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Abstract Finding a correspondence between two non-rigid shapes is one of the cor-
nerstone problems in the field of three-dimensional shape processing. We describe
a framework for marker-less non-rigid shape correspondence, based on matching
intrinsic invariant surface descriptors, and the metric structures of the shapes. The
matching task is formulated as a quadratic optimization problem that can be used
with any type of descriptors and metric. We minimize it using a hierarchical match-
ing algorithm, to obtain a set of accurate correspondences. Further, we present the
correspondence ambiguity problem arising when matching intrinsically symmetric
shapes using only intrinsic surface properties. We show that when using isometry
invariant surface descriptors based on eigendecomposition of the Laplace-Beltrami
operator, it is possible to construct distinctive sets of surface descriptors for differ-
ent possible correspondences. When used in a proper minimization problem, those
descriptors allow us to explore a number of possible correspondences between two
given shapes.

1 Introduction

Three-dimensional shape processing became increasingly popular in the last decade.
One of its corner-stone tasks is detecting a correspondence between two given
shapes. It is essential for shape comparison, retrieval, shape morphing and deforma-
tion, or shape calculus [5], etc. The most interesting yet complex task is automatic
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non-rigid shape matching. In this work we address the problem of matching non-
rigid approximately isometric shapes. We perform the matching using certain sur-
face properties that remain invariant under isometric transformations. In particular,
we use two types of such properties - pointwise surface descriptors, and distances
measured between pairs of points on the surface. We show how these two proper-
ties can be incorporated into a measure of dissimilarity between the shapes, which
can be written as a quadratic function of the correspondence. We then minimize this
dissimilarity measure in order to find the minimal dissimilarity correspondence.

Another important issue we address here is the correspondence ambiguity present
when matching intrinsically symmetric shapes. In this case, there may exist several
correspondences minimizing the proposed dissimilarity measure. We show that this
ambiguity can be resolved by constructing distinct sets of symmetry-aware surface
descriptors. By employing them within the proposed framework it is possible to find
several matchings between the shapes.

The rest of the paper is organized as follows: in the next section we review the
related work on matching non-rigid shapes. In Section 3 we describe the proposed
problem formulation. In Section 4 we describe the possible choices of metric and
descriptors. In Section 5 we describe the correspondence ambiguity problem and the
construction of the symmetry-aware surface descriptors. In Section 6 we present the
matching results obtained with the proposed framework combined with different
descriptors and distances measures. We summarize the paper and discuss future
research directions in Section 7.

2 Related work

Zigelman et al. [43], and Elad and Kimmel [9] suggested a method for matching
isometric shapes by embedding them into a Euclidian space using multidimensional
scaling (MDS), thus obtaining isometry invariant representations, followed by rigid
shape matching in that space. Since it is generally impossible to embed a non-flat 2D
manifold into a flat Euclidean domain without introducing some errors, the inher-
ited embedding error affects the matching accuracy of all methods of this type. For
that end, Jain et al. [13], Mateus et al. [19] and Sharma and Horaud [34] suggested
alternative isometry-invariant shape representations, obtained by using eigendecom-
position of discrete Laplace operators. The Global Point Signature (GPS) suggested
by Rustamov [33] for shape comparison employs the discrete Laplace-Beltrami op-
erator, which, at least theoretically, captures the shape’s geometry more faithfully.
The Laplace-Beltrami operator was later employed by Sun et al. [35], and Ovs-
janikov et al. [24], to construct their Heat Kernel Signature (HKS) and Heat Kernel
Maps, respectively. Zaharescu et al. [41] suggested an extension of 2D descriptors
for surfaces, and used them to perform the matching. While linear methods, such as
[41, 24] produce good results, once distortions start to appear, ambiguity increases,
and alternative formulations should be thought of. Adding the proposed approach as
a first step in one of the above linear dense matching algorithms can improve the fi-
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nal results. Hu and Hua [12] used the Laplace-Beltrami operator for matching using
prominent features, and Dubrovina and Kimmel [8] suggested employing surface
descriptors based on its eigendecomposition, combined with geodesic distances, in
a quadratic optimization formulation of the matching problem. The above meth-
ods, incorporating pairwise constraints, tend to be slow due to high computational
complexity. Wang et al. [40] used a similar problem formulation, casted as a graph
labeling problem, and experimented with different surface descriptors and metrics.

Memoli and Sapiro [22], Bronstein et al. [4], and Memoli [20, 21] compared
shapes using different approximations of the Gromov-Hausdorff distance [10].
Bronstein et al. [6] used the approach suggested in [4] with diffusion geometry,
in order to match shapes with topological noise, and Thorstensen and Keriven [37]
extended it to handle surfaces with textures. The methods in [22, 20, 21] were in-
tended for surface comparison rather than matching, and as such they do not produce
correspondence between shapes. At the other end, the GMDS algorithm [6] results
in a non-convex optimization problem, therefore it requires good initializations in
order to obtain meaningful solutions, and can be used as a refinement step for most
other shape matching algorithms. Other algorithms employing geodesic distances
to perform the matching were suggested by Anguelov et al. [1], who optimized a
joint probabilistic model over the set of all possible correspondences to obtain a
sparse set of corresponding points, and by Tevs et al. [36] who proposed a random-
ized algorithm for matching feature points based on geodesic distances between
them. Zhang et al. [42] performed the matching using extremal curvature feature
points and a combinatorial tree traversal algorithm, but its high complexity allowed
them to match only a small number of points. Lipman and Funkhouser [18] used
the fact that isometric transformation between two shapes is equivalent to a Möbius
transformation between their conformal mappings, and obtained this transformation
by comparing the respective conformal factors. However, there is no guarantee that
this result minimizes the difference between pairwise geodesic distances of matched
points.

Self-similarity and symmetry detection are particular cases of the correspon-
dence detection problem. Instead of detecting the non-rigid mapping between two
shapes, [28, 25, 17, 14] search for a mapping from the shape to itself, and thus are
able to detect intrinsic symmetries.

3 Matching problem formulation

The suggested problem formulation is based on comparison of shape properties that
remain approximately invariant under non-rigid ε-isometric transformations, specif-
ically - distances between the points on the shape, and pointwise surface descriptors
defined at every point of the shape. We assume to be given shapes represented by
sampled surfaces, which is one of the common 3D shape representations. In this
work shapes were represented by triangular meshes, but the following discussion is
not limited to some specific sampled surface representation.
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Given a shape X , we assume that is endowed with a distance measure dX : X ×
X → R+ ∪{0}, and a set of pointwise d-dimensional surface descriptors fX : X →
Rd . Given two shapes X and Y , we define a correspondence between them by a
mapping P : X×Y →{0,1}, such that

P(x,y) =
{

1, x ∈ X corresponds to y ∈ Y ,
0, otherwise (1)

We can measure the dissimilarity introduced by the mapping P into the surface
descriptors and the metric structures by

dis(P) = ∑
x∈X
y∈Y

‖ fX (x)− fY (y)‖F P(x,y)+α · ∑
x,x̃∈X
y,ỹ∈Y

|dX (x, x̃)−dY (y, ỹ))|P(x,y)P(x̃, ỹ),

(2)
where ‖·‖F is a norm in the descriptor space. The first term of the dissimilarity
measure is a linear function of the mapping P, and it expresses the pointwise sur-
face descriptor dissimilarity. This term provides a The second term of dis(P) is a
quadratic function of the mapping P, and it expresses the metric structure dissimi-
larity. The parameter α ≥ 0 determines the relative weight of the second term in the
total dissimilarity measure.

Note that by setting α = 0 we obtain the linear matching method used by [41, 24].
When the descriptors of different points on the shape are not unique or sufficiently
distinct, say due to numerical inaccuracies, the correspondences obtained by min-
imizing only the linear part of the dissimilarity measure may not be consistent
in terms of pairwise relationships between f the matched points. By adding the
quadratic term in Eq. (2) we ensure that the optimal correspondence preserves also
these pairwise relationships. On the other hand, by choosing α � 1 we obtain a
problem similar to the one addressed in [22, 4, 20], and, since the problem is non-
convex, a good initialization is required in order to obtain a close-to-global mini-
mizer. This is achieved by adding the linear term as in Eq. (2).

The optimal matching, which we denote by P∗, is obtained by minimizing the
dissimilarity

P∗ = argminP:X×Y→{0,1} {dis(P)} . (3)

In order to avoid a trivial solution P∗ ≡ 0, we constrain P to the space of valid
correspondences. Note that the above problem formulation allows us to consider
different types of possible correspondences between the two shapes. For example,
when a bijective mapping from X to Y is required, the constraints on P are

∑
x∈X

P(x,y) = 1,∀y ∈ Y, ∑
y∈Y

P(x,y) = 1,∀x ∈ X . (4)

For a surjective mapping we relax the constraints to be

∑
x∈X

P(x,y) = 1,∀y ∈ Y. (5)
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Thus, the resulting optimization problem is

P∗ = argminP:X×Y→{0,1} {dis(P)} s.t. suitable constrains on P. (6)

3.1 Quadratic programming formulation

When the two shapes X and Y are represented by a finite number of points N, the
mapping P is a binary matrix of size N2. In order to convert the problem into a
more convenient quadratic programming form we reshape the matrix P by taking
its columns and concatenating them, thus obtaining a vector p of dimension N2,
referred to as a correspondence vector. Thus, k-th entry of the vector p corresponds
to some entry (i, j) in the matrix P - we will denote these corresponding indices by
(ik, jk). The vector entry pk encodes the correspondence between the points xik and
y jk .

Similarly, we introduce the following notations for the metric and the descriptor
dissimilarity

bk =
∥∥ fX (xik)− fY (y jk)

∥∥
F , Qkl =

∥∥dX (xik ,xmk)−dY (y jl ,ynl ))
∥∥ . (7)

The vector b ∈RN2
represents the pointwise descriptor dissimilarity, and the matrix

Q ∈ RN2×N2
represents the metric structure dissimilarity.

Lastly, we re-write optimization problem (6) in the quadratic programming form

p∗ = argmin
p∈{0,1}N2

{
bT p+λ · pT Qp

}
s.t. Sp = 1, (8)

where Sp = 1 is the matrix form of the constraints in Eq. (4) or Eq. (5).

3.2 Hierarchical matching

The optimization problem in Eq. (8) belongs to the class of NP-hard Integer
Quadratic Programming (IQP) problems. There exist different techniques for ap-
proximating its solution, [2, 38] among them, which are able to solve only moderate
size IQPs. The implication on the matching problem is that the algorithm will be
able to find only small number of correspondences - up to several tens of points. In
addition, prior to the matching the algorithm has to choose the initial set of N can-
didate points on each one of the shapes X and Y . The simplest way to choose these
points is by using the Farthest Point Sampling technique [11], and the sampling
density will determine the accuracy of the matching.

In order to overcome these limitations we use the hierarchical matching tech-
nique introduced in [29]. It exploits the shapes’ geometric structures to reduce the
number of potential correspondences, and thus is able to find a denser matching,
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Fig. 1 In the first step (left) we construct a quadratic correspondence matrix from all points in
X into all points in Y . In each iteration (right) we search for possible matches between points
in X from the previous iteration (blue circle) and new sampled points in X (green Xs) and their
corresponding neighborhoods (black circles) in Y .

with improved accuracy. Since the problem is not strictly combinatorial by nature,
but rather derived from a smooth geometric measure. At the first step we follow
[8] and solve (6) using a branch-and-bound procedure [2]. Each point x ∈ X is now
matched to a point p(x) ∈ Y by the mapping P. We denote y = p(x) if P(x,y) = 1.
In each iteration we search for the best correspondence between x and p(x) neigh-
borhood, instead of all points y ∈ Y , in a manner similar to [39]. Between iterations
we add points x ∈ X and y ∈ Y using the 2-optimal Farthest Point Sampling (FPS)
strategy [11], evaluate the neighborhood in Y of the new points, reevaluate the neigh-
borhood of the old points, and continue until convergence. In Figure 1 we show a
diagram of the process.

We solve the relaxed version of (6), using quazi-Newton optimization, and
project the solution to integers between iterations. Convergence is guaranteed, but
only to a local minimum, as for all QAP problems.

A different approach for approximating the solution of the IQP in Eq. (8) can
be, for instance, using the relaxation technique of Bronstein et al. [4] and solving
the problem on a continuous domain. The optimization problem can also be solved
using the approach for graph matching by Torresani et al. [38]. Both can reduce the
complexity of the solution. We will explore these directions in the future research.

4 On the choice of metric and descriptors

The above formulation of the matching problem can be used with any type of sur-
face descriptors or distance measure. Below we describe different descriptors and
metrics that can be employed in the proposed framework.We start with a brief re-
view of the Laplace-Beltrami operator, and later use concepts related to it for both
metric and descriptor definition. Note that both metric definitions and some of the
descriptor definitions are given in terms of continuous surface representation (or 2D
Riemannian manifolds). For each one of them we state the discrete approximation
we used for numerical evaluation.
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4.1 Laplace-Beltrami operator

The Laplace-Beltrami operator is a generalization of the Laplacian operator from
flat domain to compact Riemannian manifolds. Given a manifold M, its Laplace-
Beltrami operator ∆M is given by

∆X f =−divX (∇X f ) , f : X → R. (9)

The divergence and the gradient operators, divX and ∇X respectively, are defined by
the intrinsic geometry of the manifold X . Explicitly, the Laplace-Beltrami operator
of a function f : X → R defined on the manifold X equipped with a Riemannian
metric g is given by

∆X f =− 1√
detg ∑

j,k

∂

∂x j

(
g jk
√

detg
∂ f
∂xk

)
. (10)

In the above equation, detg = det(gi j) and the g jk are the elements of g−1. For more
details see [30].

Consider the Laplace-Beltrami operator eigenvalue problem given by

∆X φi = λiφi. (11)

{φi} are the eigenfunctions of ∆X , corresponding to the eigenvalues {λi}. The spec-
trum of the Laplace-Beltrami operator consists of positive eigenvalues (see, for ex-
ample, [30]). When X is a connected manifold without boundary, then ∆X has addi-
tional eigenvalue equal to zero, with corresponding constant eigenfunction. We can
order the eigenvalues as follows

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ ... (12)

The set of corresponding eigenfunctions given by

{φ1,φ2,φ3, ...} (13)

forms an orthonormal basis defined on X with inner product induced by the metric
g.

There exist various approximations for the Laplace-Beltrami operator. In this
work we used the the cotangent weight scheme [26, 23].

4.2 Choice of metric

Geodesic distance: The simplest intrinsic metric defined on a surface X is the
geodesic metric. It measures the lengths of the shortest paths on the surface X
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dX (x,x′) = inf
γ∈Γ (x,x′)

`(γ). (14)

Γ (x,x′) is the set of all admissible paths between the points x and x′ on the surface X ,
with a length of a path γ given by `(γ). In order to calculate the geodesic distances
we used the fast marching method [15], which simulates a wavefront propagation
on a triangular mesh, and associates the front arrival time with the distance traveled
by it.

Diffusion geometry: The diffusion of heat on surface X is governed by the heat
equation, (

∆X +
∂

∂ t

)
u(x, t) = 0, (15)

where a scalar field u : X × [0,∞)→ R is the heat profile at location x and time t,
and ∆X is the Laplace-Beltrami operator.

The heat kernel ht(x,z) describes the amount of heat transferred from a point
heat source located at x to another point z at time t, and can be written as

ht(x,z) =
∞

∑
i=0

e−λitφi(x)φi(z). (16)

The diffusion distance can then be defined as a cross-talk between two heat ker-
nels [3, 7]

d2
X ,t(x,y) = ‖ht(x, ·)−ht(y, ·)‖2

L2(X)

=
∫

X
|ht(x,z)−ht(y,z)|2dz

=
∞

∑
i=0

e−2λit (φi(x)−φi(y))
2 . (17)

Since the heat flow on the surface is governed entirely by its intrinsic geometry,
the diffusion distance defined above is an intrinsic property of the surface, and,
according to [3, 7], also fulfills the metric axioms.

We approximate the diffusion distances using a finite number of the eigenvalues
and the eigenvectors of the discretized Laplace-Beltrami operator. Specifically, we
used several hundred eigenvalues with the smallest magnitude and their correspond-
ing eigenvectors.

4.3 Choice of descriptors

Distance histograms: Given a shape X and the corresponding distance dX , the dis-
tance histogram descriptor [27, 32, 28] is constructed as follows
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fX (x) = hist{dX (x, x̃) | dX (x, x̃)≤ dmax, x̃ ∈ X} , (18)

where dmax controls the local support of the descriptor. If two shapes are represented
by differently sampled surfaces, the descriptors can be normalized to have L1-norm
equal to one. The descriptor comparison can be performed using either an Lp-norm,
or some measure of distances between histograms, such as the earth moving dis-
tances (EMD) [31].

Heat kernel signatures and heat kernel maps: Local descriptors based on the heat
equation were presented by Sun et al. in [35] and Ovsjanikov et al. in [24]. The heat
kernel signature (HKS) is constructed using the diagonal of the heat kernel ht(x,x)
(16) at multiple times t

fX (x) =
[
ht1(x,x),ht2(x,x), ...,htd (x,x)

]
. (19)

The heat kernel map (HKM) is constructed using the heat kernel values with a pre-
specified heat source x0

fX (x) =
[
ht1(x0,x),ht2(x0,x), ...,htd (x0,x)

]
. (20)

For the latter descriptors, the heat sources chosen for the two shapes we want to
match must be in correspondence in order to produce consistent descriptors. One
can choose the heat source x0 either as proposed by the authors of [24], or by some
different method. Both HKS and HKM remains invariant under isometric deforma-
tions of X , and are insensitive to topological noise at small scales.

To compute HKS and HKM we used eigenvalues and eigenfunction of the dis-
cretized Laplace-Beltrami operator, similar to the diffusion distance calculation.

5 Matching ambiguity problem

The matching ambiguity problem arises when matching intrinsically symmetric
shapes [27, 25, 28]. Given a shape X , we say that it is intrinsically symmetric if
there exists a mapping S : X → X that preserves all the geodesic distances between
the corresponding points

dX (x, x̃) = dX (S(x),S(x̃)) , ∀x, x̃ ∈ X . (21)

If the shape X is intrinsically symmetric, and S : X→ X is its intrinsic symmetry,
then the surface descriptors mentioned in the previous section are also symmetric
functions with respect to S. That is, for each of their components f (i)X the following
holds

f (i)X (x) = f (i)X (S(x)) . (22)

From the Equation (21) and the above property of the descriptors it follows that if
P∗(x,y) = argmin{dis(P)}, then P∗(S(x),y) also minimizes the dissimilarity dis(P),
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with the same minimal value. Thus, when matching intrinsically symmetric shapes,
the optimization problem (8) has multiple solutions, and by minimizing dis(P) we
can obtain only one of them.

In order to overcome the above problem, a technique for construction of symmetry-
aware surface descriptors was suggested in [8]. These descriptors are based on
the eigendecomposition of the Laplace-Beltrami operator, and exploit the impor-
tant property of the eigenfunctions of ∆X , described by Ovsjanikov et al. in [25].
As stated in Theorem 3.1. of [25], eigenfunctions corresponding to non-repeating
eigenvalues of the Laplace-Beltrami operator of an intrinsically symmetric shape
exhibit reflection symmetry, with respect to the shape’s intrinsic symmetry. That is,
such an eigenfunction φ can be either symmetric of anti-symmetric with respect to
S

φ(x) = φ(S(x)) or φ(x) =−φ(S(x)). (23)

As described in [8], the symmetry-aware surface descriptors are constructed as
follows

fX (x) = [φ X
1 (x),φ X

2 (x), ...,φ X
d (x)], (24)

and
fY (y) = [s1φ

Y
1 (y),s2φ

Y
2 (y), ...,s3φ

Y
d (y)]. (25)

In the above,
{

φ X
i
}d

i=1 and
{

φY
j

}d

j=1
are the eigenfunctions corresponding to the

first d non-repeating eigenvalues of the Laplace-Beltrami operators of the two

shapes, respectively. The values of
{

φY
j

}d

j=1
are then multiplied by the sign se-

quence
{

s j
}d

j=1, to obtain consistent descriptors for X and Y .
Figure 2 shows an example of two human shapes colored according to the values

of the first 3 eigenfunctions of their corresponding Laplace-Beltrami operators. It
is easy to see that the eigenfunctions of the lower shape have to be multiplied by
a sequence [+,−,+], in order to be equal to the eigenfunctions of the upper shape
in the corresponding points. But it is also possible to multiply them by a sequence
[+,+,−], and thus obtain eigenfunctions reflectionally symmetric to the eigenfunc-
tions of the upper shape. In general, the number of different sign sequences, and thus
different sets of descriptors for the shape Y , is determined by the number of intrinsic
symmetries of the shape. Using these sets of descriptors in the optimization problem
(6) allows us to find several different correspondences between the two shapes. The
exact algorithm for the sign sequence detection and its limitations are presented in
details in [8].

6 Results

In this section we provide several matching results obtained with the proposed
framework. All the shapes we used in our tests were represented by triangulated
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Fig. 2 Two articulations of a human shape, colored according to the values of the first three eigen-
functions of their Laplace-Beltrami operators, from left to right. The two possible sign sequence
relating the two groups of the eigenfunctions are [+,−,+] and [+,+,−].

meshes with several thousand vertices. We further sub-sampled the shapes using
the Farthest Points Sampling algorithm [11], to obtain sets of matching candidate
points. In each one of our tests, we performed the matching using 10 points at the
coarse scale, and 30 - 64 points at the finest scale. Note that the later sub-sampling
affects the accuracy of the matching, and the denser the sub-sampling is the more
accurate the obtained correspondences are.

Figures 3 and 4 present the results of matching ε-isometric shapes using the
proposed framework combined with different distance measured and descriptors,
at several hierarchies, where the correspondences are shown by Voronoi cells of
the matched points, corresponding patches having the same color. The matches in
Figure 3(a, b, c) are the symmetrical ones, which is one of the possible matchings
in this case, as explained in Section 5. Some matching inaccuracies, e.g. inaccurate
correspondences between the cats’ ears in Figure 4(a), appear when the algorithm
converges to local minima.

In order to find dense correspondence between all the points on the shapes, the
above matching results can be used as a input for algorithms such as described in
[24] or [16].

7 Conclusions

In this paper we have presented a method for automatic correspondence of non-
rigid ε-isometric shapes, based on comparison of surface descriptors and distance
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(a)

(b)

(c)

(d)

Fig. 3 Matching results obtained with the proposed framework combined with different descrip-
tors and metrics, at several hierarchies. (a), (b) Geodesic distance and geodesic distance-based
histogram descriptor; (c) diffusion distance and diffusion distance-based histogram descriptor; (d)
Diffusion distance and Heat Kernel Signatures.

structures, and tested it with different choices of the latter. In addition, we have
formulated the matching ambiguity problem arising when matching intrinsically
symmetric shapes, and showed that the proposed framework combined with certain
descriptors allows us to detect multiple possible correspondences. In future work
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(a)

(b)

Fig. 4 Matching results obtained with the proposed framework combined with geodesic distance
metric and the Laplace-Beltrami operator-based descriptors; upper row - same orientation corre-
spondence, lower row - the reflected one.

we intend to adapt the proposed framework for partial shape matching and extend it
to shapes that are not necessarily ε-isometric.
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