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Abstract

We present a method for detecting correspondences be-
tween non-rigid shapes, that utilizes surface descriptors
based on the eigenfunctions of the Laplace-Beltrami op-
erator. We use clusters of probable matched descriptors
to resolve the sign ambiguity in matching the eigenfunc-
tions. We then define a matching cost that measures both
the descriptor similarity, and the similarity between corre-
sponding geodesic distances measured on the two shapes.
We seek for correspondence by minimizing the above cost.
The resulting combinatorial problem is then reduced to the
problem of matching a small number of feature points using
quadratic integer programming.

1. Introduction
Correspondence detection is an important component in

various applications in the field of three dimensional shape
processing and analysis, amongst them registration, similar-
ity measurement for recognition and retrieval, shape defor-
mation and morphing, symmetry detection, surface comple-
tion, etc. The problem of detecting correspondence between
rigid shapes has been widely addressed in the literature (see
e.g. [14, 31, 34]). As for non-rigid shapes, correspondence
detection is a challenging problem.

In this paper we propose a framework for an unsuper-
vised correspondence detection between non-rigid shapes
that differ by nearly isometrical transformations. It is based
on intrinsic invariant surface descriptors. We show that such
descriptors can be derived from the eigendecomposition of
the Laplace-Beltrami operator [18, 19, 29].

We then formulate the correspondence detection as a
quadratic optimization problem, over the space of all pos-
sible mappings between the two shapes. Its objective func-
tion consists of a linear term, that measures similarity be-
tween the descriptors of the corresponding points on the
two shapes, and a quadratic regularization term that mea-
sures the quality of pairwise correspondence assignment.

In addition we elaborate on the correspondence ambigu-
ity problem that arises when matching two isometries of an

intrinsically symmetrical shape. In this case, there is more
than one correspondence that preserves the metric structure
of the shapes (geodesic distances). We show that it is pos-
sible to find a distinct set of descriptors for each of those
correspondences, thus resolving to a set of distinct corre-
spondence detection problems. We would like to mention
that, to our best knowledge, there is no alternative algorithm
that can handle this correspondence ambiguity problem.

The paper is organized as follows: some related results
in the field of non-rigid surface matching are reviewed in
the next section. In Section 3 we describe the isometric in-
variant surface descriptors based on eigendecomposition of
the Laplace-Beltrami operator. Additionally, we describe a
new method for detection of multiple potential alignments
of the two surfaces. In Section 4 we formulate the corre-
spondence detection as a quadratic optimization problem,
and elaborate on its solution. In Section 5 we present the
possible matching results, including intrinsic symmetry de-
tection. Section 6 concludes the paper and presents several
directions for future study.

2. Previous work
A common approach to non-rigid shape matching con-

sists in finding transformation invariant representations of
the shapes, and performing the matching in the representa-
tion domain. One of the first methods, proposed by Elad
and Kimmel [7], embeds the surface into a (flat) Euclid-
ian space, such that the Euclidian distances between points
in the flat space approximate the geodesic distances on the
surface. Jain and Zhang [12] proposed matching the em-
beddings of the shapes into a spectral domain, using a non-
rigid variant of the ICP (Iterative Closest Point) algorithm.
Mateus et al. [23], and later Knossow et al. [15], used spec-
tral embedding as well, performing registration in the em-
bedding domain using a probabilistic framework. Rusta-
mov [32] suggested using the eigendecomposition of the
Laplace-Beltrami operator to construct an isometric invari-
ant surface representation, though aiming rather to measure
similarity between non-rigid shapes, than for correspon-
dence detection. In a recent paper, Lipman and Funkhouser
[20], treated isometrical transformations as a sub-set of



Möbius transformations, and detected correspondences in
the canonical domain of Möbius-invariant representations.
The above methods produce good correspondence results,
but none of them deals with possible ambiguity due to in-
trinsic symmetries.

Another group of methods for non-rigid shape compari-
son [4, 24, 25] measures the similarity between the metric
spaces of the shapes using the Gromov-Hausdorf distance
[8]. The Generalized Multidimensional Scaling (GMDS)
algorithm [4] also produces correspondence between two
given shapes. Thorstensen and Keriven [36] extended the
GMDS framework to surfaces with textures. Though math-
ematically sound, the above methods require significant
computation efforts.

The two methods proposed by by Hu and Hua [10] and
Zaharescu et al. [38] detect correspondences between non-
trivial feature points on the surfaces. In order to find fea-
tures they employ the Laplace-Beltrami decomposition, and
an extension of 2D feature detection and description ap-
proach to meshes, accordingly.

Other correspondence detection methods include the al-
gorithm proposed by Zhang et al. [39], based on combi-
natorial tree traversal for correspondence search; a method
by Anguelov et al. [1], who defined a probabilistic model
over the set of all possible correspondences, and used be-
lief propagation technique to match the shapes. Chang and
Zwicker [6] and Huang et al. [11] proposed modeling the
non-rigid transformation between the shapes by a set of
rigid transformations applied to parts of the shapes. Tevs
et al. [35] proposed a new algorithm based on a geodesic
distance-preserving randomized feature matching.

Another, more general, approach to the correspondence
detection was proposed by Leordeanu and Hebert in [17].
It is based on a spectral decomposition technique, and em-
ploys both local descriptor similarity and global pairwise
correspondence assignment quality to measure the corre-
spondence cost.

Intrinsic symmetry detection can be viewed as an exten-
sion of correspondence detection, where one needs to find
the best possible mapping of a shape to itself. Raviv et al.
[28] formulated the symmetry detection as a problem of em-
bedding a shape into itself, and used GMDS [4] to solve it.
Ovsjanikov et al. [27] showed that intrinsic symmetry de-
tection can be reduced to extrinsic symmetry detection in
the domain of the Global Point Signature (GPS) embedding
[32] of the surface.

Our main contributions can be summarized as follows:

• We propose simple yet effective isometric invariant
surface descriptors.

• Introduce the problem of correspondence ambiguity
and show how it can be solved, resulting in distinct
sets of descriptors for each possible correspondence.

• Formulate the correspondence problem as an Integer
Quadratic Programming (IQP) problem, so that both
the similarity between the descriptors and the pairwise
geodesic distances on the two shapes would be pre-
served by the matching.

3. Isometric invariant descriptors
In this section we introduce surface descriptors based on

the eigenfunctions of the Laplace-Beltrami operator.

3.1. Laplace-Beltrami operator

The Laplace-Beltrami operator ∆M of a compact Rie-
mannian manifold M is a second order differential operator
defined by the metric tensor of M (see [30]). Hence, the
∆M operator is invariant to isometries of the manifold.

The Laplacian eigenvalue problem is given by

∆Mφ = λφ, (1)

where λ is an eigenvalue of ∆M , and φ is the eigenfunction
associated with λ. By definition, ∆M is a positive semi-
definite operator. Therefore, all its eigenvalues λi, i ≥ 1,
are positive, with corresponding orthogonal set of eigen-
functions {φk}. Let us order the eigenvalues according to
their magnitude: 0 < λ1 ≤ λ2 ≤ λ3 ≤ .... Note that
when the manifold M has no boundary, ∆M has an addi-
tional eigenvalue λ0 = 0. Its corresponding eigenfunction
is a constant function on M . Generally speaking, as the
value of the eigenvalue increases, its corresponding eigen-
function varies more rapidly over the mesh (see Theorem
2.1 [13], for example).

3.2. Surface descriptors

Like the Laplace-Beltrami operator, the eigenfunctions
φk are invariant to the isometries of the manifold M . There-
fore, they could serve as descriptors

fM (p) = {φM
1 (p), φM

2 (p), φM
3 (p), ...}, p ∈ M, (2)

where φM
k (p) is the value of the k-th eigenfunction of ∆M

at the point p.
The descriptor fM (p) is in fact the embedding of p into

the vector space spanned by the eigenfunctions of the ∆M

operator. There are, though, several difficulties preventing
such a straight forward usage.

• The computational complexity of the matching de-
pends on the dimension of the descriptors. Instead of
using all the eigenfunctions of the Laplace-Beltrami
operator, we restrict ourselves to the first K eigenfunc-
tions

fM (p) = {φM
1 (p), φM

2 (p), ..., φM
K (p)}. (3)
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Figure 1. Two articulations of a human shape, colored accord-
ing to the values of the first three eigenfunctions of their Laplace-
Beltrami operators, from left to right.

In our experiments we were able to perform a quality
matching with a relatively small number of eigenfunc-
tions (K = 5 to 10).

• The multiplicity of the eigenvalues λk can be greater
than one. The set of eigenfunctions corresponding
to each such eigenvalue spans some sub-space of the
eigenfunction domain. Matching such eigenfunctions
calculated for two different shapes must include mea-
suring distances between their spanned subspaces. Ad-
ditionally, eigenfunctions belonging to close eigenval-
ues may switch their places, because of numerical er-
rors.

• The eigenfunctions of the Laplace-Beltrami operators
∆X and ∆Y are defined up to a sign. Therefore, we
have to find a sign sequence that relates between the
corresponding eigenfunctions, such that the following
holds for all corresponding pairs (x,y), x ∈ X,y ∈
Y :
{
φX

1 (x), ..., φX
K(x)

}
=

{
S1φ

Y
1 (y), ..., SKφY

K(y)
}

,
(4)

where Sk ∈ {+,−} is the k-th entry of the sign se-
quence. Following [22], we will refer to finding S as
the sign ambiguity problem. The example given in Fig-
ure 1 shows two articulations of a human body, colored
according to the values of the first three eigenfunctions
of their Laplace-Beltrami operator. The correct sign
sequence in this case is [+,−, +].

All of the above problems were addressed before, and
numerous attempts were made to overcome them. Shapiro
and Brady [33], and later Jain and Zhang [12], suggested

either exhaustive search or some greedy approach for the
eigenfunction ordering and the sign sequence calculation,
without accounting for the eigenvalue multiplicity problem.
Umeyama [37] used absolute values of the eigenfunctions
to solve the sign ambiguity problem. Mateus et. al. [22]
suggested formulating the matching task as a global op-
timization problem, in which the eigenfunctions ordering
and the sign sequence are part of the unknowns. In their
later papers Mateus et. al. [23] and Knossow et. al. [15]
suggested comparing histograms of the values of eigenfunc-
tions to estimate the correct signs of the eigenvectors, prior
to the alignment.

Here, we propose to solve the matching problem using
only the eigenfunctions that correspond to eigenvalues with-
out multiplicity. The distances between those eigenfunc-
tions can be measured using the Euclidian norm. This con-
siderably simplifies the matching task, and, according to our
experiments, yields good results. We therefore restrict the
eigenfunctions used in the descriptors to those that corre-
spond to the first K non-repeating eigenvalues. In practice,
we discard pairs of eigenfunctions if the difference between
their corresponding eigenvalues is below some predefined
threshold. This also accounts for possible eigenfunction
flipping.

Finally, we have to estimate the sign sequence connect-
ing the eigenvalues of the two operators ∆X and ∆Y . Be-
fore we introduce the estimation algorithm, we would like
to note that there may be more than one sign sequence that
align the two surfaces.

The human body in the example given in Figure 1 is in-
trinsically symmetric. Hence, there are two possible align-
ments of the two surfaces. The two sign sequences induced
by those alignments are [+,−, +] and [+, +,−]. Loosely
speaking, the first sign sequence aligns the right side of the
upper human body to the right side of the lower one. The
second sequence aligns the right side of the upper human
body to the left side of the lower one. We call the align-
ment produced by the first sequence the primary alignment,
or primary correspondence, and the alignment produced by
the second sequence secondary, or symmetrical correspon-
dence.

Ovsjanikov et al. [27] showed that intrinsic symmetry of
a surface induces reflection symmetry of the eigenfunctions
of its Laplace-Belrami operator (to be precise, eigenfunc-
tions corresponding to non-repeating eigenvalues). In other
words, given two symmetric points p and q on M , one of
the following relations holds for each φM

k corresponding to
eigenvalue λk of unit multiplicity

φM
k (p) = φM

k (q) or φM
k (p) = −φM

k (q). (5)

Thus, the sign sequences induced by the primary and the
symmetrical correspondences might produce equally good
alignments, in terms of distances between the descriptors.
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In order to estimate the sign sequences induced by all pos-
sible alignments, we suggest a new algorithm based on the
distances between the absolute values of the descriptors, as
described in the next section.

3.3. Sign sequence estimation

The motivation for the proposed algorithm came from
the following observation: if the shape has no intrinsic sym-
metries, we can use the absolute values of the descriptors
(equivalently, eigenfunctions) for matching. Let us denote
by X and Y the two surfaces that we wish to align. We say
that a point y ∈ Y corresponds to the point x ∈ X if

y = arg min
∀ỹ∈Y

∥∥∣∣fX(x)
∣∣−

∣∣fY (ỹ)
∣∣∥∥ (6)

Or, y ∈ Y corresponds to x ∈ X if it is its nearest
neighbor, in terms of distance between absolute values of
their descriptors.

The correspondences obtained in such way are less accu-
rate, compared to those obtained using the descriptors plus
the correct sign sequence. We call them the approximate
correspondences. They allow us to approximate the sign se-
quence that relates between the descriptors of the two shape,
as follows

Sk = arg min
{+,−}

∑

C

∥∥fX
k (x)− SkfY

k (y)
∥∥, ∀k, (7)

where C is the space of all (x,y) correspondences, and Sk

is the k-th entry of the sign sequence.
In case where the shape is intrinsically symmetric, each

point x ∈ X may have several corresponding points on Y ,
with possibly equal matching costs. In practice, because of
numerical errors, the correspondences obtained from Equa-
tion (6) include both the primary correspondence, and the
symmetrical ones.

By dividing the correspondences into groups according
to the symmetry they reflect, we can estimate the sign se-
quence induced by each group using Equation (7). For that
goal, we suggest using the geodesic distances measured on
the two surfaces. Let us define the group of all the primary
correspondences by C1. The geodesic distances measured
between the points on the first shape and between their cor-
respondences on the second shape should be similar. This
should hold for the symmetrical correspondences as well.
Therefore, we can cluster the correspondences using the
differences between geodesic distances measured between
corresponding points on X and Y , and find the sign se-
quence induced by each group.

These observations can be formalized into an algorithm
for the sign sequence estimation.

1. Initial correspondence detection: For each x ∈ X find
its corresponding point y on Y using

y = arg min
∀ỹ∈Y

∥∥∣∣fX(x)
∣∣− ∣∣fY (ỹ)

∣∣∥∥ . (8)

To make the algorithm more robust, it is possible to
choose more than one nearest neighbor on Y . In our
experiments we used only one corresponding candi-
date for each point.

2. Clustering: calculate the affinity matrix A of pairs of
the corresponding points (xm,ym), (xn,yn) ∈ C, in
the following way

Amn = |dX(xm,xn)− dY (ym,yn)| . (9)

Then, use a clustering algorithm to divide the corre-
spondences into several clusters, based on A. We de-
note the correspondence clusters by {Cj}J

j=1, where J
is the number of clusters. Each cluster Cj induces a
sign sequence. The number of the clusters J has to
be sufficiently large so that the correct sign sequences
would be represented by multiple clusters. Typically,
we would divide a set of 1000 initial correspondences
into 50 to 100 clusters.

In our experiments we performed the clustering using
the K-means algorithm [21]. It requires a set of vec-
tors, which we obtained from the affinity matrix A us-
ing the multidimesional scaling algorithm [3]. An ex-
ample of two correspondence clusters, reflecting two
possible alignments, is presented in Figure 2.

3. Sign sequences estimation: For each cluster Cj , find
the sign sequence S(j) it induces, using

S
(j)
k = arg min

{+,−}

∑

Cj

∥∥∥fX
k (x)− S

(j)
k fY

k (y)
∥∥∥, (10)

where S
(j)
k is the k-th entry of sign sequence S(j).

The set
{
S(j)

}J

j=1
includes multiple instances of the

correct sign sequences. Therefore, we construct a re-
duced set of the candidate sign sequences using the se-
quences S(j) that were induced by the largest number
of clusters. The size of this reduced set equals to the
number of the intrinsic symmetries of the shape, plus
1. In the example showed in Figure 2 there are two
such sequences.

We would like to note that a related approach to the
sign sequence estimation was proposed by Ovsjanikov
et al. in [27], with regard to intrinsic symmetry detec-
tion, and by Mateus et al. [23] and Knossow et. al.
et al., with regard to surface matching. Our approach
differs from [15, 23] by the fact that we aim to find
the sign sequences induced by all possible alignments
of the two surfaces. In this sense, it reminds the in-
trinsic symmetry detection of [27]. Indeed, the pro-
posed sign sequence estimation algorithm, combined
with the framework in [27], can be used for intrinsic
symmetry detection.
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Primary correspondence Symmetrical correspondence

Figure 2. Correspondence clustering example.

Once we obtained the candidate sign sequences, we can
use them to calculate the correspondences between the sur-
faces, using the matching algorithm described in the next
section. To simplify notations, we re-define the descriptor
fY to include the sign sequence information

fY (yj) = {S1φ
Y
1 (j), S2φ

Y
2 (j), ..., S3φ

Y
K(j)}, (11)

where S is a sign sequence from the candidate set.
We would like to mention that another possible approach

to correspondence type detection (primary or secondary)
would be to explore the relative surface orientation changes
implied by different alignments. We do not elaborate fur-
ther on this approach in the current paper, yet we think it is
a possible direction for future research.

4. Matching algorithm
We formulate the matching task as a minimization prob-

lem. Its objective function consists of a linear cost term,
based on the isometry invariant descriptors described ear-
lier, and a following geodesic distance preserving regular-
ization term.

We denote by X and Y the two surfaces we wish to align.
We express the correspondence between points on X and Y
by a mapping P : X × Y → {0, 1}:

P (x,y) =
{

1, x and y are in correspondence,
0, otherwise (12)

When X and Y are finite, P is a matrix with binary entries.
In this case, we can write Pij = P (xi,yj), for some xi ∈
X and yj ∈ Y . The optimal correspondence, denoted by
P ∗, minimizes some cost function C (P ) over the space of
all mappings P .

The following simple cost function is based on the iso-
metric invariant descriptors introduced in the previous sec-
tion

Cl (P ) =
∑

xi∈X
yj∈Y

Pijbij , (13)

where bij =
∥∥fX(xi)− fY (yj)

∥∥. We construct a different
cost function for each possible alignment, using the descrip-
tors defined by Equation (11).

Note that the cost Cl (P ) is linear in P , and contains
no information about how well pairs of correspondences in
P coincide. Therefore, we regularize it with the following
quadratic term

Cq (P ) =
∑

xi,xm∈X
yj ,yn∈Y

PijPmnQijmn, (14)

where Qijmn = |dX(xi,xm)− dY (yj ,yn)|, and dX and
dY denote geodesic distances measured on X and Y , re-
spectively. The motivation behind the definition of Cq

is similar to that mentioned in the previous section; that
is, if (xi,yj) and (xm,yn) are two correspondences, the
geodesic distances dX(xi,xm) and dY (yj ,yn) must be
similar.

The total correspondence cost is given by

C(P ) =
∑

xi∈X
yj∈Y

Pijbij + λ ·
∑

xi,xm∈X
yj ,yn∈Y

PijPmnQijmn (15)

The parameter λ determines the weight of the quadratic
term in the total cost function. The quadratic term alone
does not allow to distinguish between primary and symmet-
ric correspondences. Therefore, for λ À 1, for each set
of descriptors defined in the previous section we will ob-
tain the same optimal solution P ∗ that minimizes the cost
Cq (P ). In our experiments, in order to find all correspon-
dences, we used λ in the range of [0.1, 0.5].

In order to avoid a trivial solution when minimizing
C(P ) we must impose certain constraints on the matrix P .
Those constraints depend on the type of the required cor-
respondence. If X and Y consist of the same number of
corresponding points, and the correspondence is required to
be one-to-one, the constraints are given by

∑

i

Pij = 1,
∑

j

Pij = 1, ∀i, j (16)

Such P is called a permutation matrix.
The one-to-one requirement may be too strict when

matching two sampled surfaces, or when the numbers of
the points sampled from the two surfaces are different. In
this case, we suggest fixing the points on one surface, say
X , and demand that each x ∈ X has a correspondence on
Y . Or, in terms of P ,

∑

i

Pij = 1, ∀i (17)

Note that we can re-write the problem in a matrix form,
by converting the double correspondence index (i, j), as in
(xi,yj), to a single index k. Consequently, the correspon-
dence between X and Y is represented by a vector {Pk}.
The matrix {bij} and the tensor {Qijmn} are converted into
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a vector and a matrix {bk} and {Qkl}, accordingly. The
objective function and the constraints can be re-written as
follows

P ∗ = min
∀P

{
bT P + λPT QP

}
s.t. SP = 1, (18)

where Pk ∈ {0, 1}, ∀k. The matrix S is sparse and it is
constructed according to the constraints being used (Equa-
tions (16) or (17), or different constraints); 1 is a vector
with all entries equal to 1, of an appropriate size. In our ex-
periments we normalized the vector b and the matrix Q by
their maximal values, to obtain meaningful contributions of
the two terms to the cost function.

Equation (18) describes a combinatorial problem called
an Integer Quadratic Programming problem (IQP). Similar
to [10], we solve it using an MIQP solver, which is dis-
tributed as a part of the Hybrid Toolbox by Bemporad et al.
[2].

5. Results
We tested the proposed method on pairs of shapes rep-

resented by triangulated meshes, from the TOSCA high-
resolution database [5]. All the models were downsampled
to about 4500 vertices (+/− 10% ).

All calculations were performed using the MATLAB c©

software. To calculate the descretized Laplace-Beltrami op-
erator we used the cotangent-weights scheme proposed in
[26]. For the sign sequence estimation we used sets of
1000 points sub-sampled from each model using Farthest
Point Sampling [9]. For the correspondence detection we
used a relatively small number of points (20 points) sam-
pled from one of the models using [9], and a larger set of
candidate corresponding points sampled from the second
model (40 points), thus obtaining 20 pairs of corresponding
points. This sparse set may later serve as an initialization
for other shape processing algorithms, e.g. the GMDS [4],
or the dense cross-parameterization algorithm [16].

Correspondence detection: We applied the proposed
method for correspondence detection to several pairs of
shapes, with and without intrinsic symmetries. The results
are presented in Figures 3, 4, 5, and are quite accurate, in
most cases. The correspondences detected for the cat and
the wolf shapes, presented in Figure 3, (b) and (c), respec-
tively, exhibit limitations of the proposed method. The cor-
respondences between the points on the heads of the cats
and the wolfs are not accurate enough. This is due to the
combinatorial nature of the problem, that limits the number
of the matches examined and detected by our method, and
may also result in some locally minimal solution.

Symmetry detection: We applied the proposed eigen-
function sign estimation algorithm for intrinsic symmetry
detection. Figure 6, captures the of intrinsic symmetry de-
tected for a human shape, using the nearest neighbor search

Figure 5. Correspondences obtained for two pairs of hand models.

(a) (b)

Figure 6. Intrinsic symmetry detected in the human shape, with (a)
and without (b) geodesic distance preservation term.

(Figure 6, (b)) as proposed in [27], and using the proposed
method (Figure 6, (a)).

6. Conclusions

We presented a framework for detecting correspondence
between non-rigid, approximately isometric shapes, which
relays on surface descriptors calculated using the eigenfunc-
tions of the Laplace-Beltrami operator. We showed that
when matching two sets of such descriptors, one encounters
a problem of ambiguity in the signs of the eigenfunctions.
Our key observation is that the above ambiguity can be ex-
ploited to detect different possible alignments of the two
shapes. This happens when the matched shapes are intrin-
sically symmetric. We demonstrated how to obtain those
alignments using Integer Quadratic Programming.

Possible limitations: at its current form, partial matching
poses a challenge to the proposed framework. The same ap-
plies to matching shapes with topological changes or signif-
icant changes of the geodesic distances. We assume that by
combining the proposed framework with local surface de-
scriptors and, possibly, other distance measures, we should
be able to overcome these limitations. It is also possible to
combine the proposed methods with salient feature detec-
tion methods, for robustness and better matching precision.
Finally, the complexity of the algorithm is currently deter-
mined by the integer programming solver used to find the
minimum of the quadratic problem. The overall complexity
is therefore exponential in the number of the possible cor-
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(a) (b) (c)

Figure 3. Primary (first row) and the symmetrical (second row) correspondences obtained for pairs of different models using the proposed
method.

Figure 4. Primary (left) and symmetrical (right) correspondence between two human shapes, obtained with the proposed method.

respondences. By employing other optimization techniques
we could possibly reduce the computation time and find the
correspondence between larger sets of points.
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