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Abstract. Recent studies on three-dimensional face recognition pro-
posed to model facial expressions as isometries of the facial surface.
Based on this model, expression-invariant signatures of the face were con-
structed by means of approximate isometric embedding into flat spaces.
Here, we apply a new method for measuring isometry-invariant similarity
between faces by embedding one facial surface into another. We demon-
strate that our approach has several significant advantages, one of which
is the ability to handle partially missing data. Promising face recogni-
tion results are obtained in numerical experiments even when the facial
surfaces are severely occluded.

1 Introduction

Face recognition deals with the problem of identifying a human subject using
information describing his or her face. A description of a subject to be identified
(probe), is compared to those stored in the database of subjects with known
identity (usually referred to as gallery). The probe is accepted if identified with
one of the gallery subject, or otherwise rejected, based on some distance function.
Ideally, there should be no false acceptances or false rejections.

Recently, three-dimensional (3D) face recognition has become an emerging
modality, trying to use 3D geometry of the face for accurate identification of
the subject. While traditional two-dimensional (2D) face recognition methods
suffer from sensitivity to factors such as illumination, head pose and the use
of cosmetics, 3D methods appear to be more robust to these factors. Yet, the
problem of facial expressions is a major issue in 3D face recognition, since the
geometry of the face significantly changes as a result of facial expressions. One of
the focuses of the recent Face Recognition Grand Challenge (FRGC) competition
is robustness to facial expressions [1, 2].

In [3], we introduced an expression-invariant 3D face recognition method.
Our main thesis is the isometric model, according to which facial expressions are
modelled as isometries of the facial surface. The subject’s identity is associated
with the intrinsic geometry of the surface (i.e. its metric structure), which ap-
pears to be nearly expression-invariant [3]. Getting rid of the extrinsic geometry
of the surface and using its intrinsic geometry only, an expression-invariant rep-
resentation of the face is constructed. We used the approach presented by Elad
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and Kimmel [4]. Mapping the surface in an isometric way into R3, where the
original geodesic distances are replaced with the Euclidean ones, one creates a
representation of the intrinsic geometry, which can be simply handled as a rigid
surface. Such a mapping is termed isometric embedding. Elad and Kimmel used
a numerical procedure called multidimensional scaling (MDS) [5] to compute
the embedding.

Face recognition based on the isometric embedding approach is simple and
computationally-efficient (in [3], a real-time system that acquires and matches
two surfaces in less than 5 sec was obtained). The disadvantage is the fact that
in general, a surface cannot be isometrically embedded into Rm, and therefore,
such a mapping introduces an inevitable distortion of the distances (embedding
error or metric distortion), which reduces the recognition accuracy. Attempts
to reduce the embedding error were made in [6–8] by resorting to non-Euclidean
embedding spaces. In [8], it was conjectured that smaller embedding error results
in better face recognition accuracy. This conjecture was proved experimentally
using two-dimensional spheres with different radii as the embedding space.

The main limitation of the different embedding spaces used beforehand was
the demand that the geodesic distances are expressed analytically. This practi-
cally limits the possibilities to spheres and flat domains. It is obvious, however,
that the embedding of one surface into another results in zero metric distortion
if the surfaces are isometric. If the surfaces are not isometric, the embedding
error could be a measure of how different their intrinsic geometry is.

Unfortunately, a facial surface has a complicated metric structure and the
geodesic distances can not be expressed analytically. The price we have to pay in
order to perform embedding into such spaces is that the geodesic distances must
be computed numerically. However, the apparent advantages seem to justify it. In
addition to higher accuracy, this kind of embedding allows to compare partially
missing surfaces. This is especially important in practical 3D face recognition,
where due to acquisition imperfections the facial surfaces can be occluded. The
ability to handle partially missing data also frees us from the need to perform
sophisticated cropping identical for all faces, which is required in [3].

This paper consists of five sections. In Section 2, we review the expression-
invariant face recognition method based on the isometric model. In Section 3,
we introduce the notion of partial embedding and outline a recent generalization
of MDS as a way to compute it [9]. Section 4 outlines a hierarchical matching
scheme for one-to-many face recognition with very large databases. Section 5 is
devoted to experimental results. We show that our approach works accurately
even in a setting where the facial surface is severely occluded. Section 6 concludes
the paper.

2 Expression-invariant face recognition

Our starting point is the isometric model of facial expressions, introduced in [3].
The facial surface is described as a smooth compact connected two-dimensional
Riemannian manifold (surface), denoted by S. The minimal geodesics between
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s1, s2 ∈ S are curves of minimum length on S connecting s1 and s2. The geodesics
are denoted by C∗S(s1, s2). The geodesic distances refer to the lengths of the min-
imum geodesics and are denoted by dS(s1, s2) = length(C∗S(s1, s2)). A transfor-
mation ψ : S → Q is called an isometry if dS(s1, s2) = dQ(ψ(s1), ψ(s2)) for all
s1, s2 ∈ S. In other words, an isometry preserves the intrinsic metric structure
of the surface.

The isometric model, assuming facial expressions to be isometries of some
“neutral facial expression”, is based on the intuitive observation that the facial
skin stretches only slightly. All expressions of a face are assumed to be intrinsi-
cally equivalent (i.e. have the same metric structure), and extrinsically different.
Broadly speaking, the intrinsic geometry of the facial surface can be attributed
to the subject’s identity, while the extrinsic geometry is attributed to the facial
expression. The isometric model tacitly assumes that the expressions preserve
the topology of the surface. This assumption is valid for most regions of the face
except the mouth. Opening the mouth changes the topology of the surface by
virtually creating a “hole”, which was treated in [10] by imposing topological
constraints.

The goal of expression-invariant face recognition, under the assumption of
the isometric model, is to perform an isometry-invariant matching of facial sur-
faces. In other words, we are looking for some distance function d(S,Q) to
compare between two facial surfaces S and Q, such that d(S, f(S)) = 0 for
all isometries f of S. Since the geodesic distances are an obvious isometry-
invariant, one could think of d(S,Q) comparing the geodesic distances on S
and Q. However, in practice only sampled versions of the surfaces are available,
and therefore we have the intrinsic geometry of S and Q represented as finite
metric spaces ({s1, ..., sN},∆S) and ({q1, ..., qM},∆Q), where the N × N ma-
trix ∆S = (dS(si, sj)) and the M × M matrix ∆Q = (dQ(qi, qj)) denote the
pair-wise geodesic distances (which, in practice, must be computed numerically)
between the samples of S and Q. There is no guarantee that different instances
of the same facial surface are sampled at the same points, nor that the number
of samples is the same. Moreover, even if the samples are the same, they can be
ordered arbitrarily. This ambiguity, which theoretically requires examining all
the permutations between the points on the two surfaces, makes impractical the
use of the geodesic distances per se for isometry-invariant surface matching.

A recent fundamental paper by Mémoli and Sapiro [11] relates the permutation-
based distance between surfaces represented as point clouds to the Gromov-
Hausdorff distance and shows a probabilistic framework allowing to approximate
it without computing all the permutations.

2.1 Isometric embedding

An alternative proposed by Elad and Kimmel [4] and adopted in [3] for face
recognition is to avoid dealing explicitly with the matrix of geodesic distances
and represent S as a subset of Rm, such that the original intrinsic geometry is
approximately preserved. Such a procedure is called an isometric embedding. The
image of S under the embedding is referred to as the canonical form of S, and
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Rm as the embedding space. As a result of isometric embedding, the canonical
forms of all the isometries of S are identical, up to the isometry group in Rm

(rotations, translations and reflections), which is easy to deal with. The distance
d(S,Q) is computed by comparing the canonical forms of S and Q in a rigid
way.

In the discrete setting, isometric embedding is a mapping between two finite
metric spaces

ϕ : ({s1, ..., sN} ⊂ S,∆S) → ({x1, ..., xN} ⊂ Rm,D) , (1)

such that dS(si, sj) = dRm(xi, xj) for all i, j = 1, ..., N . Here dRm denotes the
Euclidean metric, and D = (dRm(xi, xj)) is the matrix of pair-wise geodesic
distances between the points in the embedding space. In practice, this matrix is
computed approximately using the fast marching method (FMM) [12].

2.2 Multidimensional scaling

Unfortunately, it appears that a general surface like the human face usually
cannot be isometrically embedded into Rm of any finite dimension [13], and
therefore, such an embedding introduces a distortion of the geodesic distances,
referred to as the embedding error. Yet, though an exact isometric embedding of
S into Rm does not exist, it is possible to compute an approximately isometric
embedding, which minimizes the embedding error. In [4], the raw stress [5] was
used

σraw(X;∆S) =
∑

i>j

(dRm(xi,xj)− dS(si, sj))
2
. (2)

as the embedding error criterion. Here ∆S denotes the geodesic distances matrix
of the surface S, and X is a N ×m matrix of coordinates in Rm. The solution

XS = argmin
X

σraw(X;∆S) (3)

obtained by gradient descent minimization of the stress is the discrete canonical
form of S, and the whole process is called multidimensional scaling (MDS). The
optimization problem (3) is non-convex and therefore convex optimization algo-
rithms cannot guarantee global convergence. Yet, this problem can be usually
resolved using good intialization or employing multiscale or multigrid optimiza-
tion [14].

2.3 Canonical form matching

The similarity function between two surfaces S and Q in the canonical forms
(CF) algorithm is computed as the Euclidean distance between the vector of
P -th order high-dimensional moments of the corresponding canonical forms XS
and XQ after alignment [15]

dCF(S,Q) =
∑

p1+...pm≤P

(
µXS

p1,...,pm
− µXQR+b

p1,...,pm

)2
, (4)
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where

µX
p1,...,pm

=
N∑

i=1

m∏

j=1

x
pj

ij , (5)

is the (p1, ..., pm)-th moment of X, and XQR+b is an m-dimensional Euclidean
transformation (rotation, reflection and translation) aligning the canonical forms
XS and XQ. In [4], the alignment transformation is obtained by centering the
canonical forms, diagonalizing their matrices of second-order moments, and re-
ordering the axes such that the variance values in each axis are decreasing.
Alternatively, the alignment can be performed using three fiducial points [3].

2.4 Remarks

The CF approach does not allow exact isometry-invariant surface matching, as
the embedding is not exactly isometric and inevitably introduces an error. In
other words, generally dCF(f(S),S) > 0 for a surface S and its isometry f . The
algorithm is sensitive to the definition of the boundaries of the surfaces, and does
not allow for matching of surfaces with different topologies, or more generally,
partial matching.

The alignment ambiguity and the use of rigid matching algorithms for the
canonical forms poses a restriction on the number of the surface samples. It must
be sufficiently large (N ∼ 1000) in order for the alignment and matching to work
accurately. In [3], we found that 2500 samples were required for face recognition
with a reasonable recognition rate. The number of points is a major issue in
terms of computational complexity, as the cost of the stress and its gradient
computation is O(N2), while the computation of the geodesic distance matrix
is at least O(N2).

Another major issue in face recognition with large databases is precompu-
tation of distances between faces. Using the method of moments, in the CF
approach it is possible to precompute the moments signatures for all faces in
the gallery. When a new probe face has to be matched, its moment signature is
computed and efficiently matched to the gallery signatures.

3 Generalized multidimensional scaling

The main thesis of this paper is measuring the intrinsic similarity of two fa-
cial surfaces by embedding them into each other, based on [9]. Embedding two
isometric surfaces into each other results in zero embedding error. In the gen-
eral case when two surfaces are not isometric, the embedding error is a measure
of their similarity. Conceptually, the difference between Euclidean and partial
embedding is presented in Figure 1.

We assume to be given the model surface S from the gallery, sampled at
N points, and the probe surface Q sampled at M points (typically, M ¿ N).
Possibly, Q is partially missing. We are looking for a mapping

ϕ : ({q1, ..., qN} ⊂ Q,∆Q) → ({s1, ..., sN} ⊂ S,∆S) ,
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Fig. 1. Schematic representation of face recognition using expression-invariant canoni-
cal forms obtained using MDS (left), and the proposed method of embedding one facial
surface into another using GMDS (right).

such that dQ(qi, qj) is as close as possible to dS(ϕ(qi), ϕ(qj)) for all i, j = 1, ..., N .
Note that dS is assumed continuous here, as si = ϕ(qi) can be an arbitrary point.
In practice, the values of dS must be approximated numerically. We refer to such
ϕ as partial embedding of Q into S.

In order to compute the partial embedding, we use a procedure similar to
MDS, which we call the generalized MDS or GMDS [9]. Since our new embedding
space S is a general 2D manifold, we have to represent the points on S in their
parametric coordinates. Let us assume that Q is given in parametric from by the
mapping u ∈ I ⊂ R2 → S, where I is the parametrization domain, which can
be assumed to be [0, 1] × [0, 1]. Similarly to the Euclidean case, the generalized
stress is defined as [9]

σgen(U;∆Q,W, dS) =
∑

i>j

wij (dS(ui,uj)− dQ(qi, qj))
2
. (6)

Here ui, i = 1, ...,M denote the vectors of parametric coordinates of si, and W =
(wij) is a symmetric matrix of non-negative weights. In case of full matching,
wij = 1 are used. When the probe is partially missing, the weights must be
chosen differently [9].

Minimization of the stress is performed iteratively, like in the former case,
using gradient-descent type methods or more sophisticated optimization algo-
rithms [16]. Note that, in practice, dS is available only between N samples of S.
Hence, it must be approximated for all the rest of the points. This computation
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is critical for the GMDS. For that goal we developed the three-point geodesic
distance approximation. The idea of this numerical procedure is to produce a
computationally efficient C1-approximation for dS and its derivatives, interpo-
lating their values from the matrix ∆S of pairwise geodesic distances on S. For
further details, the reader is referred to [17].

The partial embedding distance function between the probe surface Q and
the model surface S is defined as

dPE(S,Q) =

√
argminU σgen(U;∆Q,W, dS)∑

i>j wij
, (7)

which is independent of the number of points. dPE has length units and can be
interpreted as an RMS metric distortion.

3.1 Partial matching

One of the most important properties of dPE is that it allows to perform par-
tial matching of surfaces (note that, indeed, dPE(S,Q) is not symmetric, which
allows to embed a patch of Q into S). Partial matching is important in practi-
cal face recognition applications, where imperfections of the acquisition devices
and occlusions of the face (e.g. when the subject is wearing glasses) result in a
partially missing probe surfaces.

Let us assume that we wish to compare two facial surfaces: a model S and
a probe Q, which is acquired with occlusions such that only a patch Q′ ⊂ Q is
available. If Q′ is sufficiently large, dPE(S,Q′) ≈ dPE(S,Q); the difference can be
bounded by the diameter of Q\Q′ [9]. Yet, it is tacitly assumed that the geodesic
distances on Q′ are given by dQ′(q1, q2) = dQ|Q′(q1, q2) (this notation implies
that dQ′(q1, q2) = dQ(q1, q2) for all q1, q2 ∈ Q′). However, dQ′ is computed
numerically on Q′ and can be inconsistent with dQ|Q′ . The problem potentially
arises for example with geodesics that touch the boundary ∂Q′; such geodesics
can be different on Q and Q′ (see Figure 2), and the corresponding distance is
therefore inconsistent. To resolve this problem, we assign zero weight wij = 0
to every pair of points (qi, qj) such that dQ′(qi, ∂Q′)+ dQ′(qj , ∂Q′) < dQ′(qi, qj)
For more details, the reader is referred to [17].

3.2 Comparison to the canonical forms approach

A major difference of the CF and the PE algorithms is that in the former, iso-
metric embedding is used only as an intermediate stage to obtain an isometry-
invariant representation of the surfaces, whereas in our approach isometric em-
bedding is used directly to compute the similarity between surfaces. The conse-
quences of this difference are several. First, the codimension of the canonical form
in the embedding space is at least one. In PE, the codimension is always zero.
Secondly, embedding into Euclidean space still leaves the degrees of freedom of
an Euclidean isometry (rotation, translation and reflection). In embedding into
a general surface, if it is rich enough, such ambiguity usually does not exist.
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Fig. 2. Partial matching problem. Shown in blue dotted is a geodesic between the
points q1, q2 ∈ Q; the corresponding inconsistent geodesic on Q′ is shown in black.

Thirdly, this ambiguity requires alignment of the CF canonical forms, which is
avoided in PE. Due to the fact that the metric distortion serves as a dissimilarity
measure in PE rather than a side effect (as in CF), a small number of surface
samples suffices for accurate matching, and practically, as few as tens of points
were enough in all of our face recognition experiments.

Another major issue is preprocessing. The performance of the CF approach
depends heavily on the facial surface preprocessing, since it is important that
the probe and the model surfaces contain the same region of the face. In [3],
a geodesic mask was used to crop the facial surfaces. The problem is especially
acute if one wishes to handle expressions with open mouth and uses a topological
constraint by cutting off the lips [10]. The PE approach, on the other hand, is
insensitive to preprocessing, since it allows partial matching. Practically, the
probe can be an arbitrary patch of the model surface.

Since dPE between any two faces is computed iteratively, it is impossible to
precompute it as in the CF approach. However, it is still possible to speed-up
the matching significantly using a hierarchial comparison. We address this issue
in Section 4. The comparison of the PE and the CF approaches is summarized
in Table 1.

4 Hierarchial matching

An apparent limitation of the proposed face recognition method stems from the
fact that, unlike the CF approach that allows to match canonical forms using mo-
ment signatures, the partial embedding distance cannot be precomputed. ¿From
this point of view, our approach is similar to methods proposing the use of the
iterative closest point algorithm (ICP). Taking, for example, about 1 sec per
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Table 1. Comparison of partial embedding and the canonical forms algorithm

Canonical forms Partial Embedding
Accuracy

Distance function

Alignment

Partial matching
Precomputation

Samples
Preprocessing

Numerical core

up to minimum distortion
caused by the embedding
space
moments or ICP

required to resolve rotation,
translation and reflection
ambiguity
difficult
possible using moment signa-
tures
∼ 1000
requires geometrically-
consistent cropping of the
facial surfaces using geodesic
mask; particularly sensitive
to lip cropping in case of
open-mouth expressions
FMM, MDS

up to numerical errors

embedding error is used
as distance
no alignment ambiguity

natural
possible to some extent using
hierarchial matching
10 ∼ 100
the probe can be an arbitrary
patch of the facial surface

FMM, GMDS

comparison, matching a probe to a gallery of 100, 000 faces would take about 30
hours on a single CPU. Such computational complexity makes the one-to-many
face recognition scenario infeasible. However, our method can still be used for
one-to-many face recognition with very large databases by taking advantage of
a hierarchical matching scheme, which is briefly outlined here.

Let the gallery database consist of K0 faces,
{S0

1 , ...,S0
K0

}
. We aggregate

groups of faces close in the sense of dPE, replacing them with a single represen-
tative, as usually done in vector quantization [18]. The number of faces forming
an aggregate can be either constant or adaptive, and depends on the specific
aggregation algorithm used. As a result, a smaller set

{S1
1 , ...,S1

K1

}
is obtained.

Repeating the procedure iteratively, a tree-like structure is created, where at
the top level there is a relatively small set

{SL
1 , ...,SL

KL

}
of representative faces.

Here L denotes the number of levels in the tree. Such hierarchial representation
can be computed off-line once for a given database. Adding new faces to it can
be made very efficient using techniques from heap and sorting trees, requiring
O (log K) comparisons.

Hierarchical comparison of a probe face to the entire database is performed
in a top-down manner: first, the probe Q is compared to KL top-level faces{SL

i

}
; SL

i minimizing dPE

(SL
i ,Q)

is selected, and the probe is compared to its
subtree. The process is repeated until the lowest level is reached. Such a scheme
allows to perform face recognition with only O (log K) matches and is suitable
for one-to-many comparison scenarios with very large database of faces.
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 Fig. 3. Gallery (leftmost) and four probe faces of a representative subject in the

database.

5 Results

The presented face recognition algorithm was tested on a set of 30 subjects
from the Notre Dame 3D face database used in the FRGC competition [1, 2].
The gallery consisted of one neutral expression per subject; five instances with
moderate facial expressions were used as probes for each subject, yielding the
total of 180 faces (see Figure 3). Gallery faces were cropped with a wide rect-
angular mask, which included most of the facial surface. These surfaces were
subsequently sampled on a regular Cartesian grid consisting of approximately
2500 points. Pairwise geodesic distances between these points were measured
using an efficient modification of parametric FMM [12, 12, 19] requiring about
1 sec for computing a 2500 × 2500 distance matrix. Two sets of probes were
created: in the first experiment, the probe faces were cropped using a narrow
geodesic mask, which excluded hair and other unrelated details, covering most of
the relevant parts of the face (Figure 4, left). In the second experiment, random
parts of the surface were intentionally removed, resulting in severe occlusions
of the facial surface (see example in Figure 4, right). In both experiments, the
surfaces were sampled at 53 points using furthest point sampling strategy [20].

Face recognition was carried out by embedding the probe surface into the
gallery surface using GMDS1; dPE served as a dissimilarity measure between
the faces. Figure 5 depicts the receiver operator characteristic (ROC) curves
obtained in the two experiments. Comparison of mildly and severely occluded
faces resulted in about 3.1% and 5.5% equal-error rate (EER), respectively. In
both experiments 100% rank-1 recognition rate was achieved. Our non-optimized
C code required about 1÷ 5 sec per surface comparison.

1 The GMDS MATLAB implementation will be available for download from
http://tosca.cs.technion.ac.il as a part of the TOSCA (Toolbox for Surface
Comparison and Analysis) Project.
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MILD OCCLUSION SEVERE OCCLUSION 

 
 
 

Fig. 4. Left: probe face with mild occlusions; right: the same probe face with severe
occlusions. Surface samples are denoted by black dots.

6 Conclusions

Following the isometric model of facial expression introduced in [3], we proposed
a novel expression-invariant face recognition algorithm. The main idea of our
approach is to embed the probe facial surface into that of the model. Faces
belonging to the same subject are nearly isometric and thus result in low em-
bedding error, whereas different subjects are expected to have different intrinsic
geometry, and thus produce higher embedding error. Unlike the previous ap-
proaches, our method does not introduce unnecessary metric distortions due to
the embedding itself. Moreover, the probe and the model are not required to
contain the same amount of information; matching a probe with partially miss-
ing data is natural to our approach. To the best of our knowledge, it is the first
method to allow partial isometry-invariant matching of surfaces in general and
of facial geometry in particular.

The numerical core of our face recognition method is the GMDS procedure,
which has the same computational complexity as that of the standard MDS
procedure. Although our algorithm does not permit pre-computation of simple
efficiently comparable signatures, we outlined a hierarchical matching strategy
that enables the use of our approach for one-to-many face recognition in large
databases.

Promising face recognition results were obtained on a small database of 30
subjects even when the facial surfaces were severely occluded. In sequel studies,
we intend to demonstrate the performance of our approach on larger databases
with extreme facial expression. Noting that GMDS is capable of finding intrin-
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sic correspondence between two facial surfaces, our approach can be readily
extended to handle texture as well, similarly to [21].
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