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Abstract. According to the Uniformization Theorem any surface can
be conformally mapped into a flat domain, that is, a domain with zero
Gaussian curvature. The conformal factor indicates the local scaling in-
troduced by such a mapping. This process could be used to compute
geometric quantities in a simplified flat domain. For example, the com-
putation of geodesic distances on a curved surface can be mapped into
solving an eikonal equation in a plane weighted by the conformal fac-
tor. Solving an eikonal equation on the weighted plane can then be done
with regular sampling of the domain using, for example, the fast march-
ing method. The connection between the conformal factor on the plane
and the surface geometry can be justified analytically. Still, in order to
construct consistent numerical solvers that exploit this relation one needs
to prove that the conformal factor is bounded.

In this paper we provide theoretical bounds over the conformal fac-
tor and introduce optimization formulations that control its behavior. It
is demonstrated that without such a control the numerical results are
unboundedly inaccurate. Putting all ingredients in the right order, we
introduce a method for computing geodesic distances on a two dimen-
sional manifold by using the fast marching algorithm on a weighed flat
domain.

1 Introduction

Consistent and efficient distance computation on various domains is a key com-
ponent in many important applications. Several papers tackle the problem of
geodesic distance computation on triangulated surfaces. The celebrated fast
marching method [7,9] enabled the solution in isotropic inhomogeneous domains
that are regularly sampled. It was later generalized [3] through a geometric
interpretation of the numerical update step, that enabled consistent and effi-
cient computation of distances in anisotropic domains. So far, the fast marching
method was implemented on manifolds given as either a triangulated mesh, a
parametrized surface [10,8], or implicitly defined in a narrow band numerically
sampled with a regular grid [5]. Traditionally, the fast marching method is ex-
ecuted on the manifold itself where some parametrization is provided. In these
cases, usually there is some processing involved in order to overcome the iregu-
larity of the numerical sampling. This is the case for the unfolding initialization
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step in [3]. Here, in order to avoid this procedure, we use a conformal mapping
of a given surface and compute distances in a simplified domain. In other words,
we conformally map the original curved surface into a flat plane in which we run
the fast marching using the conformal factor as a local weight.

1.1 Introduction to Conformal Mapping

Let us consider a two dimensional parametrized manifold X ∈ R
3. It can be

defined by the functions x, y, z : R
2 → R, such that (α, β) ∈ R

2 defines a
coordinate in X given by X = (x(α, β), y(α, β), z(α, β)). Such a parametrization
induces a metric G, a scalar product 〈u, v〉G = uTGv, a gradient ∇G· = G−1∇·
where ∇· is the usual gradient with respect to α and β, and a Laplace Beltrami

operator ΔG· =
1√
g
∇T

(√
gG−1∇·) where g = det(G). We would like to map

the surface X defined by this manifold into D ∈ R
2, preserving the angles of

intersections of corresponding curves. That is, given any two curves in X , their
images in D have to intersect at the same angle as in X . A conformal mapping
is a mapping function that has this property at each and every point, and can
be introduced by two functions (u(α, β), v(α, β)) that map our manifold in D

and obey the following condition ∇u =
GR√
g
∇v, where R =

(
0 1

−1 0

)
. This

restriction over (u, v) implies four properties

1. ΔGu = 0.
2. ΔGv = 0.
3. 〈∇Gu,∇Gv〉G = 0.
4. 〈∇Gu,∇Gu〉G = 〈∇Gv,∇Gv〉G.

This is equivalent to the Cauchy-Riemann condition if we take the metric G = I.
Denoting by J the Jacobian of the mapping (α, β) → (u, v), the previous

conditions can be written as
( ‖∇Gu‖2

G 〈∇Gu,∇Gv〉G
〈∇Gu,∇Gv〉G ‖∇Gv‖2

G

)
= ‖∇Gu‖2

GI ⇔ (∇Gu,∇Gv)T G(∇Gu,∇Gv) = ‖∇Gu‖2
GI

⇔ (∇u,∇v)T G−1(∇u,∇v) = ‖∇Gu‖2
GI

⇔ JG−1JT = ‖∇Gu‖2
GI

⇔ G−1 = ‖∇Gu‖2
GJ−1J−T

⇔ JT J = G‖∇Gu‖2
G.

Hence, any mapping is conformal with respect to a metric G if and only if
there exists a scalar function μ, refered to as the conformal factor, such that its
jacobian J satisfies JTJ = μ2G. We also note that

∥∥
∥
∥

(
du
dv

)∥∥
∥
∥

2

=
(
dα
dβ

)T

JTJ

(
dα
dβ

)
=

(
dα
dβ

)T

μ2G

(
dα
dβ

)
= μ2

∥∥
∥
∥

(
dα
dβ

)∥∥
∥
∥

2

G

.

It follows that
∥
∥
∥
∥

(
dα
dβ

)∥
∥
∥
∥

G

=
1
μ

∥
∥
∥
∥

(
du
dv

)∥
∥
∥
∥ .
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Such a mapping would allow us to compute distances on any metric space with
a generalized metric G using the computation of distance in an inhomogeneous
isotropic flat manifold.

2 Construction of a Discrete Harmonic Map

We start with a theorem that would be useful for our conformal map construc-
tion.

Theorem 1. Given a metric G defined on a regular domain D, and a function
f defined on ∂D, the solution f of the following problem

argmin
f∈C2(D)

f(x)=f0(x) ∀x∈∂D

{∫

D

‖∇Gf‖2
G

}

satisfies ΔGf = 0 and f(x) = f0(x) ∀x ∈ ∂D.

The main idea when constructing a discrete conformal map according to Polthier
[6] is to find a triangulation T = {T1, . . . , TNT } (where Ti is a triangle, and NT is
the number of triangles) of our map withNV vertices, and search for a continuous
function u minimizing the Dirichlet energy. For example, we could find u given by

u(γ) = u0(γ) +
NV∑

i=1

uiφi(γ), where ui are some coefficients, and φi are functions

satisfying

1. φi ∈ C0(M)
2. φi(Vj) = δij ∀i, j ∈ {1, . . . , NV }
3. φi is linear in each triangle.

Vj designating the jth vertex of T. After introducing these prerequisites, one
can construct the function u, denoted as the discrete harmonic map, using the
minimization problem expression of the harmonic function. It can be shown [6]
that the discrete Laplace Beltrami operator applied to u at a vertex Vi can be
expressed as

Δu(Vi) =
∑

edges (i,j) at i

(cot(θij) + cot(ψij))(ui − uj),

where uj = u(Vj) and θij and ψij represent the angles supporting the edge ViVj ,
where Vj is a neighbor of Vi , and ui = u(Vi). We then have to solve the following
system of equations to find an harmonic function u

∑

edges (i,j) at i

(cot(θij) + cot(ψij))(ui − uj) = 0, ∀i. (1)

After u has been computed, we have to find another conjugate discrete harmonic

function v, such that ∇v =
GR√
g

(∇u) . Next, we have to compute the gradient
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of u and perform a rotation by
π

2
. For that goal, Polthier [6] proposed to define

a mid-edge grid. For each edge (Vi, Vj), define a vertex at the mid-edge as V ∗
s =

Vi + Vj

2
. This way, each triangle (V1, V2, V3) is associated with a new triangle

(V ∗
1 , V

∗
2 , V

∗
3 ). If we define Ψr, the function associated to the vertex V ∗

r in the
mid-edge grid (or, equivalently to the edge (Vi, Vj) in the regular grid) we can
show that

(
v3 − v1
v3 − v2

)
=

1
2

(
(u2 − u1) cot(θ21) + (u2 − u3) cot(θ23)
(u2 − u1) cot(θ21) + (u3 − u1) cot(θ31)

)
,

where vr, vs are the values of v on the mid-edge vertices V ∗
r , V

∗
s located along

the edges (Vi, Vj), (Vj , Vk) (respectively), and θjk is the oriented angle supporting
the edge (j, k).

We end up with an algorithm, summarized for example in [4,6], that computes
the mid-edge conformal flattening.

Algorithm 1. Mid-Edge discrete conformal map
Require: T triangulation of the space Ω

Choose a face to cut, C = {Vic , Vjc , Vkc} ∈ T, and solve:

∑

j∈N (i)

(ui − uj) (cot(θij) + cot(ψij)) = 0 ∀i /∈ {ic, jc, kc}

Set arbitrary value for u on C and solve :

(
vj − vk

vj − vl

)
=

1

2

(
(ul − uk) cot(θlk) + (ul − uj) cot(θlj)
(ul − uk) cot(θlk) + (uj − uk) cot(θjk)

)

For the mid-edge vertex V ∗
r =

Vp + Vq

2
, set the value of the conformal map on the

midedge grid

u∗
r =

up + uq

2
, v∗r = vr

We also have the value of the conformal factor for each triangle Tk =(Vp, Vq, Vr)

μ(Tk) = ‖∇u(xq)‖
=

(
1

2 area Tq

(
(ur − uq)

2 cot(θp) + (up − uq)
2 cot(θr) + (ur − up)2 cot(θq)

)
) 1

2 .

3 Fast Marching on the Conformal Map

In the following experiments, we conformally mapped several functions into R
2

and run the fast marching algorithm on the conformal map using the confor-
mal factor as a local scaling of a uniform isotropic metric tensor. That is, we
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numerically solve the eikonal equation ||∇f(x, y)‖ = μ(x, y). When mapping a
surface, we have to take care of the boundary conditions. The way we define the
boundary of our target map is important, and can help us control the conformal
factor and thereby the numerical accuracy of our scheme. Without controlling
the boundary, all the points of the surface boundary could be mapped to a line.
While uniforming the metric and solving one problem, we encounter a new one,
that is, a non-uniform conformal factor. The conformal factor observes the cur-
vature of the surface on one hand, but, yields a challenging highly non-uniformly
sampled numerical domain to operate on the other.

In our first example, Figure 1, we map the surface z = f(x, y) = exp(−0.2x2−
0.5y2) without controlling the boundary.

Fig. 1. Left to right, top to bottom: Original surface, midedges surface, conformal map,
and zoom in

If we zoom in the area with the smallest triangles we observe that there
are three points around which small triangles are concentrated. These points
correspond to the corners of the original surface. When we compute the geodesic
distances from the corner point (−2,−2) to the rest of the surface points, the
result presented in Figure 2 demonstrates numerical inaccuracies caused by the
lack of control over the conformal factor.
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Fig. 2. Geodesic distance from the point (-2,-2) computed with FMM on the conformal
map (Left) and with the FMM on the triangulated domain (Rigth)

Our next challenge would be to bound the ratio between the smallest con-
formal factor and the largest one on the map. Actually, in the above example,
the areas ratio is in the order of 10−13 and the conformal factor ratio is 10−7.
Therefore, it is not trivial to numerically approximate geodesic distances using
the FMM on the uniform grid obtained by sampling an arbitrary conformal map.
Next, we try to overcome this problem by manipulating the boundary points of
the conformal map.

3.1 Controlling the Conformal Factor

We would like to bound the minimal conformal factor. For that goal, we start by
studying the computational aspect of the problem. We could try to manipulate
the boundary conditions. In Polthier’s algorithm, the scheme involves in finding
u and v. We find u by solving the system of equations (1). More precisely, this
system of equations is defined for each vertex i that does not belong to the
boundary of our domain. Define A to be the matrix of cotangent weights, such
that the previous equations can be written as Au = 0. Let us define Ã to be
the matrix obtained by removing from A the rows and columns that correspond
to boundary points. As an example, if the point n belongs to the boundary of
our domain, we remove from A the nth row and the nth column. We introduce
also P the matrix whose rows are the rows of A corresponding to the removed
points from A, and ũ a vector representing the values of u along the boundary
in a lexicographic order. ũ is filled with the ui where i ∈ B, B being the set of
indices of the points along the boundary.

Then, it can be shown that there exists a matrix M whose columns are taken
from the identity matrix and from the matrix Ã−1P such that u = Mũ. It
can be also shown that there exist matrices Ki such that μ(xi)2 = uTKiu =
ũ′ (M ′KiM) ũ.

We would like to control the ratio between the smallest conformal factor and
the largest one. We do so by maximizing the following expression

max
uj

mini μ(xi)2

maxi μ(xi)2
,

s.t.
uj ∈ [0, 1], ∀j ∈ B.
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Actually, the conformal map we get contains some irregularities as some regions
of our map are associated with high conformal factor, that are numerically real-
ized as large triangles while some other regions to small conformal factors that
correspond to small triangles. Then, when using the conformal factor, we should
work with fine grid determined by the smallest triangle to preserve the numerical
accuracy captured by the triangulated mesh.

The above problem can be reformulated as

max
ũj

[
mini ũ

′ (M ′KiM) ũ
maxi ũ′ (M ′KiM) ũ

]
,

s.t.
ũj ∈ [0, 1], ∀j.

Since ũ represents the first coordinate of the boundary points, to avoid foldovers,
we have to make sure that its coordinates are increasing and decreasing at most
once. The coordinates of ũ have to grow up to an index from which they decrease.
This constraint can be written as

Au � 0, A =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 −1 0 . . . . . . . . .
0 1 −1 0 . . . . . .
...

. . . . . . . . . . . .
...

0 . . . −1 1 0 . . .
...

. . . . . . . . . . . .
...

0 . . . . . . . . . −1 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

Actually, without the previous constraint, we could get a conformal map with
foldovers as shown in Fig. 3.

Fig. 3. Unconstrained optimal conformal map
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Since the conformal factor can be normalized by restricting ũj ∈ [0, 1], ∀j, we
can rewrite our problem and its dual.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
ũ

[
min

i
ũ′ (M ′KiM) ũ

]
,

s.t.
ũj ∈ [0, 1], ∀j
Aũ � 0.

⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
i

[
max

ũ
ũ′ (M ′KiM) ũ

]
.

s.t.
ũj ∈ [0, 1], ∀j
Aũ � 0.

This leads us to the solution of the non-convex optimization problem

max
ũ

ũ′Kũ

s.t.
Bũ � b.

(2)

Solving Problem (2) by manipulating the values of u along the boundary, the
areas ratio in our example can be increased to 0.34 and the conformal factor
ratio becomes 0.59. We can then obtain accurate results, see Fig. 4 and can
compare the error between consistent geodesic distances (computed with the
Tosca toolbox[1]), and the geodesic distances computed with FMM on a flat
regularly sampled domain. We notice that in this case, the error is of the same
order as that of the FMM.

We repeat the experiment for another surface given by the peaks function of
Matlab with the same boundary condition, see Fig. 4.

So far, we demonstrated the difficulties of working with conformal mapping
and showed that manipulating the boundary conditions can lead to a consistent
scheme. Next provide more motivation for maximizing the conformal factor.

4 Bounding the Conformal Factor

Let us consider S, a smooth surface embedded in R
3, and G its induced metric.

If u : S → R is a function defined on the surface, we can define another metric
Ḡ = e2uG, that is conformal to the original metric, since the two metrics are
proportional. The Gaussian curvature k̄ of the new metric changes by [2]

k̄ = e−2u(k −ΔGu)

where k is the original Gaussian curvature, and ΔG the Laplace-Beltrami oper-
ator. In the case of a conformal mapping to the plane, the target curvature of
the new metric is zero. Then, the above relation becomes

ΔGu = k.

Let us introduce a fundamental property of the Laplace-Beltrami operator:
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Fig. 4. Left to right, top to bottom: Original surface, midedges surface, geodesic
distance with FMM on the surface, geodesic distance with FMM on the conformal

map,conformal map optimized for max
μmin

μmax
, the difference between the geodesic

distances
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Definition 1. A linear differential operator L of order n on a domain Ω in R
d

given by

Lf =
∑

‖α‖�n

aα(x)∂αf

is called elliptic if for every x in Ω and every non-zero ξ in R
d,

∑

‖α‖=n

aα(x)ξα �= 0.

Lemma 1. The Laplace-Beltrami operator is an elliptic operator.

Proof. We have ΔGf = trace
(
G−1∇2f

)
+ vt∇f where vj =

1√
g

∑

i

∂i

(√
ggij

)
.

Then, the ΔG highest order derivative terms are given by trace
(
G−1∇2f

)
. Tak-

ing a vector ξ �= 0 ∈ R
2, we have, with the notation of Lemma 1,

∑

‖α‖=2

aα(x)ξα =

trace
(
ξTG−1ξ

) �= 0 since G−1 is a positive definite matrix. This proves that the
Laplace-Beltrami operator is elliptic.

The following lemma gives us an upper bound over the conformal factor when
the target domain is bounded.

Lemma 2. Given a C∞ domain C ∈ R
2, with a metric G, there exists a func-

tion b such that for any function f : C :→ R s.t. ∀p ∈ ∂C : f(p) = 0, and a
positive real number k such that ‖ΔGf‖ � k, we have

sup
x∈C

{‖f(x)‖} � b(k).

Proof. According to the elliptic regularity theorem, for any q ∈]1,∞[, if C is
regular, if ΔG is an elliptic operator, and if ΔGf ∈ Lq(C), then f ∈ W 2,q(C)
where W 2,q(C) is the (2, q)-Sobolev space of C, and there exists a function gG

C (q)
that depends only on C, G and q such that

‖f‖W 2,q � gG
C (q)‖ΔGf‖Lq .

Moreover, the Sobolev injection theorem states that if q > 2, then there exists a
function hG

C(q) that depends only on C and q such that

‖f‖C2(C) � hG
C(q)‖f‖W 2,q

where ‖f‖C1(C) = sup
x∈C

{‖f(x)‖}. We can then conclude that

sup
x∈C

{‖f(x)‖} � hG
C(q)gG

C (q)μ(C)k = b(k).
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Using the relation u = logμ, we can choose the conformal factor such that μ = 1
on ∂C. The previous lemma states that logμ is upper bounded, which proves
that μ is lower and upper bounded, and that

sup |μ|
inf |μ| � e2b(k).

This bound justifies using the conformal map for numerically computing geo-
metric measures like geodesic distances. We can then conclude that since it is
possible to find a boundary condition for the conformal factor that leads to a
global upper bound over the ratio, our optimization programming on the confor-
mal factor is justified. The computation of geometric quantities in the conformal
mapping in this case is thereby consistent.

5 Conclusions

Conformal mapping a surface to a plain is a powerful as analysis procedure.
Still, in order to justify its usage as a computational tool one needs to control
the numerical behavior of this mapping. We proved that a lower bound over
the ratio between the minimal and the maximal conformal factor exists. We
demonstrated that this theoretical bound does not help much in practice. Next,
we formulized optimization problems that maximize this ratio. It allowed us to
efficiently and accurately compute geodesic distances using regular sampling of
the plain.
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4. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. In: SIG-
GRAPH 2009: ACM SIGGRAPH 2009 Papers, pp. 1–12 (2009)

5. Mémoli, F., Sapiro, G.: Fast computation of weighted distance functions and
geodesics on implicit hyper-surfaces. Journal of Computational Physics 173(2),
730–764 (2001)

6. Polthier, K.: Conjugate harmonic maps and mimimal surfaces. Experimental Math-
ematics 2, 15–36 (1993)

7. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. National Academy of Science 93, 1591–1595 (1996)



482 Y. Aflalo and R. Kimmel

8. Spira, A., Kimmel, R.: An efficient solution to the eikonal equation on parametric
manifolds. Interfaces and Free Boundaries 6(3), 315–327 (2004)

9. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans-
actions on Automatic Control 40, 1528–1538 (1995)

10. Weber, O., Devir, Y.S., Bronstein, A., Bronstein, M., Kimmel, R.: Parallel algo-
rithms for approximation of distance maps on parametric surfaces. ACM Trans.
Graph. 104, 104:1–104:16 (2008)

11. Wolansky Incompressible, G.: quasi-isometric deformations of 2-dimensional do-
mains. SIAM J. Imaging Sciences 2(4), 1031–1048 (2009)


	Measuring Geodesic Distancesvia the Uniformization Theorem
	Introduction
	Introduction to Conformal Mapping

	Construction of a Discrete Harmonic Map
	Fast Marching on the Conformal Map
	Controlling the Conformal Factor

	Bounding the Conformal Factor
	Conclusions
	References




