagation direction in order to surround the shadow
sets (i.e. computing the boundary condition) as shown
by the red arrows in Figure 2 and then solve the
appropriate equation in (8) in the set of shadowed
pixels when the wavefront expansion direction is in
agreement with the shadowed pixel’s characteristic
direction;

5) the above steps are repeated until some stopping
condition on convergence is fulfilled.

Figure 2. We fix an arbitrary point (in orange) and perform surface
recovery along an expanding wavefront of visited pixels. When shadows
occur, we orient the vector field in order to avoid them when their directions
are inconsistent with the direction of expansion of the wavefront.

The main idea that we are proposing is that for all non
shadow pixels we can orient the characteristic field so that
its direction is convenient for use in our integration strategy.
This is only possible using our new formulation in (13).
In this way the advancing wavefront constantly makes new
pixels available to be updated even when they are in the
shadow set because at some point the direction of advance
of the wavefront will be consistent with the direction of
a pixel’s characteristic which sits along the border of the
shadow set. This pixel is then added to the set of pixels to
be visited and in turn will act as a seed pixel that enables
other points in the shadow set to be updated in the next
incremental advance of the wavefront. In such a way the
entire set of pixels can be visited and correctly updated.

IV. NUMERICAL SCHEMES

We now describe the numerical methods that we will
employ when we wish to determine the validity of the pro-
posed model. The schemes originate from [11] where finite
difference up-wind schemes and semi-Lagrangian schemes
are used.

Let us start by considering a square domain Ω like the
set [a, b]2 and with a uniform discretization space step ∆ =
(b−a)/n where n is the number of intervals divided by the
side of the square (that is xi = −1 + i∆, yj = −1 + j∆
with i, j = 0, . . . , n). We will denote by Ωd all the points
of the lattice belonging to Ω, by Ωd all the internal points
and by ∂Ωd all the boundary points.

We recall the numerical schemes used for the forward
approximation of (13) where the propagation of the infor-
mation is considered according with the direction of the
vector field that decide the direction of the derivatives. In
order to simplify the notation we shall denote bw3 (xi, yj) by
bi,j = (b1i,j , b

2
i,j) and fw3 (xi, yj) by fi,j .



A. Forward up-wind scheme

Let us consider the following implicit up-wind scheme:

b1i,j
Zi+1,j − Zi−1,j

2∆
+ b2i,j

Zi,j+1 − Zi,j−1

2∆
= fi,j+

|b1i,j |
Zi+1,j − 2Zi,j + Zi−1,j

2∆
+|b2i,j |

Zi,j+1 − 2Zi,j + Zi,j−1

2∆
(29)

for i, j = 1, . . . , n − 1. The artificial diffusion introduced
in the right side of (29) allows to follow the vector field
b by considering the most appropriate discretization for the
fist derivative in order to track the characteristic lines. In
particular it consists of a numerical scheme of consistency
order equal to one with respect to both partial derivatives.

We can write (29) in the following iterative way:

Zt+1
i,j =

|b1i,j |Zti−sgn (b1i,j),j
+ |b2i,j |Zti,j−sgn (b2i,j)

+ fi,j∆

|b1i,j |+ |b2i,j |
(30)

which is well-posed due to (R1) that guarantees that the
division by |b1i,j |+ |b2i,j | does not involve any difficulty.

B. Forward semi-Lagrangian scheme

A second type of numerical scheme is based on the semi-
Lagrangian approximation by considering the following
equivalent equation obtained by dividing the two sides of
the equation in (13) by the norm of bw3 (x, y):

∇γz(x, y) =
fw3 (x, y)

|bw3 (x, y)| ∀(x, y) ∈ Ω (31)

with γ(x, y) =
bw3 (x,y)
|bw3 (x,y)| .

We observe that here again the division by |bw3 (x, y)| does
not involve any difficulties for the numerical scheme due
to (R1). Now, considering the definition of the directional
derivative (in the opposite direction of γ, i.e. of the charac-
teristic field), we can write the semi-Lagrangian scheme as
follows:

(sL) Zt+1
i,j = Zt(xi − hγ1

i,j , yj − hγ2
i,j) +

fi,j
|bi,j |

h (32)

where the parameter h is greater than zero and is assumed
equal to the size of the grid ∆ in order to reach the highest
order of convergence equal to one ([11]).

V. NUMERICAL TESTS

In the first part of the numerical tests we show a numerical
analysis of convergence of the numerical schemes introduced
in the previous section. In this synthetic case we take
into account a Lipschitz surface that, besides points of
discontinuity, presents high slope (i.e. a large Lipschitz con-
stant). The initial images shown in Figure 3 are synthesized
using an analytical function of a surface z in the domain
Ωd = [−1, 1]2.

The images include artificial shadow regions together with
a non constant albedo mask. We corrupt the image data

I1 I2 I3

Figure 3. Set of synthetic images used in which the albedo is composed
of diagonal stripes. 5% Gaussian noise and exaggerated black patches
representing shadows are used to corrupt the images.

with 5% Gaussian noise to further improve the realism of
the simulation. The iterations for both schemes are stopped
when the L∞ discrete norm

EL∞ = max
(xi,yj)∈Ωd

|Zt(xi, yj)− z(xi, yj)|, (33)

is less than a parameter ε = 10−7. Table I displays the
error together with the measured run time at convergence.
The numerical schemes were all implemented in C++ MEX
files and executed in Matlab using a single core of a 2012
Intel Core i7 2.3.GHz MacBook Pro. For this work the
parallelism available to an implementation of the integration
strategy has not been utilized. Despite this limitation the
algorithm runs at 6 fps for images of size 500 × 500. It
should be noted though that this is a synthetic case and
clearly the presence of noise influences the convergence of
the numerical schemes and so they do not preserve the same
rate of convergence with respect to the images without noise
and thus have longer runtimes. Figure 4 shows the surfaces

up-wind semi-Lagrangian
∆ L∞ time (sec) L∞ time (sec)
500 3.539 × 10−2 0.162 2.332 × 10−2 0.171
1000 2.185 × 10−2 0.561 1.166 × 10−2 0.623
2000 1.368 × 10−2 2.783 6.248 × 10−3 3.029

5
%

500 6.635 × 10−2 0.161 5.855 × 10−2 0.274
1000 3.578 × 10−2 0.553 3.698 × 10−2 1.201
2000 3.917 × 10−2 2.684 3.916 × 10−2 4.354

Table I
IN ORDER TO SHOW THAT THE ORDER OF CONVERGENCE OF THE

NUMERICAL SCHEMES IS ONE, WE COMPUTE THE L∞ ERROR
DOUBLING THE SIZE OF THE IMAGES (ADDING ALSO 5% OF GAUSSIAN

NOISE) STARTING FROM DATA OF 500×500 TO 2000×2000 PIXELS.

recovered from noisy images with four megapixels. Even
if the reconstruction accurately preserves the shape of the
surface, it produces some artifacts due to the noise and the
rectangular occlusions. In this algorithm no regularisation
procedure has been adopted in order to make the surface
smoother.

In the first row of Figure 5 we consider the problem of
the reconstruction of the well-known Beethoven bust after
complicating the shape recovery by adding black occlusions.
As shown in Figure 6 the computed shape does not have
evident artifacts also in zones where the information has
been removed.



(original) (up-wind) (semi-Lagrangian)

Figure 4. All the surfaces shown here are related to the 2000×2000 pixels images with 5% of Gaussian noise.

I1 I2 I3

Figure 5. Images of the Beethoven bust and coin with occlusions.

As a last example we consider the reconstruction of a coin
using the images in the second row of Figure 5. These im-
ages have the shadows on different zones around the border
of the human figure. The reconstruction in Figure 7 shows
that the human shape is well computed and furthermore, that
the flat region around this shape has been well preserved.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we have formulated a new approach to the
multi-image shape reconstruction based on a direct PDE
method. The advantage of this differential formulation stems
from the direct computation of the height of the surface,
which, along with proofs of the well-posedness of the PDE
problem allows computation of the solution with a fast and
stable algorithm even in the presence of noise. On a single
core our non-optimized implementation converges in a few
seconds even for sets of large images.

One direction of research we are currently investigating
is improving the generality and richness of the shading
model employed such as the use of near, non parallel-ray

Figure 6. A novel view of the reconstruction of Beethoven using W-PS3.

light sources and a perspective camera model. In particular
the passage from the orthographic model to the perspective
model using PS deserves attention, as this has been stud-
ied so far only by following the two-step shape recovery
procedure and without taking into account shadows, as was
recently done in [17].

The current work has mainly focused on the theoretical
aspects of the suggested method but there are more practical
elements which need to be pursued further to obtain a more
coherent picture of the utility of the method. Using real
digital photographs in a controlled physical setup is one
such avenue. Of a similarly practical nature is the unused



Figure 7. A novel view of the reconstruction of a coin model using W-PS3.

parallelism inherently available in the proposed method. Our
current implementation could potentially be accelerated by
transferring it into a streaming programming environment
such as CUDA to implement a fully parallelized version of
the suggested integration strategy on a GPU.
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