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Abstract
We present a computational framework for finding metric-preserving tangent vector fields on surfaces, also known
as Killing Vector Fields. Flows of such vector fields define self-isometries of the surface, or in other words, sym-
metries. Our approach is based on general-purpose isometry-finding frameworks, and is shown to be robust to
noise. In addition, we demonstrate symmetry recovery using non-Euclidean metrics.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

The symmetry of a surface can be defined in terms of self-
similarity: a cupboard cup has rotational symmetry because
it can be rotated about one axis with no apparent change.
Squash the cup, and the symmetry would be lost - or would
it? From the point of view of an infinitesimally small ant
on its surface, squashing the cup has no effect - if all points
on the creased cup were to move as if the cup hasn’t been
altered, our ant would not be able to tell the difference made
by such a deformation.

We define self-similarity in terms of intrinsic properties
of surfaces. Such symmetry is said to be intrinsic, because
it does not depend on properties of the embedding space.
Rotational symmetry, such as the one a cup possesses, is an
example of an extrinsic symmetry, one which is defined in
terms of transformations in the embedding space.

Such rotational symmetry is also infinitesimal, since we
can apply it in arbitrarily small amounts. By contrast, the
reflective symmetry of Leonardo da Vinci’s Vitruvian Man
is not.

Infinitesimal symmetries of surfaces can be described by a
tangent vector field; once obtained, such field can be used as
a shape descriptor. Possible descriptors include a histogram
of norms of the vectors, their hodograph, and methods in-
spired by descriptors for color images.

We present a framework for explicitly computing intrin-
sic infinitesimal symmetries, using Generalized Multidimen-

sional Scaling [BBK06b], and demonstrate its robustness to
noise.

1.1. Mathematical Background

The notion of distance measurement on manifolds, and in
particular on surfaces, is formalized through the use of met-
ric tensors. A metric tensor at point p of manifold M maps
two tangent vectors at this point to a scalar,

gp : TpM×TpM→ R+∪{0} , (1)

and essentially defines an inner-product on tangent vectors.
A manifold equipped with a bilinear, semi-positive definite,
symmetric and non-degenerate metric tensor is called a Rie-
mannian Manifold. Consequently, the angle between two
tangent vectors u and v is defined through gp (u,v), and more
relevant to us, the size of a tangent vector v∈ TpM is defined
as
√

gp (v,v). Given a curve on the manifold, we may com-
pute its length by integrating the metric over its trace. Fur-
thermore, if the manifold is compact, for every two points
there exists a shortest path connecting them, called a mini-
mal geodesic. We may therefore induce a metric d (p,q) on
the manifold, where the distance between two points is de-
fined as the length of the shortest path between them.

A self-isometry of a manifold is a map φ : M→M which
preserves inter-point distances, that is,

∀p,q ∈M d (p,q) = d (φ(p) ,φ(q)) , (2)
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and essentially captures the notion of intrinsic symmetry of a
manifold. We may also define ε-isometries, where the above
equality is replaced by a neighborhood of size ε.

A map φ : M→M is infinitesimal if there exists a family
of maps ϕ

t : M → M parametrized by t ∈ R, such that for
all δ > 0, there exists a set Tδ = {ti}n

i=1 ⊂ (0,δ) of positive
numbers smaller than δ, for which we have

φ≡ ϕ
t1 ◦ϕ

t2 ◦ · · · ◦ϕ
tn . (3)

Intuitively, an infinitesimal map is a continuous flow of
points on the manifold.

A continuous, infinitesimal map can be described by a
continuous tangent vector field U : M → TpM. In this case
the self-isometry becomes

φ(p) = expp (U (p)) , (4)

where expp (·) is the exponential map at point p, and is
termed the flow of the vector field.

A tangent vector field which preserves the metric ten-
sor of a manifold also preserves inter-point distances, and
is called a Killing Vector Field (KVF). Although KVFs are
rare [Mye36], approximate KVFs (AKVFs), which are near-
isometric vector fields, occur naturally almost everywhere.
For example, socks are intuitively symmetric, but do not
posses an infinitesimal symmetry from a pure mathematical
point of view.

1.2. Previous work

Traditionally, symmetry extraction methods were based on
exploiting the structure of an embedding space of a sur-
face, [BBW∗09, PMW∗08, SS97]; such methods are inap-
propriate where isometric deformations are allowed, such
as bending. Methods that find intrinsic symmetries exist,
[OSG08, RBBK10, XZT∗09], but they focus on discrete
symmetries.

In [Mat68], the problem of finding AKVFs is stated as a
functional optimization problem which can be transformed
into an eigenvalue problem. An eigenvector which corre-
sponds to the zero eigenvalue is a true KVF, and the larger
the eigenvalue, the farther its corresponding eigenvector is
from being metric-preserving. An implementation of a sim-
ilar method was recently the focus of a paper by Ben-Chen
et al.[BCBSG10]. It performs well on smooth surfaces, but
is based on local (differential) properties of the surface, and
therefore sensitive to noise as we show later in this work.

An alternative approach to finding AKVFs is to find a
general self-isometry of a surface, restricting it to be con-
tinuous and infinitesimal. A series of papers by Bronstein
et al. (e.g.,[BBK06a, BBK06b, BBKY06]) focused on find-
ing isometries between surfaces. Their proposed algorithm,
GMDS, is a natural candidate for finding AKVFs.

1.3. Generalized MDS

Loosely speaking, GMDS [BBK06b] finds a correspondence
between two sets of points that reside on triangulated sur-
faces. A byproduct of this correspondence is a quantitative
dissimilarity measure between those surfaces, which can be
used for example for face recognition.

Let S and Q be two Riemannian manifolds of dimen-
sion two with metrics dS and dQ respectively, and let X =

{xi}N
i=1 ⊆ S be points in S. Also, define Y = {yi}N

i=1 ⊆ Q,
and require that N = |X | = |Y | <∞ where |X | denotes the
number of points in X . GMDS is an iterative algorithm that
minimizes the generalized p-stress as a function of Y , which
for p <∞ is defined as

σ(Y ) =
N

∑
i=1

N

∑
j=1

∣∣dS
(
xi,x j

)
−dQ

(
yi,y j

)∣∣p , (5)

while for the p =∞ case it is defined as

σ(Y ) = max
1≤i, j≤N

∣∣dS
(
xi,x j

)
−dQ

(
yi,y j

)∣∣ . (6)

Note that throughout GMDS, only Y changes.

Ideally, X and Y are sufficiently dense nets of S and Q re-
spectively. If a global solution is found, the value of σ(Y )
can qualitatively show how isometric S and Q are: a zero
value obviously tells us that the manifolds are isometric.
Conversely, a large value means the manifolds are intrinsi-
cally different. See [MS05] for an analysis in the context of
surface sampling and the Gromov–Hausdorff distance.

2. Implementation

As stated before, we are interested in computing a non-trivial
vector field U : M → TpM which preserves inter-point dis-
tances; that is, given a set of points P ⊂ M on the surface
and their inter-point distances matrix D(P), we would like
the following to hold: D(expP (U (P)))≈ D(P).

A discrete approximation to this problem would be to find
two different sets of points X = {xi}N

i=1 and Y = {yi}N
i=1 on

a triangulation of the surface M which minimize the p-norm
stress functional

argmin
i< j

∥∥d
(
xi,x j

)
−d

(
yi,y j

)∥∥
p , (7)

where d : R2 → R is a metric on M, and most impor-
tantly, X is close to Y , or in other words, d (xi,yi) is
small for all i ∈ [N]. Equivalently, one may define Si j =∣∣d (xi,x j

)
−d

(
yi,y j

)∣∣ as the stress between point i and point
j, and minimize the elements of this stress matrix.

2.1. Using GMDS

In practice, we initialize X using the vertices of a triangu-
lation of M, restrict one point to a new location, and then
translate the rest of the points to new locations on M which
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minimize (7). Note that restricting a single point to a new lo-
cation is essential in order to avoid the trivial solution to the
problem, which corresponds to the identity vector field. It is
essentially a specific case of GMDS, where S = Q. The met-
ric d (x,y) can be arbitrary and only has to be defined on the
vertices, and values at other points are interpolated accord-
ing to [BBK09] (pp 197-198). This means the metric is only
C0 continuous, which forces points to only move within their
own triangles per step - moving across the mesh therefore
requires multiple steps. Moreover, because moving all the
points at once is a non-convex problem and is hard to solve,
we move one point at a time, freezing the rest of the points.
Since the mesh is composed of triangles, we represent points
using their barycentric coordinates u1,u2,1− u1 − u2 and
their triangle number t.

We choose the p =∞ norm in the context of the stress
minimization problem(7), because this norm is very sensi-
tive to the relocation of a single point. This allows us to dis-
place a single point, which forces all other points to move.
Using the L2 norm, for example, might lead to a situation
where most of the stress is concentrated around one point,
which corresponds to almost no movement of the rest of the
points. The resulting optimization problem we solve for each
point we move is therefore

arguk
1,u

k
2

min
i 6=k

max |d (xi,xk)−d (yi,q)| , (8)

where q ,
[
tk,uk

1,u
k
2,1−uk

1−uk
2

]
. This can be re-written as

the following constraint optimization problem over the vari-
ables u1,u2 and ε (note that tk does not change)

min ε (9)

s.t. |d (xi,xk)−d (yi,q)| ≤ ε.

As the distance matrix
{

d
(
xi,x j

)}N
i, j does not change,

we denote it as δi j . Because d
(

yi,
[
tk,uk

1,u
k
2,1−uk

1−uk
2

])
is linear when tk does not change, we rewrite it as Cik ·
(u1,u2,1) and obtain the following non-negative linear op-
timization problem in three variables, u1, u2 and ε, and
2(N−1) constraints :

min ε (10)

s.t. ∀i 6= k :−ε≤ δik−Cik · (u1,u2,1)≤ ε

u1 +u2 ≤ 1

u1,u2 ∈ [0,1] .

3. Experimental Results

3.1. Symmetry finding

In order to evaluate the performance of our proposed al-
gorithm, several models were tested. The results appear in
the Figure 1. The restricted point is shown in red. We used

Figure 2: A Bowling-pin Model

geodesic distances, computed using Fast Marching Method
[KS98], as the metric d (x,y) in this set of experiments.

3.2. Robustness

We demonstrate the algorithm’s resilience to noise using a
rotation object (Figure 2). We gradually add Gaussian noise
in the normal direction and measure the quality of the re-
sult in the following way. The resulting vector field is con-
verted into pairs of starting points and ending points, which
are then projected to the clean surface. Then, a vector field is
re-constructed, and is compared to a reference vector field.
We also compare the field to the result of the algorithm by
Ben-Chen et al. [BCBSG10], designated as “AKVF”.

Vector fields are compared in two ways: the first ignores
the length of the vector, and is the sum of (positive) an-
gles between each two vectors which emanate from the same
point on the surface. The second way is the Euclidean dis-
tance between end-points of each two corresponding vectors.

The results are detailed in Figures 3 and 4. Figure 5 shows
a zoom in of the resulting vector field for Gaussian noise
with standard deviation equaling 0.08.

3.3. Different Metrics

There is little limitation as to what metric is used in GMDS.
In the following experiment, we use an equi-affine invariant
metric [RBB∗11] to restore symmetry which is lost due to
a compression of the surface. This metric is given in local
coordinates as

G = G̃ ·
∥∥G̃
∥∥−1/4

, (11)

where

G̃i j = det
(
Su,Sv,Si j

)
(12)

and Si j are the second derivatives of the surface S, such
that S12 , Suv, S22 , Svv and S11 , Suu. Because G̃ is not
positive-definite at points with negative Gaussian curvature,
it is eigen-decomposed into V DV T and G̃ is redefined as

G̃ =V · abs(D) ·V T . (13)
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Figure 1: The proposed method applied to various surfaces.

We begin with a sphere centered at the origin, which has
three linearly-independent KVFs. We then multiply all its x
coordinates by some constant, resulting in an ellipsoid. See
Figure 6. This deformation has left but a single KVF, which
coincides with the rotational symmetry of the shape.

We ran our algorithm on the ellipsoid, initializing GMDS
to look for a KVF along a meridian, once with a geodesic-
distance metric, and once with the equi-affine invariant met-
ric. In order to emphasize the results, the ellipsoid was re-
inflated back to a sphere. Figure 7 shows the results.

4. Conclusions

We introduced an algorithm for computing infinitesimal in-
trinsic symmetries of surfaces using a general-purpose in-
trinsic isometry solver. We also showed this algorithm is

robust to noise, and that it is applicable to use other, non
geodesic-distance metrics to compute such symmetries.
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