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Abstract—Coordinates of vertices in a triangulated surface can
be efficiently represented as a set of coefficients that multiply a
given basis of functions. One such natural orthonormal basis is
provided by the eigenfunctions of the Laplace-Beltrami operator
of a given shape. The coefficients in this case are nothing but
the result of the scalar inner product of the coordinates treated
as a smooth function on the surface of the shape and the
eigenfunctions that form the orthonormal basis. Keeping only
the significant coefficients allows for efficient representation of
a given shape under practical transformations. Selecting the
regular metric for the construction of the Laplace-Beltrami
operator we notice that while the general shape is preserved,
important fine details are often washed out. At the other end,
using a scale invariant metric for defining the operator and the
corresponding basis, preserves the fine details at the potential
expense of loosing the general structure of the shape. Here, we
adopt the best of both worlds. By finding the right mix between
scale invariant and a regular one we select the metric that serves
as the best representation-basis generator for a given shape. We
use the mean square error (MSE) to select the optimal space
for shape representation, and compare the results to classical
spectral shape representation techniques.

I. INTRODUCTION

One of the most popular computational representations of
a geometric structure is a triangulated mesh. The number
of triangles describing such an object determines the details
captured by such a form. Usually, efficient representations of
triangulated surfaces involve in compression of the connectiv-
ity of the triangles composing the mesh [1], [2], [8], [17].

The mesh connectivity can be efficiently captured by a small
number of coefficients, as proposed for example in [4], [10].
These methods treat the mesh as a graph and exploit the
spectral decomposition of the graph Laplacian as a convenient
representation basis. It could be effective for uniformly and
regularly sampled meshes. Yet, such approaches use only the
connectivity and ignore the actual geometry of the set of
shapes one is trying to describe. A more appropriate operator is
the Laplace-Beltrami that also incorporates information about
the mesh geometry [11], [15], [16].

Motivated by this school of thoughts, we first formulate the
problem of finding efficient mesh representation via the Lapla-
cian operator. Then, we show that the spectral decomposition
of the Laplace-Beltrami is indeed well suited for describing
shapes. Next, we study the influence of various metrics on
the approximation error, in a mean-squared error l2 sense,
using spectral decomposition of the Laplacian associated with
each metric. Finally, we marry the spaces generated by each

operator, first by interpolating between the metrics is a manner
that minimizes the mean squared error (MSE), and then, by
concatenating fragments from each basis, where each fragment
is associated to a different part of the shape.

II. EFFICIENT SHAPE REPRESENTATION

In classical signal processing the so called Fourier Trans-
form is often used to express a given function as a set of
frequency coefficients also known as the function’s spectrum.
The fundamental assumption in linear signal processing is that
any finite dimensional signal can be expressed as a sum of
weights or coefficients that multiply the corresponding Fourier
basis functions.

Fourier basis functions can be obtained as a solution of the
partial differential equation (PDE) ∆f = λf . Where, for ex-
ample, in one dimension, f is a scalar function f(t) : R → R,
and ∆f = ∂2f

∂t2 . The Fourier basis is composed of the harmonic
functions φi(t) = exp(j2πit). Thereby, a given signal can be
expressed by its Fourier coefficients ci = 〈f, φi〉 where 〈·, ·〉
denotes the L2 scalar product.

The Laplace-Beltrami operator (LBO) is an extension of the
Laplacian to non-flat manifolds. We can define a metric tensor
(gij) on any given manifold M , where it can be induced, for
example, by either global or local parametrization. The LBO
general expression, using Einstein summation convention, is
given by

∆gf =
1
√
g
∂i
√
ggij∂jf,

where g = det(gij) and gij = (gij)
−1
ij .

The LBO is symmetric and positive definite, and thus admits
a spectral decomposition property. That is, there exist an eigen-
basis of orthonormal functions {φi} and a set of positive real
scalars {λi}, such that ∆Gφi = λiφi. Any function defined
on the manifold can be expressed as a weighted sum of the
basis eigenfunctions. More precisely,

f =
∑
i

〈f, φi〉φi,

where
〈f, h〉 =

∫

M

fhdµ,

and dµ is the infinitesimal volume element of M . The eigen-
value λi represents the coefficient of the frequency associated
to the i-th eigenvector.
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Fig. 1. Reconstruction of the shape of an Horse (8431 vertices) using 300
vectors of the graph-laplacian (top) and the Laplace-Beltrami (bottom) spectral
decomposition. Color represents the displacement error at each vertex; where
the darker the color the smaller is the error.

Roughly speaking, the scalar product 〈f, φi〉 gets smaller as
the function f becomes smoother, and when φi are ordered
properly, goes to zero as i goes to infinity. The Laplace-
Beltrami eigen-decomposition was found to be useful in shape
and data processing and analysis [5], [7], [9], [11], [15], [16].

The surface of a three dimensional shape can be considered
as a non-flat two-dimensional manifold. There exist several
methods to approximate the LBO ∆g , see for example [18]
for an axiomatic analysis of desired properties and possible
realizations, and [13] for the celebrated cotangent weights
approximation. Lévy [11] formalized the decomposition of
the Laplace Beltrami operator in cotangent-weight form as a
generalized eigendecomposition problem.

Here, we propose to follow the philosophy according to
which the coordinates of a given surface S can be represented
as a linear combination of its Laplace-Beltrami eigenvectors.
The idea of spectral coordinates projection was exploited in
[4], [10], where the authors focus on the graph laplacian
rather than the Beltrami operator. In order to demonstrate the
potential gain in using the Laplace-Beltrami rather than the
graph laplacian, Figure 1 displays two representations of a
surface using the first 300 vectors extracted from the graph
laplacian and the LBO.

We define the MSE between a surface S and its spectral
representation Ŝ by

MSE(S, Ŝ) =
∫

S

(
(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2

)
da

where x, y, z and (x̂, ŷ, ẑ) represent the coordinates of S (resp.
ŝ) and da is an area element on S. The MSE for the graph
laplacian model is 0.8017 while the Laplace-Beltrami model
yields a much lower error of 0.607. We notice that, in terms of
MSE, the Laplace-Beltrami as a basis generator is better suited
for this problem. Our next goal is to find an even better metric
for the representation using, as an example, two other metrics;
the equi-affine metric defined in [14] or a scale invariant metric
introduced in [3].

III. SCALE INVARIANT METRIC CONSTRUCTION

Here, following [3] we briefly review the construction of a
scaling invariant metric that we later use in order to build
a feature sensitive representation basis. Let S(u, v) be a
parametrized surface S : Ω ⊂ R2 → R3. The length of a
parametrized curve C(p) in S is given by

l(C) =

∫

C

|Cp|dp =

∫

C

|Suup + Svvp|dp

=

∫

C

√
|Su|2du2 + 2〈Su, Sv〉dudv + |Sv|2dv2.

Using the Euclidean arc-length s, we also have

l(C) =

∫

C

ds.

Hence, the usual metric definition for an infinitesimal Eu-
clidean distances on a surface can be deduced from the two
previous equations to be

ds2 = |Su|2du2 + 2〈Su, Sv〉dudv + |Sv|2dv2
= gijdω

idωj ,

where we used Einstein summation convention, ω1 = u, ω2 =
v, and gij = 〈Sωi , Sωj 〉. The metric gij = 〈Si, Sj〉 in
shorthand notations, is known as the regular metric. We can
generalize this result to any arc-length, using an appropriate
metric, and then measure the length of any curve on the surface
with respect to the specific metric.

Next, consider a curve C(s) in the plane for which a scale
invariant arc-length θ can be easily defined by the change of
the angle between the tangent vector Cs and the x-axis. θ can
be easily computed from the curvature definition

|κ| = |Css| =
∣∣∣∣
dθ

ds

∣∣∣∣ ,

thereby θ(s) =
∫
C
|κ|ds. Extending the scale invariance

definition to metrics of surfaces is more tricky, as there are
two principal curvatures, κ1 and κ2, for each surface point.
Still, if similarity invariance is desired (scale and isometry) it
was shown in [3] that an invariant metric can be defined by

g̃ij = |K|gij ,

where K = κ1κ2 is the Gaussian curvature. The invariance
of the g̃ is simple to prove. We use the regular metric
gij(S) = 〈Si, Sj〉, thus a uniformly scale surface βS would
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Fig. 2. Reconstruction of the shape of an horse (8431 vertices) using 300
eigenvectors of the scale invariant Laplace-Beltrami operator. Color represents
the error.

have gij(βS) = β2gij(S). The Gaussian curvature can be
defined by the metric derivatives according to which

K(S) = − 1

2
√
g11g22

(
∂

∂u

(g22)u√
g11g22

+
∂

∂v

(g11)v√
g11g22

)
.

It is then simple to see that K(βS) = β−2K(S) and thus
g̃ij(βS) = K(βS)gij(βS) = β−2K(S)β2gij(S) = g̃ij(S)
which proves the invariance. Moreover, as K is invariant to
isometries, the property is preserved by the metric g̃ which is
referred to as similarity (isometry and scale) invariant.

Scale invariant Laplace Beltrami operator would produce
scale invariant eigenfunctions that would weigh equally small
and large surface features. In the next section we would try to
marry between the similarity invariant and the regular metric
such that one captures the features while the other takes care
for the global structure.

IV. EXPERIMENTAL RESULTS: SEARCHING FOR THE BEST
METRIC

We use the scale invariant metric g̃ to define ∆g̃ . The
representation using the first 300 eigenfunctions and corre-
sponding coefficients is shown on Figure 2. Note, that the
reconstruction of the shape from the 300 first eigenvectors is
indeed inaccurate. Nevertheless, even-though the error is high
when the Gaussian curvature vanishes, the detailed parts with
effective curvature are captured quite accurately. Actually, the
scale invariance of the metric allows the features to become
dominant which in a sense complements the regular metric.
The global MSE is 0.8677 which is even worse than the graph
laplacian option.

Next, we attempt to use the best of both scale-invariant and
regular metric, by interpolating between the two metrics. We
define the interpolated metric as

ĝij = |K|αgij ,

where ĝ represents the regular metric, K is the Gaussian
curvature, and α ∈ [0, 1] is a scalar we use to minimize the
representation error. The MSE as a function of α is shown in

Fig. 3. The reconstructed MSE of a horse with the metric ĝ = Kαg. The
x-axis represents α interpolating between the regular metric (left) and the
scale invariant one (right).

Fig. 4. Optimal reconstruction of a horse (8431 vertices) using 300
eigenvectors of the LBO with optimally interpolated metric (α = 0.4). The
darker the color the higher is the error.

Figure 3 with the best reconstruction shown in Figure 4 with
an MSE of 0.3654.

We repeated the experiment with the Equi-Affine invariant
metric and obtain the result shown in the Figure 5, with MSE
of 0.6494.

Next, we repeated the experiment with other shapes like the
Armadillo in Figure 6, and the Centaur in Figure 7. The best
results were always obtained for the interpolated scale-regular
metric.

The proposed technique is useful for efficient representation
of families of almost isometric shapes for which a single
representation basis could be considered. Assume we have a
family of isometric shapes with given correspondences. Those
can be obtained by various methods [5], [6], [9], [12]. We can
then order the coordinates x, y, z of each shape such that all
appear in a consistent order. We then compute the projection
of the coordinates on the selected eigenvectors of the Laplace-
Beltrami operator and use only these coefficients. Good results
where obtained for various postures of the horse compared to
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Fig. 5. Reconstruction of the shape of a horse (8431 vertices) using 300
eigenvectors of the LBO defined by the interpolated optimized equi-affine
invariant metric (α = 0.3).

Fig. 6. Left to right, top to bottom: Reconstruction using graph laplacian
(MSE = 115), the LBO (MSE = 51), the MSE of the reconstructed Armadillo
w.r.t. the metric ĝ = |K|αg, and the optimal reconstruction of the Armadillo
(10k vertices) using 500 eigenvectors of the LBO w.r.t. the interpolated
optimal scale invariant metric (obtained for α = 0.47, MSE = 38). The
darker the color the lower is the error at a point.

Fig. 7. Left to right, top to bottom: Reconstruction using graph laplacian
(MSE = 197.4 ), the LBO (MSE = 91.66), the MSE of the reconstructed
Centaur w.r.t. the metric ĝ = |K|αg, and the optimal reconstruction of
the Centaur (15k vertices) using 500 eigenvectors of the LBO w.r.t. the
interpolated optimal scale invariant metric (obtained for α = 0.015, MSE
= 59.8).

the graph laplacian, as shown in Figure 8

V. CONCLUSIONS

The coordinates of a surface can be treated as a smooth
function on the surface, for which there should be some
compact representation. Here, we experimented with such
description spaces that were constructed from the Laplace-
Beltrami operator with respect to a specific metric. The best
metric was found to be somewhere in-between a regular and
a similarity invariant metric. Such a basis exhibits isometry
invariance and was indeed proven to be effective when an-
imating an articulated object, like a horse in motion. The
choice of a metric was designed axiomatically, and the right
balance was selected and justified empirically. This is a
small step towards more efficient representation domains that
treat objects with non-regular numerical support. Incorporating
other invariant measures with empirical tuning of parameters
could potentially lead to even more efficient descriptions of
geometric structures, which is a venue we plan to explore in
the future.
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Fig. 8. Efficient reconstruction of a running horse by projecting coordinates
of each shape to the first 300 eigenvectors of the LBO w.r.t. the optimal
interpolated metric (top, average MSE 0.33) and the graph laplacian (bottom,
average MSE 0.83).
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