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Abstract. We present a theoretical and computational framework for
matching of two-dimensional articulated shapes. Assuming that articu-
lations can be modeled as near-isometries, we show an axiomatic con-
struction of an articulation-invariant distance between shapes, formu-
lated as a generalized multidimensional scaling (GMDS) problem and
solved efficiently. Some numerical results demonstrating the accuracy of
our method are presented.

1 Introduction

Recognition of two-dimensional shapes (silhouettes) is an important problem
with a wide range of applications, extensively addressed in computer vision lit-
erature (see e.g. [1–3]). One of the main difficulties in shape recognition arises
from the fact that natural objects are non-rigid. A simplified model capturing
to some degree this flexibility is the articulated shape model, assuming that the
object is composed of rigid parts, each of which has a certain freedom to move.
Such a model appears to be applicable to many objects in nature, for example,
humans, animals, tools, etc [4].

Recently, Ling and Jacobs [5] proposed to use the inner (geodesic) distances
for recognition of articulated shapes. The main claim is that the geodesic dis-
tances are insensitive to articulations and therefore can be used as robust de-
scriptors of the shape. This approach is related to previous works of Elad and
Kimmel on bending-invariant representations of 3D objects [6], in which multi-
dimensional scaling (MDS) was applied to the geodesic distances measured on
the shape in order to obtain its intrinsic-geometric representation.

Our current paper is strongly motivated by the study of Ling and Jacobs.
Using the model presented in [5], we describe articulations as isometric (distance-
preserving) transformations of the shape. The main contribution of this paper is
an axiomatic construction of a distance that allows to discern between geometri-
cally different articulated shapes while being articulation-invariant. Our distance
is free of error introduced by approaches based on Euclidean MDS [6] and also
allows matching of partially occluded shapes. The computation of our distance is
formulated as a generalized MDS problem (GMDS) and can be solved efficiently.
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Fig. 1. Example of an articulated shape, consisting of four parts (black) and one joint
(gray). The geodesic distance between two points is shown in red. Note that the geodesic
distances change is bounded by the diameter of the joint.

This paper consists of five sections. In Section 2, we present the isometric
model of articulated shapes and our articulation-invariant distance. Section 3
deals with numerical computation of the distance between articulated shapes
using the GMDS. In Section 4, we present an experimental validation of our
approach. Section 5 concludes the paper.

2 Isometric model for articulated shapes

Let S be a shape, represented as a compact, connected, flat two-dimensional
manifold with boundary. The metric on S is assumed to be Euclidean. Following
Ling and Jacobs [5], we represent S as a union of K disjoint parts S1, ...,SK

and L joints J1, ...,JL (Figure 1). We call such S an articulated shape. The
minimal geodesics (shortest paths) on S consist of linear segments and portions
of the boundary [5]. The geodesic distances between two points s1, s2 ∈ S are
denoted by dS(s1, s2). An articulated shape with

∑L
i=1 diamJi ≤ ε is called an

ε-articulated shape. We denote by Mε the space of all ε-articulated shapes; M
denotes M∞.

An articulation is a mapping f : S → S ′ ⊂ R2, which transforms each
part Si in a rigid manner and preserves the topology of the whole shape, such
that different parts remain disjoint. For an ε-articulated shape, articulations are
ε-isometries, i.e., have distortion

dis f ≡ sup
s1,s2∈S

|dS(s1, s2)− dQ(f(s1), f(s2))| ≤ ε. (1)

An ideal articulated shape has point joints (ε = 0) and its articulations are true
isometries. In practice, ε > 0, yet, the joints can be often assumed significantly
smaller compared to the parts [5]. We call this assumption the isometric model
of articulated shapes.
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The shape S ′ = S ∩ Q produced by cutting S with a planar shape Q, such
that S ′ has the same topology of S is said to be a cut of S; if Q is convex, S ′ is
said to be a convex cut. Note that in general, any articulated shape can be cut of
the plane, assuming the cutting shape is sufficiently complicated. The intrinsic
geometries of S and S ′ may be different in this case. However, a convex cut
appears to preserve the intrinsic geometry, in the sense that for every s1, s2 ∈ S ′,
dS′(s1, s2) = dS(s1, s2).

In practical applications, articulated shapes are usually represented as dis-
crete binary images sampled at a finite number of points (pixels). A finite set
Sr = {s1, ..., sN} ⊂ S is said to be an r-sampling of S, if ∪N

i=1B(si, r) = S, where
B(si, r) denotes the Euclidean ball of radius r centered at si. Since the shapes
are assumed to be compact, every ε-articulated shape has a finite r-sampling for
every r > 0.

2.1 Measuring distance between articulated shapes

Comparison of articulated shapes can be performed by defining a distance dM :
M ×M 7→ [0,∞). Here, we develop an axiomatic approach, requiring dM(S,Q)
to obey the following set of axioms:

A1. Articulation invariance: dM(S, f(S)) ≤ ε for all S ∈Mε and all articulations
f of S.

A2. Dissimilarity : if dM(S1,S2) > ε, then there does not exist S ∈ Mε and two
articulations f1, f2 of S, such that S1 = f1(S) and S2 = f2(S).

A3. Partial matching : for every S ∈Mε and its convex cut S ′, dM(S,S ′) = 0.
A4. Triangle inequality : for every S1,S2,S3 ∈ Mε, dM(S1,S2) + dM(S2,S3) ≥

dM(S1,S3).
A5. Sampling consistency : for every r-samplings Sr of S andQr ofQ, |dM(S,Q)−

dM(Sr,Qr)| ≤ 2r.

In simple words, axioms A1–A2 guarantee that dM(S,Q) is a good similarity
measure, assigning large distances for dissimilar shapes and small distances for
similar shapes, while being insensitive to articulations. Note that we do not de-
mand the converse of A1 to hold. In fact, two different ε-articulated shapes with
intrinsic geometry differing by less than ε cannot be discerned in the framework
of the isometric model. Axiom A3 allows us to match a portion of a shape to its
whole. In order to make the partial matching well-defined, we restrict the cut
to be convex. Axiom A4 provides basic metric properties. Note that demanding
A3, dM(S,Q) cannot be made symmetric and thus the triangle inequality holds
only in a non-symmetric manner. Finally, Axiom A5 enables a discretization and
a numerical computation of dM(S,Q).

Here, we use the following distance between articulated shapes

dM(S,Q) = inf
ϕ:Q7→S

dis ϕ, , (2)

which essentially measures the least possible distortion of embedding shape
Q into shape S. This distance is intimately related to the Gromov-Hausdorff
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distance [7–9]. A very similar distance has been proposed in [10] for bending-
invariant matching of three-dimensional objects.

Theorem 1. dM(S,Q) in (2) obeys axioms A1-5.

Proof. A1: Let S be a planar shape and f : S → Q a surjective mapping with
dis f ≤ ε. Define ϕ : f(S) → S by assigning to every q ∈ Q an arbitrary point
s ∈ f−1(q) in the pre-image of q. Since f(ϕ(q)) = f(s) = q, one has |dQ(q, q′)−
dS(ϕ(q), ϕ(q′))| ≤ dis f ≤ ε for every q, q′ ∈ Q. Consequently, dM(S,Q) ≤ ε.
A2: Let there be two planar shapes S1 and S2 such that dM(S1,S2) > ε. Assume
that there exists a mapping ϕ : S2 → S3 with dis ϕ ≤ ε. Then, |dQ(q, q′) −
dS(ϕ(q), ϕ(q′))| ≤ dis f ≤ ε for every q, q′ ∈ Q and, clearly, dM(S,Q) ≤ ε in
contradiction to the assumption. Hence, S1 and S2 are not ε-isometric.
A3: Let there be a planar shape S and S ′ ⊂ S a convex cut of S. Since for
every s, s′ ∈ S ′, dS′(s, s′) = dS(s, s′), the identity mapping ϕ : S ′ → S yields
|dS′(s, s′)− dS(ϕ(s), ϕ(s′))| = 0. Hence, dM(S,Q) ≤ dis ϕ = 0.
A4: Let there be three planar shapes S1,S2 and S3 such that dM(S1,S2) < ε1 and
dM(S2,S3) < ε2. Then, there exist two mappings ϕ1 : S2 → S1 and ϕ2 : S3 → S2

with disϕ1 < ε1 and dis ϕ2 < ε2. Denote by ψ = ϕ1 ◦ϕ2 : S3 → S1. Invoking the
triangle inequality for real numbers, one has

|dS3(s, s
′)− dS1(ψ(s), ψ(s′))| ≤

≤ |dS3(s, s
′)− dS2(ϕ2(s), ϕ2(s′))|+ |dS2(ϕ2(s), ϕ2(s′))− dS1(ψ(s), ψ(s′))|

≤ dis ϕ2 + dis ϕ1 < ε1 + ε2

for every s, s′ ∈ S3. Hence, dis ψ < ε1 + ε2, implying dM(S1,S3) ≤ dM(S1,S2) +
dM(S2,S3).
A5: Using the (non-symmetric) triangle inequality, one has dM(S,Q) ≤ dM(S,Qr)+
dM(Qr,Q) ≤ dM(Sr,Qr) + dM(S,Sr) + dM(Qr,Q) and, similarly, dM(Sr,Qr) ≤
dM(S,Q)+dM(S,Sr)+dM(Qr,Q), yielding |dM(S,Q)− dM(Sr,Qr)| ≤ dM(S,Sr)+
dM(Qr,Q). Since Sr ⊂ S and dSr = dS |Sr , according to (A3), dM(S,Sr) = 0.
It is therefore sufficient to show that dM(Qr,Q) ≤ 2r. Let us define a map-
ping ϕ : Q → Qr as ϕ(q) = arg minq′∈Qr dQ(q, q′) (the mininmum exists,
since Qr can be replaced by a finite sub-covering). Since Qr is an r-covering,
dQ(q, ϕ(q)) ≤ r for every q ∈ Q. If q, q′ are both in Qr, then |dQ(q, q′) −
dQ(ϕ(q), ϕ(q′))| = 0. If q ∈ Qr and q′ ∈ Q, then |dQ(q, q′) − dQ(ϕ(q), ϕ(q′))| =
|dQ(q, q′)− dQ(q, ϕ(q′))| ≤ dQ(q′, ϕ(q′)) ≤ r. If both q, q′ ∈ Q, then |dQ(q, q′)−
dQ(ϕ(q), ϕ(q′))| ≤ dQ(q, ϕ(q)) + dQ(q′, ϕ(q′)) ≤ 2r. ut

In practice, it is useful to replace dM(S,Q) by an Lp-norm analog,

dp
M(S,Q) =

(
1

A2
Q

inf
ϕ:Q7→S

∫ ∫

Q×Q
(dQ(q, q′)− dS(ϕ(q), ϕ(q′)))p

dqdq′
)1/p

, (3)

where dq is the standard area measure in R2 and AQ =
∫

Q
dq. In the limit

p →∞, dp
M is just dM.
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Fig. 2. A centaur (left) and a horse (right) share the bottom part of the body and
differ in the upper part. This example is inspired by [11].

Apart from giving a quantitative measure of similarity of two shapes, com-
putation of dp

M(S,Q) also yields a correspondence ϕ between S and Q. Such
correspondence may be useful in many applications including tracking of silhou-
ettes in video sequences and alignment of articulated shapes.

2.2 Comparison of partially overlapping shapes

By virtue of axiom A3, dM allows to compare between a shape and its portion.
However, in a more general setting of partial matching, one shape does not
necessarily has to be a portion of the other. As a motivating example, consider
two planar shapes S and Q in Figure 2, which share some large similar portions
S ′ ⊂ S and Q′ ⊂ Q, yet also have dissimilar portions S ′c = S \ S ′ and Q′c =
Q \ Q′. We now outline a method to handle this setting as well.

Let us assume that the computation of dp
M(S,Q) gives us a minimum-distortion

mapping ϕ : Q 7→ S.1 We define the local distortion at a point q as

dis(q;ϕ) =
(

1
AQ

∫

Q
(dQ(q, q′)− dS(ϕ(q), ϕ(q′)))p

da

)1/p

. (4)

This allows to attribute each point in q ∈ Q a quantitative measure of metric
distortion introduced by the mapping ϕ to the distances between all pairs of
the form (q, q′), q′ ∈ Q. We can define a portion Q′(ρ) = {q : dis(q;ϕ) ≤ ρ}
consisting of all points with local distortion below some threshold ρ. This allows
to segment Q to regions similar to S and those dissimilar to S.

Omitting technical details, we can measure the relative area of the comple-
ment of Q′(ρ),µ(ρ) = 1 − 1

AQ

∫
Q′(ρ)

da, and construct a generalized distance
function d′M(S,Q) assigning to each pair of shapes (S,Q) a monotonically de-
creasing function µ : [0, diam Q] 7→ [0, 1]. Such a function, essentially similar to a
1 We omit here some technical details: in reality, ϕ does not necessarily exist, yet

dis(q; ϕ) can still be defined using a sequence of mappings ϕn with convergent dis-
tortion.
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receiver operator characteristic (ROC) curve, allows many definitions of a partial
order relation, which is necessary for measuring the similarity of the shapes. For
example, given that the objects subject to comparison are ε-articulated shapes,
we can set ρ = ε and use the relative area µ(ε) of the dissimilar portions as the
similarity measure. A dual approach is to fix some µ0 (say, 80% of the shape
area) and use ρ for which µ(ρ) = µ0 as a measure similarity.

3 Generalized multidimensional scaling

We now address the issue of practical computation of dp
M. Let Sr = {s1, ..., sM}

and Qr = {q1, ..., qN} be finite r-samplings of articulated shapes S and Q (for
example, r can be the pixel size when the shapes are represented as binary
images) and ∆S = (dS(si, sj)) and ∆Q = (dQ(qi, qj)) be the M×M and N×N
matrices of geodesic distances between the samples of Sr and Qr, respectively.
The distances are computed numerically using the fast marching method (FMM)
[12, 13].

In this discrete setting, dp
M can be formulated as

dp
M(Sr,Qr) =


 min

s′1,...,s′N

N∑

i,j=1

aiaj

∣∣dQ(qi, qj)− dS(s′i, s
′
j)

∣∣p



1/p

, (5)

for p < ∞, and

d∞M (Sr,Qr) = min
τ≥0,s′1,...,s′N

τ s.t
∣∣dQ(qi, qj)− dS(s′i, s

′
j)

∣∣ ≤ τ (6)

for p = ∞, where s′i = ϕ(qi) denote the image of qi under the mapping ϕ. The
weights ai are selected as the normalized areas of the Voronoi cells of qi. In
practice, when the sampling is sufficiently regular, the simple choice ai = 1/N
appears to be a more convenient alternative.

Problems (5) and (6) can be considered as a generalization of multidimen-
sional scaling (MDS) [14] to general metric spaces. We call it the generalized
MDS or GMDS for short. The optimization is performed directly on the images
s′i = ϕ(qi), in the spirit of MDS. Since s′i may fall between the samples of S, one
has to compute the geodesic distances dS between any two arbitrary points in S.
For this purpose, we use the three-point geodesic distance approximation, a nu-
merical procedure is to produce a computationally efficient C1-approximation for
dS and its derivatives, interpolating their values from the matrix ∆S of pairwise
geodesic distances in S [9].

The numerical solution of the GMDS problem consists of finding an uncon-
strained minimum of the following generalized stress function

σ(u1, ...,uN ) =
N∑

i,j=1

wij |δij − dS(ui,uj)|p , (7)
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where δij = dQ(qi, qj) denote the elements of ∆Q, wij = aiaj , and ui ∈ S
are vectors of coordinates in R2 representing s′i. When p = ∞, constrained
minimization is used. In our implementation, we used a gradient descent algo-
rithm safeguarded by inexact linesearch (Armijo rule) [15]. The complexity of
the stress and its gradient computation is O(N2). Typically, N varies between
tens to hundreds of points, therefore GMDS is computationally efficient.

Like the traditional MDS, GMDS is a non-convex optimization problem,
and therefore convergence to local minima rather than to the global one is possi-
ble[14]. Nevertheless, convex optimization is widely used in the MDS community
if some precautions are taken in order to prevent convergence to local minima.
Here, we use a multiscale optimization scheme that in practical applications
shows good global convergence [9, 16].

4 Results

In order to assess the proposed approach, three experiments were performed.
In the first experiment, the Tools A dataset2 consisting of 35 shapes of 7 dif-
ferent tools, was used (see Figure 3). The tools were classified into 4 groups:
scissors, pliers, pincers, cutters and knife. All the tools excepting the knife have
four parts and one joint. The knife has three parts and two joints. GMDS was
used to compute dp

M with p = 2 between the shapes. We used a multiresolution
optimization scheme, initialized at 5 points at the coarsest resolution. A total
of N = 25 points were used. Figure 4 visualizes these distances as Euclidean
similarity pattern. One can observe that the shapes are clearly distinguishable
and form groups corresponding to their classification (e.g. two different shapes
of scissors and pliers are close to each other). Note that different articulations
are also distinguishable, such that one (at least theoretically) can infer the ar-
ticulation constant ε of each shape.

In the second experiment, three partial probes for each of the seven tools from
the Tools A dataset were used in matching against the set of 35 full shapes.
Figure 5 presents the three first closest matches; due space limitations, only
representive results are shown. In all cases, the first match was found correctly.

In the third experiment, the Tools B dataset consisting of three instances with
minute modifications of small details of four objects from the Tools A set were
used. GMDS was used to compute the correspondence ϕ between the shapes; the
embedded shapes were discretized at N = 50 points. Figure 6 depicts the local
distortion maps, obtained by embedding various shapes to five references models
from the Tools B dataset. Note that local distortion maps manifest high distor-
tions in dissimilar regions, which allow to capture most of the local differences
between the shapes; we attribute some misses to sampling errors.

2 All the data and codes will be available at http://tosca.cs.technion.ac.il
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Fig. 3. Articulated shapes from the Tools A data set.

5 Conclusions

We presented a generic framework for the recognition of articulated two-dimensi-
onal shapes based on the isometric model. According to this model, articulations
arise from near-isometric transformations and therefore inflict small changes to
the geodesic distances measured inside the shape. We showed a distance able to
distinguish between shapes insensitively to their articulations. This distance is
also capable of performing partial matching of shapes and finding local dissimi-
larities between them. The distance computation is formulated as an MDS-like
problem, which is efficiently solved using smooth optimization techniques.
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Fig. 5. Retrieval with partial probes: first three closest matches found for different
partial probes (outlined).

  
 

 

  
 

 

  
 

 
 

Fig. 6. Local distortion maps obtained by embedding two probes into model shapes
from the Tools B dataset (top row). Distortion is represented in shades of red (high
distortion) and black (low distortion).


