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Abstract. In recent years, quantities derived from the heat equation
have become popular in shape processing and analysis of triangulated
surfaces. Such measures are often robust with respect to different kinds
of perturbations, including near-isometries, topological noise and partial-
ities. Here, we propose to exploit the semigroup of a Schrödinger operator
in order to deal with texture data, while maintaining the desirable prop-
erties of the heat kernel. We define a family of Schrödinger diffusion
distances analogous to the ones associated to the heat kernels, and show
that they are continuous under perturbations of the data. As an appli-
cation, we introduce a method for retrieval of textured shapes through
comparison of Schrödinger diffusion distance histograms with the earth’s
mover distance, and present some numerical experiments showing supe-
rior performance compared to an analogous method that ignores the
texture.

Keywords: Laplace-Beltrami operator, textured shape retrieval, diffu-
sion distance, Schrödinger operators, earth mover’s distance.

1 Introduction

There is an ever growing quantity of 3D shapes available, either scanned from
real objects, manually modelled by artists, or acquired from other sources. Ad-
equately classifying them, and being able to find similar and dissimilar models
is therefore increasingly important, and automatic solutions are needed for the
goal of efficient computerized shape retrieval.

For a retrieval method to be useful, given the variability of shapes, often
some invariance properties are required. The most obvious one is translation
and rotation (that is, Euclidean) invariance. Their scale is often arbitrary, so
sometimes it is also interesting to enforce invariance with respect to global or
local scaling. More challenging is recognition in classes of non-rigid shapes, like
shapes representing human faces, animals or animated characters. In these cases,
only the intrinsic geometry can be used, thus enforcing invariance to isometries,
and robustness with respect to near-isometries.

Often, geometric models include textures, which are an integral part of the
representation. It is therefore natural to try and use the texture information to
better distinguish between objects, for example in cases like separating between
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a horse and a zebra, classifying different species of fish with similar shapes but
different colors and patterns, or categorizing archaeological findings.

In this paper, we introduce a representation that incorporates texture data
within several recent methods of shape analysis and retrieval, which them-
selves depend only on intrinsic geometry and hence are appropriate for non-
rigid shapes. Our method fully inherits the desirable invariance and robustness
properties of these methods, while also utilizing the texture of the shapes.

The paper is organized as follows. In Section 2 we briefly review previous ef-
forts and basic concepts on which our method is based. In Section 3, we define
our central quantities, a family of diffusion distances based on diffusion with
Schrödinger operators incorporating the texture data, and present some theo-
retical results about them. Then, in Section 4, we present a system of shape
retrieval based on comparison of histograms of Schrödinger diffusion distances
with the earth mover’s distance. Finally, in Section 5, we present some experi-
mental results obtained with our representation model.

2 Diffusion in Shape Analysis: Previous Works

Adding to a long history of use of Laplace operators in geometry processing
applications [1], the spectral decomposition of Laplace-Beltrami operators on
surfaces has proven to be useful for tasks of shape analysis and comparison [2].

In [3], diffusion through the heat equation, constructed from the spectral de-
composition, was used for comparison of shapes through the introduction of the
heat kernel signature (HKS). Since then, many methods have used descriptors
for shapes built from the heat kernel [4][5].

Diffusion distances were introduced by Coifman and Lafon in [6] for data
analysis of point clouds, under the basic assumption that the sampled points
come from an underlying low-dimensional manifold. Recently, diffusion distances
have also received considerable attention for shape analysis and retrieval tasks,
for example in shape recognition [7] or shape matching [8].

Recently, an approach to shape retrieval including texture data was proposed
in [9], introducing three channels of texture (in the Lab color space) through
a higher dimensional embedding, similar to the Beltrami framework [10]. In
comparison, the method presented here supports a single channel for the texture,
yet it has a clear interpretation in terms of diffusion on the original shape. It also
requires lower order derivatives of the texture (at most one in our case, versus
two for the embedding approach), making it less sensitive to noise.

3 Schrödinger Operators and Diffusion

We will consider our surfaces to be compact two-dimensional manifolds, denoted
by M and embedded in R

3, with triangular meshes as discretizations. In terms
of a local parametrization and the corresponding first fundamental form g, one
can define the Laplace-Beltrami operator through the formula

Δgf = (divg ◦ gradg)(f) =
∑

i,j

1√
|g|

∂i

(√
|g|gij∂jf

)
, (1)
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where |g| is the determinant of the metric, gij are the components of the inverse
of the metric, and ∂i denotes partial derivative with respect to the i-th coordi-
nate. It is well known [11] that the Laplace-Beltrami operator doesn’t depend
on the coordinate functions chosen, and since it’s defined in terms of g, it is in-
variant under transformations that preserve g, that is, isometries. This operator
is a generalization of the standard Laplacian in R

n, for many of the processes
associated to the former, like diffusion and smoothing.

Consider a function V : M → R, which we require to be bounded, but without
needing any further regularity, in particular not necessarily differentiable or even
continuous, to which we will refer as the potential. A Schödinger operator on the
surface M is an operator of the form Δg − V , with V being considered as a
multiplication operator, that is, V f(x) = V (x)f(x).

These operators are referred to as Schrödinger operators, and play a major role
in quantum mechanics, where the study of their spectrum is key to understanding
the Schrödinger equation. In those cases the potential is usually unbounded,
which makes the analysis a challenge of its own. One can also consider the
diffusion equation associated to these operators,

{
∂tu(x, t) = Δgu(x, t)− V (x)u(x, t)

u(x, 0) = u0(x),
(2)

which will be the equation defining the quantities that we will use in what
follows. Boundary conditions are not needed since M is compact. The following
result asserts that for these operators, on the continuous level, everything works
as expected, mimicking the situation with the Laplacian and heat kernels:

Theorem 1. Let (M, g) be a compact Riemannian manifold of class C2, Δg the
Laplace-Beltrami operator on (M, g), and V ∈ L∞(M,μg), where μg is the mea-
sure associated to the Riemannian volume element, with V ≥ 0. Then, the oper-
ator −Δg + V admits a spectral decomposition {(φj , λj)}∞j=1, such that {φj}∞j=1

is an orthonormal basis for L2(M,μg), λj ≥ 0 and lim
j→∞

λj = +∞.

Moreover, there exists a family of functions ht ∈ L2(M,μg), such that for all
u0 ∈ L2(M,μg), the unique solution of (2) is given by

u(x, t) =

∫

S

ht(x, y)u0(y)dμg(y), (3)

and the following formula holds

ht(x, y) =

∞∑

i=1

e−λitφi(x)φi(y). (4)

Proof. The proof is essentially the same as in the Laplacian case. We refer to [12]
for a standard proof. Let us note, however, that both the hypotheses that the
manifold is compact and the potential V is bounded are essential, as otherwise,
the discreteness of the spectrum is not guaranteed, since in those cases the
involved resolvents could fail to be compact.
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Based on this result, a squared diffusion distance [6] can be defined as the L2

norm of the difference of the kernels for Equation (2), and using Equation (4)

d2t (x, y) = ‖ht(x, ·) − ht(y, ·)‖2L2 =

∞∑

j=1

e−2λjt(φj(x)− φj(y))
2. (5)

Note, that the sign in the exponential arises because we have defined λj > 0
to be the eigenvalues of −(Δg − V ). These distances enjoy the same properties
as those associated to the heat kernel, since all the properties proved in [6],
including the fact that the formula above defines a distance, are valid for more
general semigroups and not just the one associated to the Laplacian.

We also have that the solutions to the diffusion equation, and therefore any
quantities derived from it, in particular our diffusion distances, are continuous
with respect to perturbations of the potential. Namely,

Proposition 2. Consider the problem:
{
∂tu(x, t) = Δu(x, t)− (V (x) + εN(x))u(x, t)

u(x, 0) = u0(x),
(6)

where V,N ∈ L∞(M,μg), V ≥ 0 and V + εN ≥ 0 for some ε ≥ 0. Then, the
solutions to of the above problem converge strongly in L2(M,μg) to the ones of
problem 2 as ε → 0, for each fixed t > 0.

Proposition 2 can be proved by using standard results in perturbation theory
of linear semigroups ([13], IX.2.16), that require convergence of solutions of the
resolvents of the operator, which is just the solution of a linear elliptic equation.

3.1 The Feynman-Kac Formula

To shed some light on the behavior of the solutions to Equation (2), we provide an
informal discussion on a well-known stochastic interpretation of such solutions.

The Feynman-Kac formula [14] expresses the solution of a diffusion equation
in terms of Brownian motion (strictly, the Wiener process on our space, X)

u(x, t) = E

(
u0(X0) exp

(
−
∫ t

0

V (Xτ )dτ

)
| Xt = x

)
, (7)

the conditional expectation meaning that we take averages of all the Wiener
paths that reach x at time t, starting from elsewhere. Note that the integral
inside the exponential involves the Wiener process itself, and hence needs to be
understood in the sense of stochastic integrals. A rigorous treatment of this is
beyond the scope of this paper, but can be found in [14].

In the case of the heat equation, V = 0, the initial values are transported
over random paths, and the expected value over all paths that reach a point at
a given time is the value of our solution. This kind of averaging property is the
reason behind the robustness to different kinds of noise that diffusion distances
and other quantities derived from heat kernels possess.
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For Schrödinger operators, one can think of this transported value being mod-
ulated exponentially by the potential V (x) ≥ 0, in a way consistent with what
one gets by disregarding the diffusion term to end up with ut + V u = 0. The
transported values will be decreased according to how large V is in the areas
that the Brownian motion crosses, on average. Figure 1 illustrates this behavior,
for a potential generated from the gradient of the texture on the shape.

4 Textured Shape Retrieval with Schrödinger Diffusion

In our context, all references to textures on shapes will in fact be about vertex
colorings. This is because only at that level the notions of a mapping on the
surface and the diffusion can have discretizations consistent with one another,
as required for our Schrödinger operators. In the case of textures mapped on
triangles, one could induce a vertex map by averaging over the Voronoi region
corresponding to the vertex in its one-ring neighborhood, for example.

For our shape retrieval application, we intend to define a distance between
signatures of the shapes, which in our case will be histograms of Schrödinger
diffusion distances between points. The retrieval method would then select from
a database the shapes with the smallest distance to the query. In what follows,
we assume our texture is a differentiable function I : M → R in the continuous
model, and a vertex function I(vi) for the discretized version.

4.1 Operator Discretization

A popular discretization for the Laplace-Beltrami operator of a surface is the so-
called cotangent weight scheme [15], where the weights are the sums of cotangents
of angles adjacent to the edge, and the normalization coefficients are the Voronoi
areas corresponding to the vertex. One of its disadvantages is the fact that
for meshes with obtuse angles, the edge weights become negative, making it
unsuitable [16] for simulating diffusion processes.

So instead, we chose the ‘Mesh Laplacian’ discretization of [17], inspired by
the one introduced by Belkin and Niyogi for data analysis of point clouds in [18].
For triangular meshes, it is given by

Δsf(vi) =
1

4πs2

∑

τ∈T (vi)

A(τ)

3

∑

w∈τ

e
−‖vi−w‖2

4s (f(w)− f(vi)), (8)

where T (vi) denotes the set of triangles in a neighborhood of vi, A(τ) is the area
of the triangle τ and s is a scaling parameter.

This discretization has several advantages. The ones that are the most useful
for us are that the weights are nonnegative by definition, and the fact that it con-
verges pointwise to the continuous Laplace-Beltrami operator, when the meshes
approximate a smooth surface and T (vi) is always the whole shape, as proved
in [17]. Spectral convergence in a probabilistic sense, of the point-cloud version
of the operator, is proved in [19]. In our case, since it would not be practical to
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Fig. 1. Diffusion on a textured shape, with V = α(1 + β|∇I |). Left to right, row wise:
textured shape, modulus of the gradient, snapshot of kernel, diffusion distance. Observe
that some of the stripes of the zebra can be seen in the distance and the kernel is shaped
by them, since texture edges work against the diffusion. The source is marked in white.

use the whole shape as a neighborhood, we have taken the neighborhoods T (vi)
to be the one-ring neighborhood of each vertex. The parameter s was choosen in
a uniform way, not taking into account the size of the different neighborhoods,
as one fifth of the median of the edge lengths over the whole shape.

After discretizing the Laplace-Beltrami operator as above, our discrete oper-
ators are defined in the obvious way,

((Δs − V )f)(vi) = Δsf(vi)− V (vi)f(vi). (9)

4.2 Choice of Potential and Its Discretization

One choice for the potential V would be just to take V = I, I corresponding
for example to the luminance of the texture. This would have the advantage of
not having to explicitly compute any derivative of I, but in turn would make it
depend on the reference taken for the texture, that is, on transformations of the
kind Ĩ = I + c, where c is a constant.

Another option is to use an edge indicator for the textures as the potential V ,
the most straightforward being the modulus of the surface gradient, V = |∇I|, ∇
being the (Riemannian) gradient on the surface. Other options are V = log(1+I)
or V = log(1 + |∇I|), as a way to mitigate the exponential decay caused by the
potential V in Formula (7). In our experiments below, we used this last potential.
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Intuitively, from the random walk interpretation and the Feynman-Kac For-
mula (7), we see that it will be harder to diffuse across edges of the texture,
while in constant areas, the behavior will be that of the usual heat equation.
This can be appreciated in Figure 1.

We will now describe the approximation of the gradient of a function on the
surface that we employed, which is the same as in [20]. Let v be the vertex we
are interested in, and τ = {u, v, w} a triangle of the shape having v as a vertex.
Denote

ru =
u− v

|u− v| , rw =
w − v

|w − v| , P =

[
rTu
rTw

]
, (10)

where rTu , r
T
w denote transposes. Note, that P is the change of basis matrix from

the canonical basis to ru, rw , which form a basis for the plane that contains
the triangle. Also, denote by Iu, Iv, Iw the values of our function on the three
vertices. Then, we can consistently approximate the norm of the gradient by

(|∇I|τv)
2 =

(
Iu−Iv
|u−v|

Iw−Iv
|w−v|

)
(PPT )−1

(
Iu−Iv
|u−v|
Iw−Iv
|w−v|

)
. (11)

Finally, to obtain our discretization, we average this approximation over the
one-ring neighborhood of v,

|∇I|v =
1

#T (v)

∑

τ∈T (v)

|∇f |τv . (12)

4.3 Point Selection and Histogram Comparison

To obtain a signature based on diffusion distances, one needs to select points
between which the distances are computed. In our case, we performed farthest
point sampling [21] based on Euclidean ambient distances (for simplicity) to pick
100 points, for which we computed the diffusion distance map to the rest of the
shape. Then, the results for each of them are combined in a global histogram,
which will serve as descriptor for the shape. The histograms were quantized with
120 bins, and normalized, to compare shapes with any number of vertices.

After obtaining the histograms of diffusion distances to be used as signatures,
we need a way to compare them consistently. A popular approach for comparing
probability distributions (and hence normalized histograms) is the Earth Mover’s
Distance, or EMD [22]. We use it to compute distances between the histograms of
diffusion distances, as a means of comparing them. Let us note that even if in the
one-dimensional continuous case computing the optimal cost is straightforward
from the cumulative distribution functions, in the discrete case one still needs to
solve a flow network optimization problem, which is computationally expensive,
if done naively [23]. In our case, we have used the method and code of Pele and
Werman [24] to efficiently approximate the EMD between our histograms.

A similar approach to shape retrieval, but with local descriptors, was used
in [25], where the distances used were the inner distances inside planar shapes.
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Amore sophisticated approach using histograms of geodesic distances andWasser-
stein metrics can be found in [26]. We emphasize that we purposefully used a
classification method which is far from being state of the art, to be able to better
demonstrate the increased performance with just a moderate-sized database.

5 Experimental Results

For our experiments, the shapes were taken from the TOSCA nonrigid shape
database [27], and the textures were manually added as vertex colorings. The
final database consisted of 73 shapes, belonging to 8 different classes. Inside each
class, the shapes differed by an almost-isometric deformation (different ‘poses’).

The Laplace-Beltrami operators were discretized through the scheme
described above, before combining them with the norms of the gradient of the
texture data, as described in Section 4. Diffusion distances were computed di-
rectly from the definition, using 100 eigenvalues and eigenfunctions, which were
in turn computed from the corresponding matrices of the discrete operators.

Then, the EMD between the histograms from each pair of shapes was com-
puted, and finally the two closest matches for each shape were chosen as candi-
dates for retrieval. This whole process was done for V = 0 and V = α log(1 +
β|∇I|), with α and β normalization constants which control the resistance to
diffusion induced by the texture.

Results for the distances are shown in Figure 2, and Table 1 shows the amount
of correct matches and averages of distances inside and outside the classes, after
normalization with respect to the maximum distance between elements.

Fig. 2. Distance matrices between the signatures of the shapes. Lines indicate separa-
tion between classes. White corresponds to zero distance, black to maximum distance.
Left: Results without texture. Right: Results with texture. Lower: Representatives of
each class of shapes, in the same order as the matrices.
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Table 1. Numerical results for both cases

V = 0 V = α log(1 + β|∇I |)
Nearest shape belongs to correct class 52/73 65/73

Second nearest shape belongs to correct class 41/73 50/73

Normalized avg. distance for shapes in same class 0.1440 0.1167

Normalized avg. distance for shapes in different classes 0.2905 0.3822

As we can see, the average distance between shapes in the same class is re-
duced, while the average distance between shapes in different classes increases,
providing better separation between the classes. Also, some queries that would
produce incorrect matches with just the geometry are correctly matched when
also using the texture.

6 Conclusions

We defined a family of diffusion distances based on the diffusion associated to
Schrödinger operators, for use in triangulated shapes with textures, where quan-
tities derived from the texture are introduced as the potential part of the oper-
ator. These are at least continuous with respect to perturbations of the texture.

The practical usefulness of our method was illustrated by a simple retrieval
example using global diffusion distance histograms as descriptors. Using the
available texture information resulted in better performance than using only the
geometry data through standard heat diffusion.

Our approach could also be useful to incorporate texture data in other meth-
ods of shape analysis using Laplacian operators but not heat diffusion explicitly,
such as the ones in [28] and [2].
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