
Deformable Shape Retrieval by Learning

Diffusion Kernels

Yonathan Aflalo1, Alexander M. Bronstein2,
Michael M. Bronstein3, and Ron Kimmel1

1 Technion, Israel Institute of Technology, Haifa, Israel
{yaflalo,ron}@cs.technion.ac.il

2 Dept. of Electrical Engineering, Tel Aviv University, Israel
bron@eng.tau.ac.il

3 Inst. of Computational Science, Faculty of Informatics,
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Abstract. In classical signal processing, it is common to analyze and
process signals in the frequency domain, by representing the signal in
the Fourier basis, and filtering it by applying a transfer function on
the Fourier coefficients. In some applications, it is possible to design an
optimal filter. A classical example is the Wiener filter that achieves a
minimum mean squared error estimate for signal denoising. Here, we
adopt similar concepts to construct optimal diffusion geometric shape
descriptors. The analogy of Fourier basis are the eigenfunctions of the
Laplace-Beltrami operator, in which many geometric constructions such
as diffusion metrics, can be represented. By designing a filter of the
Laplace-Beltrami eigenvalues, it is theoretically possible to achieve in-
variance to different shape transformations, like scaling. Given a set of
shape classes with different transformations, we learn the optimal filter
by minimizing the ratio between knowingly similar and knowingly dis-
similar diffusion distances it induces. The output of the proposed frame-
work is a filter that is optimally tuned to handle transformations that
characterize the training set.

1 Introduction

Recent efforts have shown the importance of diffusion geometry in the field of
pattern recognition and shape analysis. Such methods based on geometric analy-
sis of diffusion or random walk processes that were first introduced in theoretical
geometry [1] have matured into practical applications in the fields of manifold
learning [7] and where more recently introduced to shape analysis [9]. In the
shape analysis community, diffusion geometry methods were used to define low-
dimensional representations for manifolds [7,16], build intrinsic distance metrics
and construct shape distribution descriptors [16,10,5], define spectral signatures
[15] (shape-DNA), local descriptors [18,6], and bags of features [4]. Diffusion em-
beddings were used for finding correspondence between shapes [11] and detecting
intrinsic symmetries [13].
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In many settings, the construction of diffusion geometry boils down to the
definition of a diffusion kernel, whose choice is problem dependent. Ideally, such
an operator should possess certain invariance properties desired in a specific
application. For example, the commute time kernel is invariant to scaling trans-
formations of the shape.

In this paper, we propose a framework for supervised learning of an optimal
diffusion kernel on a training set containing multiple shape classes and multi-
ple transformations of each shape. Considering diffusion kernels related to heat
diffusion properties and diagonalized in the eigenbasis of the Laplace-Beltrami
operator, we can pose the problem as finding an optimal filter on the Laplace-
Beltrami eigenvalues. Optimization criterion is the discriminativity between dif-
ferent shape classes and the invariance to within-class transformations.

The rest of the paper is organized as follows. In Section 2, we review the
theoretical foundations of diffusion geometry. Section 3 formulates the problem
of optimal kernel learning and its discretization. Section 4 presents experimental
results. Finally, Section 5 concludes the paper.

2 Background

2.1 Diffusion Geometry

We model a shape as a Riemannian manifold X embedded into R
3. Equipping

the manifold with a measure μ (e.g., the standard area measure), we also define

an inner product on real functions on X by 〈f, g〉 =
∫

fgdμ. A function k :

X × X → R is called a diffusion kernel if it satisfies the following conditions

1. Non-negativity: k(x, x) � 0.
2. Symmetry: k(x, y) = k(y, x).
3. Positive semidefiniteness: for every bounded f ,∫∫

k(x, y)f(x)f(y)d(μ × μ) � 0.

4. Square integrability:
∫∫

k2(x, y)d(μ × μ) < ∞.

5. Conservation:
∫

k(·, y)dμ =
∫

k(x, ·)dμ = 1.

A kernel function can also be considered as a linear operator on all the functions

defined on X , (Kf)(y) =
∫

k(x, y)f(x)dμ. We notice that the operator K is self-

adjoint admitting a discrete eigendecomposition Kφi = λiφi, with 0 � λi � 1
by virtue of the properties of the kernel. Spectral theorem allows us to write

k(x, y) =
∞∑

i=0

λiφi(x)φi(y).
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2.2 Heat Diffusion

There exists a large variety of possibilities to define a diffusion kernel and the
related diffusion operator. Here, we restrict our attention to operators describing
heat diffusion. Heat diffusion on surfaces is governed by the heat equation,

(
ΔX +

∂

∂t

)
u(x, t) = 0; u(x, 0) = u0(x), (1)

where u(x, t) is the distribution of heat on the surface at point x in time t,
u0 is the initial heat distribution, and ΔX is the positive-semidefinite Laplace-
Beltrami operator, a generalization of the second-order Laplacian differential
operator Δ to non-Euclidean domains.

On Euclidean domains (X = R
m), the classical approach to the solution of the

heat equation is by representing the solution as a product of temporal and spatial
components. The spatial component is expressed in the Fourier domain, based
on the observation that the Fourier basis is the eigenbasis of the Laplacian Δ,
and the corresponding eigenvalues are the frequencies of the Fourier harmonics.
A particular solution for a point initial heat distribution u0(x) = δ(x − y) is
called the heat kernel ht(x − y) = 1

(4πt)m/2 e−‖x−y‖2/4t, which is shift-invariant
in the Euclidean case. A general solution for any initial condition u0 is given
by convolution Htu0 =

∫
Rm ht(x − y)u0(y)dy, where Ht is referred to as heat

operator.
In the non-Euclidean case, the eigenfunctions of the Laplace-Beltrami opera-

tor ΔXφi = λiφi can be regarded as a “Fourier basis”, and the eigenvalues can be
interpreted as the “spectrum”. The heat kernel is not shift-invariant but can be
expressed as an explicit short time kernel [17] ht(x, y) =

∑∞
i=0 e−tλiφi(x)φi(y).

It can be shown that the heat operator is related to the Laplace-Beltrami
operator as Ht = e−tΔ, and as a result, it has the same eigenfunctions φi and
corresponding eigenvalues e−tλi . It can be thus seen as a particular instance of
a more general family of diffusion operators K diagonalized by the eigenbasis
of the Laplace-Beltrami operator, namely K’s as defined in the previous section
but restricted to have the eigenfunctions φi of ΔX . The corresponding diffusion
kernels can be expressed as

k(x, y) =
∞∑

i=0

K(λi)φi(x)φi(y), (2)

where K(λ) is some function (in the case of Ht, K(λ) = e−tλ) that can be
thought of as the transfer function of a low-pass filter. Using this signal process-
ing analogy, the kernel k(x, y) can be interpreted as the point spread function
at a point y, and the action of the diffusion operator Kf on a function f on X
can be thought of as the application of the point spread function by means of a
shift-variant version of convolution. In what follows, we will freely interchange
between k(x, y) and K(λ) referring to both as kernels.
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2.3 Diffusion Distances

Since a diffusion kernel k(x, y) measures the degree of proximity between x and
y, it can be used to define a metric

d2(x, y) = ‖k(x, ·) − k(y, ·)‖2
L2(X), (3)

on X , dubbed as the diffusion distance by Coifman and Lafon [7]. Another way
to interpret the latter distance is by considering the embedding Ψ : x �→ L2(X)
by which each point x on X is mapped to the function Ψ(x) = k(x, ·). The
embedding Ψ is an isometry between X equipped with diffusion distance and
L2(X) equipped with the standard L2 metric, since d(x, y) = ‖Ψ(x)−Ψ(y)‖L2(X).
As a consequence of Parseval’s theorem, the diffusion distance can also be written
as

d2(x, y) =
∞∑

i=0

K2(λi)(φi(x) − φi(y))2. (4)

Here as well we can define an isometric embedding Φ : x �→ 	2 with Φ(x) =
{K(λi)φi(x)}∞i=0, termed as the diffusion map by Lafon. The diffusion distance
can be casted as d(x, y) = ‖Φ(x) − Φ(y)‖�2 .

2.4 Invariance

The choice of a diffusion operator, or equivalently, the transfer function K(λ),
is related to the invariance of the corresponding diffusion distance.

For example, consider the case of scaling transformation, in which a shape
X is uniformly scaled by a factor of α. Abusing the notations we denote by
αX the new shape, whose Laplace-Beltrami operator now satisfies ΔαXf =
α−2ΔXf . Since the eigenbasis is orthonormal (‖φi‖ = 1), it follows that if φi is an
eigenfunction of ΔX associated to the eigenvalue λi, then 1

αφi is an eigenfunction
of ΔαX associated with the eigenvalue λiα

−2.
In order to obtain diffusion distance d2 invariant to scaling transformations,

we have to ensure that K2(λiα
−2)α−2 = K2(λi), which is achieved for K(λ) =

λ−1/2. This kernel is known as the commute-time kernel, and the associated
diffusion distance

d2(x, y) =
∞∑

i=0

1
λi

(φi(x) − φi(y))2. (5)

as the commute-time distance.

2.5 Distance Distributions

Though diffusion metrics contain significant amount of information about the
geometry of the underlying shape, direct comparison of metrics is problematic
since it requires computation of correspondence between shapes. A common
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way to circumvent the need of correspondence is by representing a metric by
its distribution, and measuring the similarity of two shapes by comparing the
distributions of the respective metrics.

A metric d on X naturally pushes forward the product measure μ × μ on
X×X (i.e., the measure defined by d(μ×μ)(x, y) = dμ(x)dμ(y)) to the measure
F = d∗(μ×μ) on [0,∞) defined as F (I) = (μ×μ)({(x, y) : d(x, y) ∈ I}) for every
measurable set I ⊂ [0,∞). F can be fully described by means of a cumulative
distribution function, denoted by

F (δ) =
∫ δ

0

dP =
∫

χd(x,y)≤δdμ(x)dμ(y) (6)

with some abuse of notation (here χ is the indicator function). F (δ) defined this
way is the measure of pairs of points the distance between which in no larger
than δ; F (∞) = μ2(X) is the squared area of the surface X . The density func-
tion (empirically approximated as a histogram) can be defined as the derivative
f(δ) = d

dδF (δ). Sometimes, it is convenient to work with normalized distribu-
tions, F̂ = F/F (∞) and the corresponding density functions, f̂ , which can be
interpreted as probabilities.

Using this idea, comparison of two metric measure spaces reduces to the com-
parison of measures on [0,∞), or equivalently, comparison of un-normalized or
normalized distributions, which is carried out using one of the standard dis-
tribution dissimilarity criteria used in statistics, such as Lp or normalized Lp,
Kullback-Leibler divergence, Bhattcharyya dissimilarity, χ2 dissimilarity, or earth
mover’s distance (EMD).

3 Optimal Diffusion Kernels

The main idea of this paper lies in designing an optimal task-specific transfer
function K(λ) such that the resulting diffusion distance distribution will lead to
best discrimination between shapes of a certain class while being insensitive as
much as possible to a certain class of transformations.

Let us be given a shape X and some deformation τ such that Y = τ(X) is also
a valid shape. Equipping each of the shapes with its Laplace-Beltrami operator,
we define ΔXφi = λiφi on X and ΔX′φ′

i = λ′
iφ

′
i on Y . A transfer function

K(λ) defines the diffusion kernel k(x, x′) =
∑

i≥0 K2(λi)φi(x)φi(x′) on X , and
k′(y, y′) =

∑
i≥0 K2(λ′

i)φ
′
i(y)φ′

i(y
′) on Y . We aim at selecting K in such a way

that for corresponding pairs of points (x, x′) and (y, y′) = (τ(x), τ(x′)) the two
kernels coincide as much as possible, while differing as much as possible for non-
corresponding points. Denoting by P = {((x, x′), (τ(x), τ(x′)) : x, x′ ∈ X} the
set of all corresponding pairs (positives), and by N = {((x, x′), (y, y′)) : x, x′ ∈
X, (y, y′) 
= (τ(x), τ(x′))} the set of all non-corresponding pairs (negatives), we
minimize
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min
K(λ)

∑
((x,x′),(y,y′))∈P

(k(x, x′) − k′(y, y′))2

∑
((x,x′),(y,y′))∈N

(k(x, x′) − k′(y, y′))2
. (7)

We remark that while there is a multitude of reasonable alternative objective
functions, in what follows we choose to minimize the above ratio because as it
will be shown it lends itself to a simple algebraic problem.

The choice of an appropriate function K can lead to invariance of the kernel
under some transformations. For example, the commute time kernel K(λ) = 1√

λ
is invariant under global scaling. On the other hand, optimal K should be dis-
criminative enough to distinguish between shapes not being one a transforma-
tion of the other. This spirit is similar to linear discriminant analysis (LDA)
and Wiener filtering and, to the best of our knowledge, has never been proposed
before to construct optimal diffusion metrics.

3.1 Discretization

We represent the surface X as triangular mesh with n faces constructed upon the
samples {x1, . . . ,xn} The computation of discrete diffuison kernels k(x1,x2) re-
quires computing discrete eigenvalues and eigenfunctions of the discrete Laplace-
Beltrami operator. The latter can be computed directly using the finite elements
method (FEM) [15], of by discretization of the Laplace operator on the mesh
followed by its eigendecomposition. Here, we adopt the second approach accord-
ing to which the discrete Laplace-Beltrami operator is expressed in the following
generic form,

(Δf)i =
1
ai

∑
j

wij(fi − fj), (8)

where fi = f(xi) is a scalar function defined on the mesh, wij are weights,
and ai are normalization coefficients. In matrix notation, (8) can be written as
Δf = A−1Wf , where f is an m × 1 vector and W = diag

{∑
l 
=i wil

}
− wij .

The discrete eigenfunctions and eigenvalues are found by solving the gener-
alized eigendecomposition [9] WΦ = AΦΛ, where Λ = diag{λ} is a diagonal
matrix of eigenvalues λ = (λ1, . . . , λn)T, and Φ = (φl(xi)) is the matrix of
the corresponding eigenvectors. Similarly, we triangulate the shape Y and get
A′Φ′ = diag{λ′}W′Φ′.

Different choices of W have been studied, depending on which continuous
properties of the Laplace-Beltrami operator one wishes to preserve [8,19]. For
triangular meshes, a popular choice adopted in this paper is the cotangent weight
scheme [14,12], in which

wij =
{

(cotβij + cotγij)/2 : xj ∈ N (xj);
0 : else,

(9)

where βij and γij are the two angles opposite to the edge between vertices xi

and xj in the two triangles sharing the edge.
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We denote by P = {((im, jm), (i′m, j′m))} the collection of corresponding pairs
of vertex indices on X and Y (that is, im ↔ i′m and jm ↔ j′m), and by N the col-
lection of non-corresponding pairs. Denoting by C+ and C′

+ two matrices whose
ml-th elements are the products φl(xim)φl(xjm) and φ′

l(yim)φ′
l(yj′m), respectively,

for ((im, jm), (i′m, j′m)) ∈ P , we have k+ = C+K2(λ) and k′
+ = C′

+K2(λ′),
where the m-th elements of k+ and k′

+ are k(xim , xjm) and k(xi′m , xj′m), re-
spectively, and K2(λ) = (K2(λ1), . . . , K2(λn))T. Exactly in the same way, the
vectors k− and k′

− corresponding to the negative pairs in N are obtained.
In order to make possible the optimization over all functions K, we fix a grid

γ = (γ1, . . . , γr) or r points on which k = (K2(γ1), . . . , K2(γr))T is evaluated.
In this notation, our optimization problem becomes with respect to the elements
of k. Since the grids γ, λ and λ′ are incompatible, we define the interpolation
operators I and I′ transfering a function from the grid γ to the grids λ and
λ′: K2(λi) = Ik, and K2(λ′

i) = I′k. This yields k± = C±Ik and k′
± = C′

±I′k.
Substituing the latter result into (7) gives the following minimization problem:

k∗ = arg min
k≥0

‖k+ − k′
+‖2

‖k− − k′
−‖2

= arg min
k≥0

‖(C+I− C′
+I′)k‖2

‖(C−I− C′
−I′)k‖2

= arg min
k≥0

kTPk
kTNk

= N− 1
2 arg min

k≥0

‖k‖=1

k
T
N−T

2 PN− 1
2 k, (10)

where P = (C+I−C′
+I′)T(C+I−C′

+I′) and N = (C−I−C′
−I′)T(C−I−C′

−I′).
Note that the matrices P and N are of fixed size r×r and can be constructed with-
out directly constructing the potentially huge matrices C± and C′

±. This makes
the above problem computationally efficient even on very large training sets.

3.2 Interpolation Operators

Among a plethora of methods for designing the interpolation operations I and I′

on one-dimensional intervals, we found that regularized spline fitting produced
best results. For that purpose, let {si(λ)} be a set of q functions defined on the
interval [λmin, λmax]. We represent the kernel transfer function as the sum

K2(λ) =
q∑

i=1

aisi(λ) (11)

and look for the vector of coefficients a = (a1, . . . , aq)T. Denoting S = (s1(λ), . . . ,
sq(λ)) with si(λ) = (si(λ1), . . . , si(λn))T, we have k = Sa. Similarly, for S′ =
(s1(λ′), . . . , sq(λ′)), we have k′ = S′a.

To impose the smoothness of the kernel K(λ), we add the regularization term

R(K) =
∫ λmax

λmin

‖δK2(λ)‖2dλ =
∫ λmax

λmin

(
q∑

i=1

ai∇si(λ)

)2

dλ = aTRa, (12)

where the ij-th elements of R are given by (R)ij =
∫ λmax

λmin

∇si(λ)sj(λ)dλ.
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Fig. 1. Optimal kernel designed using straightforward nearest neighbor interpolation
(red), splines without smoothness (green), and splines with the smoothness term (blue)

In these terms, the optimization problem (10) becomes

a∗ = arg min
a

aT(C+S− C′
+S′)T(C+S − C′

+S′)a
aT(C−S − C′

−S′)T(C−S− C′
−S′)a

+ ηaTRa

= N− 1
2 arg min

‖a‖=1
aTN−T

2 (P + ηR)N− 1
2 a, (13)

where now P = (C+S − C′
+S′)T(C+S − C′

+S′), N = (C−S − C′
−S′)T(C−S −

C′
−S′), and η is a parameter controlling the smoothness of the obtained kernel.

The effect of the smoothness term is illustrated in Figure 1.

4 Results

In our experiments, to build the training set, we used the SHREC’10
correspondence benchmark [2]. The dataset contained high-resolution shapes
(10, 000 − 30, 000 vertices) organized in seven shape classes with 55 simulated
transformations of varying strength in each class (Figure 2) Testing was per-
formed on the SHREC’10 shape retrieval benchmark [3], containing a total of
1184 shapes. Retrieval performance was evaluated using precision/recall char-
acteristic. Precision P (r) is defined as the percentage of relevant shapes in the
first r top-ranked retrieved shapes (in the used benchmark, transformed shapes
were used as queries, while a single relevant null shape existed in the database
for each query). Mean average precision (mAP), defined as
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Fig. 2. Transformations of the human shape used as queries (shown in strength 5, left
to right): null, isometry, topology, sampling, local scale, scale, holes, micro holes, noise,
shot noise, partial, all

mAP =
∑

r

P (r) · rel(r),

where rel(r) is the relevance of a given rank, was used as a single measure of
performance. Ideal performance retrieval performance results in first relevant
match with mAP=100%. Discretization of the Laplace-Beltrami was based on
the cotangent weight formula (9).

In the first experiment, we used our approach to learn a scale-invariant dif-
fusion kernel. We used a training set containing only scaling transformations of
the shapes. As can be seen from Figure 3, the learned diffusion kernel is very
close to the theoretically-optimal commute-time kernel K(λ) = λ−1/2.

In the second experiment, we extended the training set to include all the shape
transformations, resulting in a kernel shown in Figure 4 (red). The learned kernel
was used to compute diffusion distance distributions, which were compared to
compute the shape similarity, following the spectral distance framework [5]. The
performance results with this kernel are summarized in Table 1 (fifth column).
For comparison, performance using the commute time kernel is shown (Table 1,
sixth column).

In the third experiment, instead of designing a kernel with a discretization of
K(λ), we used a parametric kernel of the form K(λ) = exp(−tλ) and optimized
our criterion for the time scale t. The optimal scale was found to be t∗ = 1011; the
performance results with this kernel are summarized in Table 1 (fourth column).
For comparison, we show the performance of the same kernel with two other
values of the parameter, t = 700, and 1700 (Table 1, second and third columns).

In the fourth experiment, we used the diagonal our optimal non-parametric
diffusion kernel k(x, x) as a local scalar shape descriptor at each point, similar
to the heat kernel signature [18]. A global descriptor was constructed as the
histogram of the values of k(x, x) on the entire shapes. We notice that both the
local descriptors (Figure 5, top) and the global descriptors (Figure 5, bottom)
resulting from our learned diffusion kernel signature computed on two different
transformations of a shape are very close one to the other.
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Fig. 3. Theoretical scale invariant (commute time) kernel (blue) and the learned kernel
on examples of scaling transformations (red)

Fig. 4. The lerned kernel using all transformations (red). For comparison, the commute
time kernel is shown (blue).
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Table 1. Shape retrieval performance (mAP in %) using the spectral distance with
different diffusion kernels

Heat Heat Optimal param. Optimal Commute
Transformation (t = 700) (t = 1700) (t∗ = 1011) non-param. time

Isometry 100 99.23 100 98.21 97.95
Topology 91.28 80.36 86.79 77.33 79.16
Holes 82.3 90.33 87.81 72.48 73.94
Micro holes 100 100 100 100 100
Scale 30.97 32.66 32.44 100 100
Local scale 65.64 70.79 70.73 67.92 68.22
Sampling 100 99.23 100 98.21 98.21
Noise 99.23 100 98.46 100 100
Shot noise 99.23 100 99.23 99.23 98.65
Partial 5.54 7.37 6.01 8.06 31.03
All 64.15 64.36 69.56 64.66 64.51

Fig. 5. Top: diagonal of the diffusion kernel k(x, x) used as a local descriptor. Bottom:
histogram of the local descriptors.

5 Conclusions

We provided a design framework for kernels that optimize for the ratio between
the within class and between classes required for shape recognition under typi-
cal type of deformations. So far, our experiments show that the commute time
distance is dominating as an optimal filter for the mix of distortions we used.
In our future experiments we will investigate the deviation from that type of a
filter and try to come up with design framework for specific types of distortions.
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