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ABSTRACT

An efficient method for precise computation of image-aware
geodesic distances for image editing algorithms is proposed.
It exploits the connection between image representation as a
mapping from a Cartesian grid and as a collection of its level
sets, organized into a tree structure. The distance computation
is reformulated in the domain of the image level sets, where it
can be calculated without introducing approximation errors,
which are unavoidable when working the image domain. Ad-
vantages of the proposed approach are demonstrated for im-
age segmentation application.

Index Terms— Level set tree, intrinsic distance calcula-
tion, image editing, segmentation

1. INTRODUCTION

Various image editing algorithms, for image segmentation [1,
2, 3], matting [4], denoising [3], and colorization [5, 3], are
based on computing image-aware geodesic distances. These
distances are usually computed in the image domain, where
they can be efficiently approximated using Dijkstra’s algo-
rithm [6], or the fast marching [7, 8, 9] or fast sweeping meth-
ods [10, 11, 12]. Despite their wide use, each of the above al-
gorithms introduces approximation errors and inconsistencies
that may degrade the quality of the editing.

Instead of the standard representation over a Cartesian
grid, an image may be alternatively though of as topographic
map and represented by the set of its level lines [13]. These
level lines may be further organized into a tree structure, pro-
ducing a hierarchical, contrast-invariant image representation.
It was previously exploited for image filtering and registra-
tion [14], quantization [15], segmentation [16, 17], and sub-
pixel image level line evolution [18]. Fast algorithms for com-
puting level set-based image representation were proposed in
[14] and, recently, in [19].

In this paper, we exploit a related image representation,
which we denote by a level set tree. We show that a certain
type of image-aware geodesic distance defined in the image
domain [5, 2, 4], can be cast into a distance measure defined
over this tree. We show that the above distance can be calcu-
lated precisely using the level set tree image representation,
with the same complexity as in [5, 2, 4], where it is approxi-
mated using Dijkstra’s algorithm. We further demonstrate its
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Fig. 1. Synthetic image with its level lines (a), and its level
set tree (b).

favorable performance for image segmentation.

1.1. Problem formulation

Given an image I defined over the domain Ω ⊂ R2, we con-
sider the following intrinsic image-aware distance measure

d(p, p′) = min
Cp,p′

∫ 1

0

∣∣∣∇I(C(t)) · Ċ(t)
∣∣∣ dt, (1)

where Cp,p′(t) is a curve in Ω with end points p, p′ ∈ Ω.
Yatziv and Sapiro [5] employed d(p, p′) to propagate color in-
formation from a set of manually colored regions (scribbles),
to the rest of the image, while [2, 4] employed it to perform
user-assited image segmentation.

Given two points p, p′ ∈ Ω, the above distance measures
the minimal total variation of the image I(x, y) along all para-
metric curves Cp,p′(t). Intuitively, the shortest path (in terms
of (1)) can be decomposed into segments that follow image
level sets, with total length 0, since |∇I · Ċ(t)| = 0 along the
level set, and the segments perpendicular to the level lines,
with total length d(p, p′).

For example, let us consider the synthetic image in Fig-
ure 1. Assuming that the image values were sampled from a
smooth function I(x, y), the distance between a pixel where
I = 2 and any pixel where I = 1 equals 1, since they belong
to two adjacent level sets, shown with cyan and blue curves,
respectively. Thus, the distance between them equals to the
absolute difference between the two level set values. A more
surprising observation is that the distance between the pixels
with I = 2 and I = 3 also equals 1, for the same reason.



Consider now computing d(p, p′) in the above example,
using Dijkstra’s algorithm or the fast marching method. It
is easy to see that both methods produce the correct distance
between pixels p, p′ with I(p) = 1 and I(p′) = 2, but fail
for a pair p, p′ with I(p) = 2 and I(p′) = 3 (assuming stan-
dard 4 or 8-connected pixel neighborhood). Note, that us-
ing Dijkstra’s algorithm, a partial remedy may be to consider
larger pixel neighborhood, at the cost of increased computa-
tion complexity.

Thus, neither fast marching, nor Dijkstra’s algorithm are
the right tools to compute the continuous distance measure
defined in Equation (1). On the other hand, the discussion
above hints that this distance can be naturally computed using
the level set-based image representation. Following this line
of thought, we suggest a method for exact computation of the
distance d(p, p′), based on exploitation of the connectivity of
the level sets of the image I . We encode this connectivity
using a structure we call the level set tree of I , and show that
(1) can be alternatively computed by traversing the level set
tree, instead of approximating it on a graph defined in the
image plane, while maintaining the same linear complexity
as in [5, 4].

2. LEVEL SET TREES

Given an image I defined over a domain Ω, its k-level set,
which we will denote by γk, is given by

γk = {p ∈ Ω | I(p) = k} . (2)

A level set γk may consist of zero, one, or more connected
components. Let us further denote the i-th connected com-
ponent of the k-level set by γki , and the set of all different
connected level set components by Γ = {γki }i,k.

These level set components of I can be organized into a
tree structure, for instance, by the order of their geometrical
inclusion. Figure 1 illustrates the level set tree obtained for a
synthetic image discussed previously. The level set tree ver-
tices are given by the connected level set components γki . The
tree edges connect pairs of vertices representing adjacent (in
the image plane) connected level set components.

Formally, we describe the level set tree by a weighted
graph (Γ , E, F ), where Γ is as described above, and E ⊆
Γ × Γ is the set of the tree edges. The graph edge weights
F : E → R+ are given by

F (γk, γm) = |k −m|, (3)

where γk, γm are two graph vertices connected by an edge.
Thus, each edge in E is weighted by the absolute difference
of the image values corresponding to γk, γm, |k−m|. Carr et
al. [20] defined a related structure for general sampled func-
tions, that they called an augmented contour tree, but without
introducing edge weights.
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Fig. 2. Decomposition of a pathC(t) into a series of segments
belonging to adjacent level sets.

2.1. Relation between intrinsic distances and level set
trees

To explain how the intrinsic distance d(p, p′) may be com-
puted using the level set tree described in the previous sec-
tion, let us first re-write the integrand in Equation (1) in a
somewhat different form∣∣∣∇I(C(t)) · Ċ(t)

∣∣∣ dt =

∣∣∣∣dIdx dxdt +
dI

dy

dy

dt

∣∣∣∣ dt
=

∣∣∣∣dIdxdx+
dI

dy
dy

∣∣∣∣ = |dI(C(t))| .

(4)

Using the above formulation, the intrinsic distance d(p, p′)
reads

d(p, p′) = min
Cp,p′

∫ 1

0

|dI(C(t))| , (5)

and measures the minimal total variation of I(x, y) over all
possible paths connecting the points p and p′.

Now, assuming that the image I obtains a discrete set of
values over the domain Ω, the path C(t) can be recursively
decomposed into a series of non-overlapping segments, be-
longing to adjacent image level sets

Ci(t) = {C(t), t ∈ [ti, ti+1)} , C(t) =
⋃
i≥0

Ci(t), (6)

where

ti+1 = min
1≥t>ti

t s.t. I(C(t)) 6= I(C(ti)). (7)

See an illustration of such a decomposition in Figure 2.
According to the above definition, any two consecutive

points on the path, C(ti) and C(ti+1), belong to a pair of ad-
jacent level sets γki and γki+1 , with values ki = I(C(ti)) and
ki+1 = I(C(ti+1)), respectively. Therefore, a path between a
pair points in the image domain defines a corresponding path
in the domain of the image level sets

C(t) =
⋃
i≥0

Ci(t) ⇒ CΓ =
{
γki
}
i≥0 . (8)



Now, the relation between the intrinsic distance described
by Equations (1,5), and the image level set tree is apparent.
By decomposing the path C(t) into a series of such segments,
the distance defined in Equation (5) becomes

d(p, p′) = min
Cp,p′

∑
i≥0

∫ ti+1

ti

|dI(C(t))| = min
Cp,p′

∑
i≥0

|ki+1 − ki| .

(9)

According to the definition in Equation (3), the difference
|ki+1 − ki| is equal to the weight F (γki , γki+1) of the edge
between the level sets γki and γki+1 in the level set tree. Thus,
the length of the minimal geodesic C(t) ∈ Ω between p and
p′ is equal to the length of the corresponding minimal path in
the level set tree

d(p, p′) = min
CΓ (p,p′)

∑
i≥0

F (γki , γki+1), (10)

where by CΓ (p, p′) we denote a path in the level set tree with
end points at γI(p) and γI(p

′).

Minimal pass uniqueness The authors of [4] stated that
there may exist several paths in the image domain minimizing
the intrinsic distance (1) between a pair of pixels. On the
contrary, in the level set tree, given by an undirected acyclic
graph, there exists a single minimal length path between the
two nodes of the tree corresponding to these pixels. In other
words, for a given pair of pixels and the corresponding nodes
of the level set tree, the corresponding minimal length path
in the tree encodes all possible minimal length paths between
these pixels in the image domain.

2.2. Distance computation using the level set tree

To compute the intrinsic distance from a set of source pixels
{pi} to the rest of the image pixels p ∈ Ω, we suggest the
following simple algorithm.

1. Construct the level set tree (Γ , E, F ) of the image I .

2. Detect nodes of the level set tree corresponding to the
pixels {pi} - these are the source nodes {γk}. Compute
distances from the source nodes to the rest of the nodes
of the level set tree, using Dijkstra’s algorithm.

3. For each pixel p in the image, assign to it the distance
value obtained for its corresponding level set compo-
nent.

2.3. Level set tree construction

We compute the level set tree of an image from a related im-
age representation by a tree of shapes [14]. A shape is defined
as all image pixels belonging to a connected level set compo-
nent and its interior. Let us denote the outer boundary of a

connected level set component γk by J(γk). A shape Sk cor-
responding to the curve J(γk) is defined as the image region
enclosed by it

Sk = {p ∈ Ω | p ∈ the interior of J(γk)}. (11)

The root of the tree of shapes is the whole image domain Ω,
while its connectivity is naturally defined by the order of the
geometric inclusion of the shapes.

Thus, given a shape Sk and its children {Sm}m in the tree
of shapes, the corresponding node of the level set tree, γk, is
given by all the pixels that belong to Sk, but not to any of its
children

γk =

{
p ∈ Ω | p ∈ Sk, p /∈

⋃
m

Sm

}
. (12)

The connectivity E of the level set tree is exactly that of the
tree of shapes. To construct the tree of shapes we used a pub-
licly available implementation of [14] from the Megawave li-
brary1.

2.4. Algorithm complexity

The level set tree of an image consisting of N pixels can be
constructed from the tree of shapes in linear timeO(N), if the
image is quantized, and in O(N logN) otherwise [14, 19].
Distances from a given source point p to the rest of the im-
age points can be calculated in O(N), by exploiting the fact
that the level set tree (Γ , E, F ) is an undirected acyclic graph
[21]. Thus, for quantized images, the overall complexity of
the algorithm is O(N), which is the same complexity as the
one reported in [4], where the distances were approximated
in the image plane using the modified Dijkstra’s algorithm of
[5].

3. USER-ASSISTED IMAGE SEGMENTATION

We applied the proposed method for intrinsic distance calcu-
lation, in conjunction with the algorithm for semi-supervised
image segmentation of Bai and Shapiro [4]. In that setting,
the user marks pixels belonging to the object and the back-
ground by drawing one or more scribbles (markers) inside the
object and the background, respectively. Following the nota-
tions in [4], we denote the foreground scribble by F and the
background scribble by B.

These scribbles are first used to estimate the likelihood
of the image pixels to belong to the foreground/background.
Then, for each pixel p ∈ Ω, we compute the intrinsic distance,
defined in Equation (1), between it and the foreground/back-
ground scribbles. Instead of the image values, the foreground
likelihood values are used as the distance weight. The ob-
tained distances are denoted by dF (p) and dB(p), respec-
tively. Finally, each pixel p is assigned the label of the scribble

1megawave.cmla.ens-cachan.fr/



User input Proposed method

Bai and Shapiro [4]

Fig. 3. Comparison of segmentation results obtained with the
proposed method and with [4].

closest to it

ΩF = { p ∈ Ω | dF (p) ≤ dB(p) } , ΩB = Ω\ΩF , (13)

where ΩF and ΩB denote the object and the background re-
gions.

The obtained segmentation results are shown in Figures 3
- 6. In Figure 3, the method of [4] fails to produce correct
segmentation, due to the metrication error of the Dijkstra al-
gorithm. Using the proposed distance calculation, we succeed
to eliminate this error and produce more plausible segmenta-
tion.

Images with foreground objects with thin structures are
another challenging case for the method of Bai and Shapiro -
the metrication error accumulated over the minimal lengths
paths prevents [4] from segmenting such objects correctly.
Figure 4 presents an example of such image, segmented using
the proposed method, alongside state-of-art results presented
in [22] and [23], both obtained using significantly more com-
plex techniques. [4] failed to segment the legs of the insect
in the image correctly, with both standard 4 and 8-connected
pixel neighborhoods.

We further compared the proposed method to the tree-
reweighted message passing (TRW) algorithm described in
[24], obtaining similar results with both methods, as shown
in Figure 5. More segmentation exampled obtained with the
proposed method are shown in Figure 6.

4. CONCLUSIONS

In this paper, we exploited image representation by the tree of
its level sets, for efficient and precise computation of image-
aware geodesic distances, utilized for image editing tasks.
The proposed distance computation method does not suffer
from approximation errors produced by standard algorithms
that are applied in the image domain. In our future research,
we plan to extend the proposed method for additional image-
based distances computation and other image editing tasks.

User input Proposed method

[4] with 4- and 8-connnected neighborhood

Vicente et al. [22] Stühmer et al. [23]

Fig. 4. Example of segmenting an image with thin structures.

User input Szeliski et al. [24] Proposed method

Fig. 5. Segmentation examples from the Middlebury bench-
mark [24].

Fig. 6. Segmentation results obtained using the proposed
method.
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