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Abstract. A geometric framework for finding intrinsic correspondence
between animated 3D faces is presented. We model facial expressions as
isometries of the facial surface and find the correspondence between two
faces as the minimum-distortion mapping. Generalized multidimensional
scaling is used for this goal. We apply our approach to texture mapping
onto 3D video, expression exaggeration and morphing between faces.
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1 Introduction

Finding correspondence between human faces is a key problem in numerous prob-
lems on the border between computer graphics and computer vision, including:
facial animation [1] and modelling [2–4], caricaturization and expression exagger-
ation [5], cross-parametrization [6, 7], texture mapping [6] and morphing [8, 9].
In the motion pictures industry, one of the challenges is the creation of visually-
realistic animated human faces. The rapid development of 3D real-time video
acquisition techniques [10] opens a new way to create a synthetic character, by
scanning an actor and replacing his or her facial texture with a virtual one, au-
tomatically mapping a single image onto a 3D video sequence. We call the effect
achieved in this way the “virtual makeup”.

The common denominator of the above applications is the correspondence
problem, i.e. the need to identify the same points in two different instances of a
single face (e.g. deformed by facial expressions) or on two different faces. Specif-
ically, we consider the problem of correspondence between 3D facial surfaces,
which appears to be significantly harder than its 2D counterpart. Unlike syn-
thetic face animation [1], where the correspondence between meshes and textures
is known, in our case the 3D sequence is acquired by a range sensor and therefore,
the correspondence is not readily available.

In 3D morphing, the correspondence is usually established by finding a com-
mon parametrization domain for the surfaces. Such parametrizations can be
constructed using a set of fiducial points, which, in most cases, must be selected
manually [9]. A parametrization of faces that is common to all expressions has
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Fig. 1. Example of a 3D video sequence of an articulated face.

been proposed in [11, 4]. A hybrid method based on fitting 2D facial images to
a deformable 3D model of the face was proposed in [2, 3]. In [12], it was empir-
ically shown that natural facial expressions can be considered as isometries of
the facial surface. Multidimensional scaling (MDS) [13] was then used to con-
struct an intrinsic geometric representation of the face for expression-invariant
face recognition. Here, we adopt the isometric model to establish correspondence
by finding the “most isometric” mapping between two facial surfaces. Our ap-
proach is based on a numerical procedure similar to MDS, allowing to embed
one surface into another. We refer to this method as the generalized MDS, or
GMDS for short [14].

This paper consists of five sections. In Section 2, we present the isometric
model of facial expressions. Section 3 describes the GMDS problem for finding
correspondence between facial surfaces and deals with its numerical implementa-
tion. In Section 4, we show some applications of GMDS to a number of problems
related to face animation. Section 5 concludes the paper.

2 Isometric model

Consider a 3D video sequence of an articulated face, acquired by real-time 3D
scanner. We can think of the video as of a sequence of smooth compact connected
two-dimensional Riemannian surfaces, denoted by {S0,S1, ...}. The geodesic dis-
tances (lengths of the shortest paths) dSt : St × St → R on St are induced
by the corresponding Riemannian metrics. These distances define the intrinsic
geometry of the surface. The extrinsic geometry is captured by the vector field
st : St 7→ R3, representing the Euclidean coordinates of the surface points. We
call S0 the reference frame or the reference surface.

Our goal is to find the correspondence between S0 and St, represented by
a bijective mapping ϕt : S0 → St. When only the geometry is available, this
is a very challenging problem. Theoretically, the mappings {ϕ1, ϕ2, ...} can be
estimated by finding correspondence between some fiducial points or features
[9]. Yet, the main limitation of feature-based approaches is the fact that they
require a precise feature detector. Unfortunately, the number of features that can
be robustly detected and tracked using facial surface geometry is usually small.
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The geometry of the facial surface contains mostly low-frequency information,
while feature detection usually requires high-frequency information. A few points
such as the eyes and the nose tip, can be detected sufficiently accurately based
on the surface curvature. This implies that the correspondence is available only
between a sparse set of points. Alternatively, dense correspondence can be found
using optical flow applied to the texture, as done by Blanz et al. [4]. However,
this approach requires the texture information, which is not always available.

In [12], we showed empirically in the context of 3D face recognition that
the deformations of a face due to natural expressions can be approximated by
isometries (distance preserving transformations). Under this assumption, called
here the isometric model, all instances of the facial surface in our video are
isometric, i.e. there exists a sequence of bijective mappings {ϕ1, ϕ2, ...}; ϕt :
S0 → St such that

dS0(s1, s2) = dSt(ϕt(s1), ϕt(s2)), (1)

for all s1, s2 ∈ S0. In practice, a genuine isometry between two surfaces does not
exist, but can be approximated by finding a mapping that distorts the geodesic
distances the least. Our claim is that such a near-isometric mapping establishes
a correspondence between St and S0. In the following, we will write ϕt, implying
the correspondence found in this manner.

Practice shows that the surfaces need not to be necessarily isometric in order
for the minimum-distortion mapping to be a good correspondence. This is due to
the fact that in a broad sense, all human faces have similar geometry. Thinking
of two faces as of flexible rubber masks, the correspondence problem is that of
putting one mask onto the other, while trying to stretch it as less as possible. It
is obvious that in most cases, the geometric features (like nose, forehead, mouth,
etc.) of the two masks will coincide. A recent breakthrough in surgical face
transplantation reinforces this claim. Consequently, given two faces of different
subjects, we can still use the same principle to find correspondence between
them. We exemplify this idea in Section 4.3.

3 Generalized multidimensional scaling

Let us be given the reference frame S0 and another frame St. Our goal is to find
ϕt as the most isometric mapping between S0 and St, i.e., a mapping that min-
imizes the distortion of the geodesic distances. The isometric model guarantees
that there exists ϕt with zero or at least near-zero distortion. Since we deal with
discrete surfaces, we assume St to be sampled at the points {s1, ..., sNt} and rep-
resented as a triangular mesh. For notation convenience, we write St, intending
its polyhedral approximation. We denote by ∆t = (dSt(si, sj)) the matrix of all
pairwise geodesic distances between the surface samples, computed numerically
using, for example, the fast marching method (FMM) [15]. We are looking for a
mapping ϕt : {s1, ..., sN0} ⊂ S0 → St, such that dS0(si, sj) is as close as possible
to dSt(ϕ(si), ϕ(sj)) for all (i, j) ∈ P ⊆ {1, ..., N0} × {1, ..., N0} (some distances
must be excluded; see Section 3.1). We refer to such ϕt as partial embedding of
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S0 into St. Note that (St, dSt
) is assumed continuous here, as ϕt(si) can be any

point on the polyhedron St, i.e., can fall between the samples. In practice, we
have to approximate the values of dSt

from ({s1, ..., sNt
} ⊂ St,∆t).

The partial embedding ϕt can be computed by minimizing the generalized
stress [16],

σ(s′1, ..., s
′
N0

) =
N0∑

i=1

N0∑

j=i+1

wij

(
dSt(s

′
i, s

′
j)− dS0(si, sj)

)2
. (2)

Here, wij = 1 if (i, j) ∈ P and 0 otherwise, and P denotes the set of pairs
of points which are included into the stress computation. The optimization is
performed directly on the images s′i = ϕt(si), in an MDS-like spirit. The optimal
solution

{s′1, ..., s′N0
} = argmin

s′1,...,s′N0

σ(s′1, ..., s
′
N0

), (3)

establishes a correspondence between the given N0 points {s1, ..., sN0} ⊂ S0 and
N0 points {ϕt(s1), ..., ϕt(sN0)} on the polyhedron St. In this way, we obtain
a correspondence between a dense set of points, since N0 can be as large as
necessary. This is opposed to methods based on fiducial points, where the number
of points is usually limited. Also note that the mapping we find is {s1, ..., sN0} →
{s′1, ..., s′N0

}, and it will generally be bijective.
We refer to problem (3) as the GMDS (generalized MDS). It can be thought

of as a generalization of MDS, in which the target Euclidean space is replaced
with a general triangular mesh. Since s′i may be arbitrary points between the
samples of the polyhedron St, the distances dSt between the vertices of St must be
computed. We use the three-point geodesic distance approximation, a numerical
procedure producing a computationally efficient C1-approximation for dSt and
its derivatives, interpolating their values from the matrix ∆t of pairwise geodesic
distances on St [16].

The numerical solution of the GMDS problem consists of bringing the stress
(2) to a minimum over s′i represented in some parameterization domain as vectors
of coordinates ui. For example, if the surface St admits some global parameteri-
zation, say [0, 1)2 7→ St, every point on St can be represented by u ∈ [0, 1)2.
Global parameterization is often readily available for objects acquired using
many types of range scanners. Human faces usually fall into this category. 1

The minimization algorithm starts with some initial guess u(0)
i of the points and

proceeds by iteratively updating their locations, producing a decreasing sequence
of stress values. In our implementation, we used a gradient descent algorithm
safeguarded by inexact linesearch (Armijo rule) [18]. The complexity of the stress
and its gradient computation is O(N2

0 ). Since N0 typically varies between tens
to hundreds of points, GMDS is computationally efficient.
1 For objects with more complicated topology, global parameterization may not exist;

in this case, we represent a point on St by the triangle index m it and a vector u of
barycentric coordinates [17] in the local coordinate system of that triangle.
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Finally, we must note that GMDS is a non-convex optimization problem,
like traditional MDS. Consequently, the use of convex optimization algorithms
in this problem is liable to local converge [13]. Nevertheless, convex optimization
is widely used in the MDS community if some precautions are taken in order
to prevent convergence to local minima. Here, we use a multiscale optimization
scheme that in practical applications shows good global convergence [16].

3.1 Selection of weights

Expressions with open mouth do not fit into the isometric model, in which we
tacitly assumed a fixed topology of the surface. Opening the mouth creates
a “hole” in the facial surface. Resolving this problem is possible imposing a
topological constraint on the facial surface, for example, assuming the mouth to
be always open [19]. This is achieved by essentially cutting off the lip contour
in the reference frame S0, either automatically or manually (in practice, the lip
detector does not have to be very accurate).

An important issue arising after such a processing is the inconsistency of
minimal geodesics. Let S ′0 denote the reference frame after lip cropping. We
assume that the geodesic distances on S ′0 are given by the restricted metric,
dS′0(s1, s2) = dS0 |S′0(s1, s2) (this notation implies that dS′0(s1, s2) = dS0(s1, s2)
for all s1, s2 ∈ S ′0). However, dS′0 is computed numerically on S ′0 and can be
inconsistent with dS0 |S′0 . Potentially, the problem arises with minimal geodesics
that are close to the boundary ∂S ′0. Such geodesics can be substantially different
on S0 and S ′0, and the corresponding distances are therefore inconsistent. In
order to resolve this problem, define the set P of consistent distances, excluding
every pair of points (si, sj), for which the minimal geodesic passes through the
cropped region S0 \ S ′0. Particularly, we exclude in this way the distances that
would have been measured S0 across the lips on the original surface.

4 Applications

The knowledge of the intrinsic correspondence between two facial surfaces al-
lows us to perform texture mapping onto all the frames of the video sequence.
Moreover, we can also transform the extrinsic geometry of the faces, creating
an interpolation or morphing effect between the 3D frames. Finally, the same
approach can be applied to morphing between faces of different subjects.

4.1 Virtual makeup

Our first application is the “virtual makeup” – expression-invariant mapping of
a single texture image onto a 3D video of an animated face. We first draw the
texture (represented as the field α0 : S0 7→ R3, consisting of the R, G and B
channels) on the reference frame S0. Next, using the correspondences, we map
the texture onto the rest of the frames in the 3D video.
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Fig. 2. Processing stages in the virtual makeup problem (left to right): reference sur-
face; cropping and subsampling; texture mapping onto the reference surface; correspon-
dence establishment using GMDS and texture mapping onto the target surface.

A scheme of the procedure is depicted in Figure 2. The reference surface S0

first undergoes cropping that removes the lips and leaves only the facial contour.
The obtained region S ′0 is subsampled using farthest point sampling, geodesic
distance between the samples are computed using FMM [15]. The distances
crossing the cropped lips region are assigned zero weights. Next, the texture α0

is drawn on the reference surface. The points on S0 are then embedded into
the target surface St using GMDS, which produces the correspondence ϕt. The
mapping ϕt is used to interpolate the texture onto the surface St, yielding a
synthetic texture αt = α0 ◦ ϕ−1

t .
We tested our virtual makeup algorithm on a real 3D video sequence of a face,

acquired by a structured light scanner at 640× 480 spatial resolution, 3 frames
per second (Figure 1). The lip contour in the reference frame was segmented
manually. The cropped reference frame was sampled at 100 points; all the rest
of the frames were sampled uniformly at about 3000 points. The surfaces were
triangulated using Delaunay triangulation; then, the geodesic distances were
computed using FMM [15]. The correspondence was found by embedding 100
points on S0 into St using a multiresolution optimization scheme, initialized
with 8 points at the coarsest level. A MATLAB implementation of GMDS2

was used. Figure 3 depicts a synthetic Shrek-like character, created from the
video sequence by mapping a synthetic face texture image (drawn in Photoshop)
using our algorithm. The faces produced in this way look real and the texture
alignment is preserved even in case of strong facial expressions.

4.2 Expression interpolation and exaggeration

The correspondence found by means of GMDS can also be used to transform the
extrinsic geometry of the surfaces. Let St and St+1 be two adjacent frames in
the 3D video, and let ψt = ϕt+1 ◦ϕ−1

t be the correspondence between them. Let
st : St 7→ R3 and st+1 : St+1 7→ R3 denote the extrinsic Euclidean coordinates

2 Codes and demos will be published on http://tosca.cs.technion.ac.il
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Fig. 3. Virtual makeup: a few frames from the video sequence shown in Figure 1, with
a Shrek texture image mapped using the correspondence established by GMDS.

of St and St+1, respectively. The extrinsic geometry of the surfaces is assumed
to be at least roughly aligned by means of a rigid (Euclidean) transformation.
Three points are enough for such an alignment. In our case, this is a simple task
since the correspondence is known.

We define a new surface St+λ with extrinsic coordinate given by the following
convex combination:

st+λ(s) = λst(s) + (1− λ)st+1(ψt(s)), (4)

for all s ∈ St+λ and λ ∈ [0, 1]. The corresponding texture αt+λ is defined in
a similar manner. Varying the value of λ continuously from 0 to 1, we create
a natural interpolation between the frames St and St+1. The synthetic surfaces
obtained this way have a realistic look (Figure 4). Such an interpolation is useful,
for example, as a method of temporal super-resolution of a 3D video. Allowing
for λ < 0 or λ > 1, we can create a new, exaggerated facial expression (Figure 5).

4.3 Texture substitution and morphing between different faces

Relaxing the basic assumption of the isometric model, we can use GMDS in order
to find the correspondence between two different faces. Though two different
facial surfaces are not even approximately isometric, the minimum-distortion
mapping appears to be a surprisingly good correspondence even in this case. In
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Fig. 4. Expression interpolation between two frames in the video sequence (shown
without texture to emphasize the natural look of the synthetic expressions).

 
 

   

  

     

   

  

Fig. 5. Expression exaggeration. First row: original expressions. Second row: exagger-
ated expressions.

our example, as S0 and S1, we took a female and a male face from the Notre
Dame database [20]. Each face was subsampled to approximately 3000 points
and triangulated. The shapes were roughly aligned. Fifty points were taken on
S0 and embedded into S1 using GMDS. The resulting correspondence ϕ1 was
then used to map the texture α0 from S0 to S1. Figure 6 shows a synthetic face
obtained by taking S1 with the texture α̃1 = α0 ◦ ϕ−1

1 (male geometry with a
female texture). Figure 7 shows a morphing effect between S0 and S1, obtained
by interpolating the extrinsic geometry and the texture according to (4).
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 Fig. 6. Texture substitution: GMDS is used to find the minumum-distortion mapping
between face S0 and S1 (by embedding S0 into S1). Using this mapping as a corre-
spondence, the texture α0 is mapped onto S1.

 

     
     

 Fig. 7. Morphing: the correspondence is used to transform the texture and the extrinsic
geometry of S0 into the corresponding texture and extrinsic geometry of S1.

5 Conclusions

We presented an automatic geometric procedure for establishing dense corre-
spondence between facial surfaces. Exploiting the empirical fact that facial ex-
pressions can be modelled as isometries, our approach is based on finding the
minimum-distortion mapping between two surfaces. This mapping is computed
by a procedure similar to multidimensional scaling (GMDS). The algorithm is
computationally efficient, though currently not real-time. Our preliminary re-
sults show that near real-time performance can be achieved by exploiting multi-
grid optimization [21] and implementation on graphics processors (GPU).

Unlike feature-based methods, our approach does not require feature detec-
tion and tracking. We find correspondence between an arbitrarily dense set of
points, as opposed to feature-based methods, which are usually limited to a
small set of fiducial points that can be robustly detected and tracked. Moreover,
our approach is applicable when 2D information (texture) is not available. The
proposed method is generic and has a wide range of uses in computer graphics
and computer vision. We demonstrated some applications, including the “vir-
tual makeup” by expression-invariant texture mapping onto an animated face,
texture substitution and morphing.
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