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Abstract. A new boundary detection approach for shape modeling is presented. It detects the global minimum of
an active contour model’s energy between two end points. Initialization is made easier and the curve is not trapped
at a local minimum by spurious edges. We modify the “snake” energy by including the internal regularization term
in the external potential term. Our method is based on finding a path of minimal length in a Riemannian metric.
We then make use of a new efficient numerical method to find this shortest path.

It is shown that the proposed energy, though based only on a potential integrated along the curve, imposes a
regularization effect like snakes. We explore the relation between the maximum curvature along the resulting
contour and the potential generated from the image.

The method is capable to close contours, given only one point on the objects’ boundary by using a topology-based

saddle search routine.

We show examples of our method applied to real aerial and medical images.

Keywords: shape modeling, deformable models—snakes, path of minimal cost, level sets, segmentation, feature
extraction, energy minimization, partial differential equations, curve evolution

1. Introduction

An active contour model for boundary integration and
features extraction, introduced in (Kass et al., 1988),
has been considerably used and studied during the last
decade. Most of the approaches that were introduced
since then try to overcome the main drawbacks of
this model: initialization, minimization and topology
changes.

*This work was supported in part by the Applied Mathematics
Subprogram of the Office of Energy Research under DE-ACO03-
76SF00098, and by the ONR grant N00014-96-1-0381.

The model requires the user to input an initial curve
close to the goal. It has to be a very precise polygon
approximation and it may be fastidious to use when we
deal with a large number of images. In a sequence of
images where there are small changes between two suc-
cessive images, once initialization is made for the first
image, it is possible to use the resulting contour of the
first image as initial condition for the second and so on,
as proposed in (Kass et al., 1988). Using the balloon
model (Cohen, 1991) allows a less demanding initial-
ization since any initial closed curve inside an object
may be used to obtain its complete boundary. In some
cases, it enables a completely automatic initialization.
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For example, in (Cohen, 1991) preprocessing is used to
get an initial guess that has to be inside the desired area.
The same property can be realized using the geomet-
ric model introduced in (Caselles et al., 1993; Malladi
et al., 1994) and recently improved in (Caselles et al.,
1995). In (Neuenschwander et al., 1994), only two end
points on the boundary are needed to follow the con-
tour. Also, based on simulated annealing, a minimal
path between two points is obtained in (Grzeszczuk and
Levin, 1994).

Although the smoothing effect of the snakes may
overcome small defaults in the data, spurious edges
generated by noise or in a complex image may stop the
evolution of the curve so that it might be trapped by an
insignificant local minimum of the energy. The inflation
or expansion force (Cohen, 1991) may help the contour
to avoid isolated edges that may trap it into a local min-
imum. A region based approach introduced in (Cohen
et al., 1993) also makes the solution less sensitive to
local minima and initialization. It considers a mixed en-
ergy including a snake like term on the boundary and
an homogeneous value constraint inside the region.

For segmenting several objects simultaneously or
an object with holes, it is possible (Caselles et al.,
1993; Malladi et al., 1994) to model the contour as
a level set of a surface, allowing it to change its
topology in a natural way. These approaches have
motivated many other recent works like (Caselles
et al., 1995, 1996; Whitaker, 1995; Kichenassamy
et al., 1995; Tek and Kimia, 1995) for 2D and 3D
implicit deformable models. Other models that can
handle topology changes have also been used for
curves (Mclnerney and Terzopoulos, 1995) or surfaces
(Leitner and Cinquin, 1991; Szeliski and Tonnesen,
1992; Szeliski et al., 1993).

In this paper we present a new approach for finding
the global minimum of energy minimizing curves given
only one or two end points. Our goal is to help the user
to solve the boundary detection problem by mapping it
into a single minimum problem. The proposed method
contributes to the improvement of the first two items
above, initialization and minimization which are obvi-
ously related. Only end points are needed as an easy
initialization and we are guaranteed that the global min-
imum is found between these points.

We modify the snake energy in a way that makes
it ‘intrinsic’ or free of the parameterization. Most of
the classical snake models are non-intrinsic models.
Therefore, different parameterizations of the same ini-
tial curve (i.e., having the same geometric shape), could

lead to different solutions. The modification we follow
enables us to include the internal regularization term in
the external potential term in a natural way. The snake
energy now depends only on the location of the point
and not on the geometry of the curve at this point.

We use an evolution scheme that computes at each
image pixel the energy along the path of minimal inte-
grated energy joining that pixel to the given start point.
We use Sethian’s Fast Marching Method (Sethian,
1995, 1996; Adalsteinsson et al., 1996). The search
for a minimal path is then done efficiently. While this
path is restricted to connect two given points, we also
present a topology-based saddle search that helps in
automatically closing contours by clicking on a single
point along the boundary. We stress the fact that the
proposed algorithm is based on a search for the minimal
path and may therefore lead to meaningless classifica-
tions in some cases. Yet, since the whole process is
controlled by the user, such pathological cases may be
easily avoided.

An upper bound for the curvature along the minimal
path is introduced. It enables a direct control over the
final result by simple changes of the potential function.
This justifies the fact that although our approach is a
path integration, it also incorporates the regularization
of the path like a “snake” model. Qualitatively, the rela-
tion between the potential and the smoothness of the re-
sult was understood and used in (Fischler et al., 1981),
long before the age of snakes. Here, we introduce a
quantitative bound expressing the connection between
the curvature and the generated potential. This bound
is useful in many applications.

The structure of the paper is as follows: Section 2
explores the relation of deformable models to the pro-
posed model. Section 3 gives a formal definition of
our edge integration procedure for the shape model-
ing problem, and Section 4 a description of two nu-
merical methods, leading to Sethian’s Fast Marching
Method. In Section 5, we explore the relation between
the smoothing properties of our model and the poten-
tial. Section 6 presents an extension of our minimal
path approach to find a closed boundary given a sin-
gle point. Section 7 presents results of applying the
proposed procedure to real images.

2. Deformable Contours
The inherent difficulty in active contour models is that

searching for a minimum over a non convex functional
is possible only under predefined limitations that lead



to the desired solution. One possibility is to allow the
user to specify an initial guess that is close to a lo-
cal minimum. Starting from the user selection, like an
initial given contour, a minimization scheme refines
the initial guess to fit it to the given image data. The
global minimum of the given functional does not neces-
sarily make sense and initial and boundary conditions
are important in the process of locating the desired lo-
cal minimum. A global minimum is meaningless in
the case of free end points or closed curves, since in
both cases, the curve can vanish into a single point at
a global minimum of the potential (which then gives a
null energy). In other cases, where some points known
to be part of a contour are given as fixed end points or
as a constraint for a closed curve to pass through, it is
more sensible to search for the minimal path between
the end points. Roughly speaking, we can distinguish
between “good” and “bad” local minima for snakes.
The bad local minima that we would like to avoid are
those that trap the curve in noisy areas as shown in the
left example in Fig. 8. The desired solution is usu-
ally found by active contours with an adequate initial-
ization. It is also a local minimum when it has free
ends, and actually each boundary in the image corre-
sponds to such a minimum. However, when the curve
is forced to pass through some given points along the
same boundary, we may assume that the global mini-
mum is the desired solution, since the potential should
be the smallest along the path that joins the end points'.
Our approach gives the global minimum path between
two end points, and thereby simplifies the initialization
process in this case.

To motivate the proposed solution let us explore its
relation to the classical active contour model.

Since the introduction of “snakes” (Kass et al.,
1988), deformable models have been often used to in-
tegrate boundaries and extract features from images.
The extraction of local features is specified by initial
conditions that lead to the selection of one of the lo-
cal minima. Snakes are a special case of deformable
models as presented in (Terzopoulos, 1987). The de-
formable contour model is a mapping:

Cv): Q2 > R?
v (x(v), y(v), )]

where =10, 1] is the parameterization interval. In
some cases v is chosen to be the arc-length parameter,
and then 2 =[0, L] where L is the length of the curve?.
In some other cases, like periodic closed curves, 2 = § 1
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is the unit circle (in this case the parameter v is a
mapping from the unit circle to the curve). The de-
formable model is a space of admissible paths or
deformations A and a functional E. This functional
represents the energy of the model which will be min-
imized on A and has the following form:

E:A—- R
C > EQ) = / %||C’(v)||2+%||6”<v>||2
Q
+ P(C)) dv, @)

where C" and C” are the first and second derivatives
of C with respect to v, and P is the potential associated
to the external forces. The potential is computed as
a function of the image data according to the desired
goal. If, for example, we want the snake to be attracted
by edges, the potential should depend on the image gra-
dient. For the problem to be well-posed, the space of
admissible deformations A is restricted by boundary
conditions. These may be free boundaries, as in the
original snakes (Kass et al., 1988), cyclic boundaries
by using periodic closed curves (Terzopoulos, 1987),
or fixed end points by giving C(0), C'(0), C(1) and
C’(1) (Cohen, 1991; Cohen and Cohen, 1993). The
mechanical properties of the model are controlled by
the functions or constants w;.

If C is a local minimum of E, it satisfies the associ-
ated Euler-Lagrange equation:

{ —(wC) + (") +VP(EC) =0 3)

given boundary conditions.

In this formulation each term appears as a force acting
onthe curve. A solution can be viewed either as satisfy-
ing the equilibrium of the forces in the Euler Lagrange
equation or as reaching a minimum of the energy. Thus
the curve is under the control of two kinds of forces:

e The internal forces (the first two terms) which
impose the regularity on the curve. The choice of
constants w; and w; determines the elasticity and
rigidity of the curve.

e Theimage force (the potential term) pushes the curve
to the significant lines which correspond to the de-
sired attributes. It is defined by a potential of the
form fol P(C(v)) dv where for example

P(C) = g(IVIOID. “4)

Here, I denotes the image and g(-) is a decreasing
function. In the classical snakes (Kass et al., 1988),
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we have g(x) = —x2. The curve is then attracted by
the local minima of the potential,i.e.,edges (see (Fua
and Leclerc, 1990) for a more complete discussion
on the relationship between minimizing the energy
and locating contours). Other forces can be added
to impose constraints defined by the user. As intro-
duced in (Cohen, 1991), previous local edge detec-
tion might be taken into account as data for defining
the potential.

A geometric approach for deformable models was
recently introduced in (Caselles et al., 1993; Malladi
et al., 1995). A level set approach for curve evolution
(Osher and Sethian, 1988; Sethian, 1989) is used to
implement a planar curve evolution of the form:

aC(s, 1)
ot

2
= P(C)(%erﬁ), (5)
where s is the arc-length parameter of the curve C in this
case. Therefore, ‘3275 = k# is the curvature vector (71
is the unit normal), and w is some predefined constant.
This constant term is thus similar to the pressure force
introduced for the balloon model (Cohen, 1991). It is
also related to the dilatation transform in mathematical
morphology and the grass-fire transform (Leymarie and
Levine, 1993).

It was shown that the geometric snakes model per-
forms better than the classical snakes in some cases like
topology changes when implemented by the implicit
embedding function technique proposed by Osher and
Sethian (1988). It was recently proven that introducing
the ‘gradient of potential’ (V P) term of the classical
energy minimization snakes (Kass et al., 1988; Cohen
and Cohen, 1993; Leymarie and Levine, 1993) into the
geometric snakes (Caselles et al., 1993; Malladi et al.,
1994, 1995) is based on geometrical as well as energy
minimization reasoning, leading to the “geodesic ac-
tive contours” (Caselles et al., 1995).

The basic idea of the geometric model is that the
curve follows an evolution by expansion in the normal
direction, with lower speed when P (C) is small. Yet, it
never comes to a complete stop, and heuristic stopping
procedures are used to switch off the evolution process
when an edge is reached. The ‘gradient of potential’
term added in the geometric model forces it to stop at
the boundary similar to the image force in the classical
active contours.

The geodesic active contours (Caselles et al., 1995)
were shown to ‘behave’ better than both its ‘ancestors’
since they enjoy the advantages of both. Given an

initial curve C(s, 0), the geodesic active contours are
based on the planar evolution equation

2
aC(s, 1) _ P(C)E —(VP,n)n, (6)
ot 8s2

where s is the arclength. There is a major difference
between (5) and (6). In (5), the geometric snake evolu-
tion is slower when the potential is small but the curve
does not necessary stop completely at the boundary. It
may reduce its speed but keep on propagating since it
never reaches an equilibrium. This might be a draw-
back when part of the initial curve is close to the bound-
ary and part of it is far. When the further part of the
curve has reached the boundary, the closer part might
have already penetrated the object. In (6), the curve
reaches an equilibrium which is similar to the classical
snakes. The VP term is a projection of the attrac-
tion force —V P onto the normal to the curve. This
force balances the other term close to the boundary
and causes the curve to stop there.

Itis shown in (Caselles et al., 1995) that (6) is a result
of minimizing the functional

EQC) = / P(C(s)) ds, ™
Q

where s is the arclength (or E(C)= fQ P(C(v))
IC"(v)|| dv, for the arbitrary parameter v). The curve
evolution equation is then reformulated and imple-
mented using the Osher-Sethian numerical algorithm
(Osher and Sethian, 1988; Sethian, 1996b). Similar
geometric models were also introduced in (Kichenas-
samy et al., 1995; Whitaker, 1995; Shah, 1996) and
extended to color and texture in (Sapiro, 1996).
Although our work is related to (Caselles et al.,
1995), it is a totally independent approach. Actually,
the geodesic active contours may be considered as a
natural refinement procedure to the proposed approach.
We note that following the formulation of (Caselles
et al., 1995), the minimization of the classical energy
(2) may be modified into the problem of finding local
geodesics in a Riemannian metric computed from the
image, where we propose to find the minimal geodesics
in a similar Riemannian metric (see Eq. (8) in the fol-
lowing Section). Although it is shown in (Caselles
et al., 1995) that the solution of active contour models
is closely related to geodesics, no method is proposed
to find the minimal ones. In general, active contours
models search for a local minimum that is close to the
initial guess, while we propose a method to find the



minimal path (minimal geodesic) of the same energy
between two end points.

3. Paths of Minimal Action

Given some potential P that takes lower values near the
edges or features, our goal is to find a single contour
that best fits the boundary of a given object or a line of
interest. This ‘best fit” question leads to algorithms that
seek for the minimal path, i.e., paths along which the
integration over P is minimal. As mentioned earlier,
snakes start from a path close to the solution and con-
verge to a local minimum of the energy. Given only the
end points, our goal is to find the minimal path between
these points, thereby simplifying the initialization pro-
cess and avoiding erroneous local minima. At first
glance, this limits the problem to the type of bound-
ary conditions with fixed end points, however, as we
will see in Section 6, the proposed approach may also
be used for closed contours. Motivated by the ideas
put forward in (Kimmel et al., 1995, 1996) we develop
an efficient and consistent method to find the path of
minimal cost between two points, using the surface of
minimal action (Rutovitz, 1968; Kimmel et al., 1996;
Verbeek and Verwer, 1990) and the fact that operating
on a given potential (cost) function helps in finding the
solution for our path of minimal action (also known
as minimal geodesic, or path of minimal potential).
Thereby, we are able to isolate the boundary of a given
object in the image.

3.1. Problem Formulation

The minimization problem we are trying to solve is
slightly different from the deformable models, though
there is much in common. One may still differ between
“internal” and “external” forces, yet now all terms are
geometric, which means a result of an intrinsic energy
functional. Contrary to the classical snake energy, here
s represents the arc-length parameter, which means that
| %(S)” = 1. The reason we modified the energy is
that we now have an expression in which the internal
regularization energy is included in the potential term
in a natural way. We can then solve the energy mini-
mization in a similar way to that of finding the short-
est path on a surface using the method developed in
(Kimmel et al., 1995). The fact that the energy integral
is now intrinsic will also help us to explore the relation
between the smoothness of the result and the potential.
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The energy of the new model has the following form:

APOsPl g ]R
ac  |?
C— E©) :/ wH—(s) + P(C(s)) ds

Q as

= wL(C) —l—/ P(C(s)) ds

Q

= / P(C(s)) ds, (8)

Q
with
P(p) =w+ P(p). )

Here A,, p, is the space of all curves connecting
two given points (restriction by boundary conditions):
C(0) = ppand C(L) = py, where L is the length of the
curve. Contrary to the classical snake energy, here s
represents the arc-length parameter. So, Eq. (8) could
actually be read as

Cr— EC) = /Q(w + PCNIC' W dv, (10)

for an arbitrary parameter v. This makes the energy
depend only on the geometric curve and not on the pa-
rameterization. The regularization term multiplied by
the constant w now measures the length of the curve.
We note that a similar regularization effect may be also
achieved by smoothing the potential P (Fischler et al.,
1981). Section 5 gives more details about the smooth-
ing effects of the energy.

Having the above minimization problem in mind, we
first search for the surface of minimal action Uy that
starts at po = C(0). Ateach point p of the image plane,
the value of this surface Uy corresponds to the minimal
energy integrated along a path that starts at p and ends

at p.

Uo(p) = inf {/f’ds} = inf E(C), (1)
CL=p | Je Po-P
where s is the arclength parameter.
We next show how to determine the value of U
everywhere in the image domain.

3.2. Shortest Paths as a Set

Following (Kimmel, 1995; Kimmel et al., 1995), given
the minimal action surfaces Uy to pg and U, to p;,then
the minimal geodesic between pg and p; is exactly the
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set of coordinate points p, that satisfy
Uo(pg) + Ui(pg) = iélﬂl;{Uo(p) +Ui(p}. (12)
peR?

Usually, the set of points p, needs to be refined from
agiven “fat” set of points into a curve. Since we operate
on a discrete data, in order to keep the two end points
connected by the minimal set we need to threshold the
function Uy 4 U, using a value larger than its infimum.
This operation results in a fat set. In (Kimmel et al.,
1996) a thinning algorithm was applied. In our case,
a natural refinement of this set is to select any curve
in the set connecting the two points, and apply a local
minimization based on the Euler-Lagrange equations
minimizing the same functional. The geodesic active
contours without the constant term and fixed end points
is the right flow for this case. Observe that it should
operate only within the “fat” set, which can be consid-
ered as a fixed narrow band (Adalsteinsson and Sethian,
1995), thereby reducing drastically the computational
complexity of this refining.

When there are two or more minimal paths, as we
will see in Section 6, the destination point p; is a saddle
point and each path can be obtained from one of the
decreasing directions at p; . By using the sum of the two
distances, one can simultaneously obtain all minimal
paths.

The above is a global way for extracting the global
minimum. In our experiments we have preferred to use
a back propagation procedure that results in a single
curve (see Section 4.5).

3.3. Minimal Action Level Sets Evolution

In what follows, we assume that P > 0. For the mini-
mization of our energy (8), let us first formulate a partial
differential evolution equation for the set of equal en-
ergy contours L in ‘time’, where 7 is in fact the value
of the energy. These are the level sets of Uy defined
by Eq. (11). In the evolution equation, ¢ represents the
height of the level set of Uy:

0L (v, 1) L
o = Fn(v, 1), (13)

where P = P+ w and n(v,t) is the normal to the
closed curve £(.,¢) : S' — R%. The motivation for
this evolution is that we need to propagate with a ve-
locity that is proportional to the inverse of the penalty.

So that at ‘low cost’ area the velocity is high while at
a ‘high cost’ area the velocity is low.

The curve L(., t) corresponds here to the set of points
p for which the minimal energy Uy (p) is t:

(L, t),veSY={peR|Up) =t}. (14

This evolution equation is initialized by a curve
L(.,0) which is a small circle around the point py.
It corresponds to a null energy. It then evolves accord-
ing to Eq. (13), similar to a balloon evolution (Cohen,
1991) with an inflation force depending on the po-
tential. Considering the (x, y, t)-space, the family of
curves L(., t) constructs the level sets of the surface
U(x,y) : R?> - R* defined in (11). The ¢ level set
of U is exactly the curve L(., t). Although a rigorous
proof of this statement can be found in (Bruckstein,
1988) it can be understood simply by the following ge-
ometric interpretation. Observe that when we add to
a path that ends at a point of £(., #) a small segment
in the normal direction to L(., t) and of length %dt,
we add to the accumulated energy of (8) a contribu-
tion of f’%dt = dt. This means that the new point
is on the level ¢ 4 dr, that is on the curve L(.,  +dt).
Figures 13 and 14 presents such a surface U and its
corresponding level sets.

It is possible to compute the surface U in several
ways. We shall describe three of them that are consis-
tent with the continuous case while implemented on a
rectangular grid. It is, however, possible to implement
a simple approximation like the shading from shape al-
gorithm introduced in (Verbeek and Verwer, 1990), or
even graph search based algorithms (see Section4.1),if
consistency with the continuous case is not important,
see also (Rutovitz, 1968).

4. Numerical Implementation

The numerical schemes we propose are consistent with
the continuous propagation rule. The consistency con-
dition guarantees that the solution converges to the true
one as the grid is refined. This is known not to be
the case in general graph search algorithms that suffer
from digitization bias due to the metrication error when
implemented on a grid (Mitchell et al., 1987; Kiryati
and Székely, 1993). This gives a clear advantage to
our method over minimal path estimation using graph
search. Before we introduce the proposed method, let
us review the graph search based methods that try to
minimize the energy given in (8).



4.1. Graph Search Algorithms
and Metrication Error

To evaluate and minimize the snake energy (2), the “in-
ternal” terms can be evaluated only from the shape of
the curve, leading to curve deformation and evolution
schemes from an initial curve. Based on the new en-
ergy definition (8), we are able to compute the final
path without evolving an initial contour, by using the
surface of minimal action. To find the surface of min-
imal action, graph search and dynamic programming
techniques were often used, where the image pixels
serve as vertices in a graph (Montanari, 1971; Fischler
et al., 1981; Chandran et al., 1991).

A description of A* and F* algorithms, applied to
road detection, can be found in (Fischler et al., 1981).
The distance image is initialized with value co every-
where except at a start point with value zero. At each
iteration, the A* algorithm expands to a neighbor pixel
apreviously obtained minimal path ending at the vertex
with smallest current cost value. Since at each itera-
tion one pixel gets a final value, and a search for the
minimal vertex to update is performed, the algorithm
complexity is O(N log N) where N is the number of
pixels in the image. Our approach solves a continuous
version of the problem. Sethian Fast Marching Method
(Sethian, 1996), described in Section 4.4, has a similar
complexity, yet it is consistent!

The A* algorithm has to search among all vertices,
the one to expand at each iteration. This is why the
F* algorithm was preferred in several applications.
The F* algorithm (so called in (Fischler et al., 1981))
computes the distance with a sequential update of the
pixels. It is similar in spirit to the algorithm used in
Section 4.3 (see also (Dupuis and Oliensis, 1994)), ex-
cept that Eq. (18) is again consistent. Using the F*,
the global minimum is reached only after the image is
scanned iteratively top to bottom, row by row, left to
right followed by right to left, and then bottom to top.
The number of such passes depends on the shape of the
minimal path, which is usually unknown in advance.
If that path expands from the starting point monoton-
ically with respect to the row index, one pass is suffi-
cient. However, if it has a spiral shape from the starting
point, it needs as much iterations as turns in the path,
to propagate the information from the start point to the
end point. The resulting complexity is of O(N [ kds),
where the integral is along the optimal path and « is
the curvature ([ kds/27 = number of loops of a pla-
nar curve). In practice, the iterations are stopped either
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when there is no more change in the process (this has
to happen in a fixed number of iterations) or after a
given number of passes. This kind of approach was
used to compute distance maps in (Borgefors, 1984;
Danielsson, 1980). It was also used for road detection
in (Merlet and Zerubia, 1993; 1994), using some im-
provements in the potential definition. The authors also
add some constraints on the curvature by taking into ac-
count sets of three vertices instead of two in the graph
search to update the distance. In their algorithm, they
find that 8 passes are sufficient for their applications.

Such an algorithm was used by (Geiger et al., 1995)
for interactive boundary drawing giving a sequence of
points on the boundary and finding the path between
two successive data points. A similar approach is used
in an interactive tool called live-wire (Mortensen and
Barrett, 1995).

A simplified F* algorithm is used in (Chandranetal.,
1991) to minimize a snake energy. It assumes the path
expands from the starting point only in a restricted
range of directions and makes only one pass. Thus,
it only finds the global minimum among all paths re-
stricted by this condition. This is a problem for non
monotonic paths. In case there are gaps in the poten-
tial that can lead the expansion of the path in a wrong
direction, then the algorithm has no way to correct itself
and to find the right path. Although these last authors
generalize their approach to the continuous case, they
solve it only for the discrete graph approach and their
approach, as well as other graph search algorithms, is
also subject to metrication error.

A completely different approach related to dynamic
programming for detection of salient boundaries was
introduced in (Shaashua and Ullman, 1988). It defines
iteratively at each pixel of the image a value of the max-
imal energy of a path passing through this pixel. Then
high valued pixels are grouped to get salient curves.
The context is different there since each pixel or vertex
is considered as a start point and the algorithm finds
simultaneously all interesting feature curves.

Dynamic programming has also been used for
snakes, starting with (Amini et al., 1990). Although
a complete theoretical description of continuous dy-
namic programming is reviewed, the proposed applica-
tion to active contours is different from the ones above
and our approach. The dynamic programming min-
imization is not applied there to find a minimal path
between two points but to find the local deformation
from an initial curve that gives the best energy descent.
This is applied iteratively from an initial curve, exactly
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as in the classical curve evolution scheme for snakes.
However, instead of using gradient descent, it finds at
each iteration the global minimization among all pos-
sible local deformations, i.e., paths obtained by giving
each node of the curve the ability to move in a small
neighborhood (3 x 3 pixels usually). This reduces con-
siderably the size of the graph, since the vertices are
the nodes on the curve and the possible values for these
are only the eight neighbors of the initial vertex. In
(Fujimura et al., 1992), the range of possible local de-
formations is broadened using a multiscale dynamic
programming algorithm. However, in both approaches,
this kind of graph search does not avoid undesirable
local minima of the energy, and the solution remains
very sensitive to the initialization, as in classical snakes.
Also, like classical snakes, it is non intrinsic and the
same looking two initial contours with different control
points may lead to completely different solutions.

One may argue that using previously mentioned
graph search algorithms like the A*, (Dijkstra, 1959;
Sedgewick, 1988), or F'* as proposed in (Fischler et al.,
1981) for road tracking, might be sufficient. These al-
gorithms are indeed efficient, yet suffer from ‘metri-
cation errors’. The graph based algorithms consider
the image as a graph in which each pixel is a node,
and the 4 (or 8) connections to the neighboring pixels
are the vertices of the graph. The weights along these
vertices are usually taken as the average of the potential
at the two end pixels, multiplied by the length of the L'
“city block” distance between these pixels (1 for hor-
izontal and vertical connections). However, it is clear
that measuring length of the shortest path between the
lower left and the upper right corners of the graph in
Fig. 1 this way, the length of P is equal to that of P,. It
does not matter how fine the grid gets, P; is still an op-
timal path. Our goal is to get the diagonal connection
as the optimal path with the ‘right” Euclidean distance
measure (L?) in this simple case. Our problem is that
in graph search algorithms we are obligated to the dis-
tance measure imposed by the graph (L' in Fig. 1).

Of course the result of the graph-search could be im-
proved by taking a larger neighborhood as structuring
element, giving better approximations of the distance in
some directions (like +/2 for the diagonals) (Borgefors,
1984; Thiel and Montanvert, 1992).

These give a different polygonal approximation of
the circle, but there will always be an error in some
direction that will be invariant to the grid resolu-
tion, which is not the case in the approach we use.
Also, some fixes that minimize the average error by

P2

P1

Figure 1. An L' norm causes the shortest path to suffer from errors
of up to 41%. In this case both P; and P, are optimal, and will stay
optimal no matter how much we refine the (4-neighboring) grid.

modifying the weights along the connections between
the pixels were proposed in (Kiryati and Székely, 1993)
and used in (Kimmel and Kiryati, 1994). We show the
example of Figs. 1 and 2 for the simplest case of graph
search, to clarify the metrication error effect.

Our philosophy here is different. We propose to
deal with the continuous problem as long as possible.
In that, we follow the numerical analysis community,
by first analyzing the underlying problem in the con-
tinuous domain. Then, at the last stage which involves
numerical implementation we will consider the image
given as a grid of pixels, compute optimal paths and the
surface of minimum action in a relatively efficient way,
while at the same time enjoy the ‘consistency’ property
of converging to the desired continuous solution as the
grid is refined. The main reason is obviously accuracy
which is important for example in medical applica-
tions. As an illustration, Fig. 2 shows the isodistance
curves using a graph-search approach and the continu-
ous level-set approach. These curves are squares in the
first case, not depending of the size of the grid, while
in our case, the curves are getting closer to a perfect
circle when the size of the grid is refined.

4.2. Front Propagation Approach
According to this first continuous approach, the curve

evolution L(., t) of Eq. (13) is reformulated into an evo-
lution of an implicit representation of the curve defined
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Illustration of metrication error for computation of the distance map to a single point, showing level sets of the distance. On the left:

a graph search-like discrete distance computation gives squares; On the right: the distance is obtained by our approach, giving circles.

by an evolving surface ¢ : R?> x (0, T) — R, where
for each value of r, £ = ¢~'(0). This means that curve
L(., 1) is the zero level set of ¢(z) : R? — R. This
Eulerian formulation for curve evolution was intro-
duced by Osher and Sethian (1988) and Sethian (1989)
to overcome numerical difficulties and handle topolog-
ical changes. As initialization for £(., 0), we start with
an infinitesimal circle around the start point p. We
mean a small one for practical implementation. The
function ¢ is initialized at + = O to be negative in the
interior and positive in the exterior of the curve L(., 0).
This is obtained by setting one pixel to —1 and the rest
to +1. The evolution rule of ¢ is then given by:

op 1
5 = ]3||V¢>||. (15)

It was this same idea of considering the curve as the
zero level set of an evolving surface that initiated the ge-
ometric snake approach (Caselles et al., 1993; Malladi
et al., 1995) described in the end of Section 2. For a
fast implementation, of order O (M ‘/A—df) where M is
the number of points in a narrow band around the front
and At is the time step of the scheme, of the above ap-

proach we refer to (Adalsteinsson and Sethian, 1995).

4.3. Shape from Shading Approach

The second approach is based on Rouy-Tourin shape
from shading method (Rouy and Tourin, 1992; Dupuis
and Oliensis, 1994) and searches for the surface U it-

self instead of tracking its level sets as in the previous
approach. In this case the surface may be found as so-
lution of the Eikonal equation

IVU| = P, (16)

with U(pg) = O at the start point. The solution U
is obtained as the steady state of U(p, ) when t is
large, where U (p, T) satisfies the following evolution
equation:

ou

aT
given U(po, T) = 0 at the start point as boundary con-
dition. The limit value U = U, is solution of the
Eikonal Eq. (16).

We can again give a geometric interpretation that
relates (13) to (16). The gradient of U is normal to
its level sets L(., 1), and the gradient norm is thus the
value of the spatial directional derivative in the nor-
mal direction. As U increases by dt, the normal dis-
placement of the level set L(., t) is d—P’ from (13). So
the derivative % = (VU,n) = ||VU]| is equal to
dt/ % = P. Arigorous proof of this idea can be found
for example in (Bruckstein, 1988). (See also (Bellman
and Kalaba, 1965) for a nice proof on the orthogonality
of the wave fronts and the geodesics.) Here, boundary
conditions are given in the form of fixing the point
C0) = pg,ie.,U(py, ) = O for all . Authors of
(Rouy and Tourin, 1992) also presented a direct nu-
merical approach to solve (16) and gave a convergence

P — VU, (17)
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proof to that minimization procedure in the viscosity
solutions framework (Crandall et al., 1992). We shall
discuss this method and its discretization in more de-
tails in the following section. The method we recom-
mend is presented in the following section. Itisin some
sense a hybrid of both methods just described.

44. Sethian Fast Marching Method

In his recent report (Sethian, 1996), Sethian presents
a fast and efficient method for solving Eq. (16). It is
based on a clever way for propagating the information
on the grid. Motivated by the two methods above, this
method uses the proposed numerical scheme in (Osher
and Sethian, 1988; Rouy and Tourin, 1992). However,
by marching in an ordered way, the problem is solved
after a finite number of steps, and by that contradicting
Remark 5 in (Rouy an Tourin, 1992). We recommend
this method for any real time application.

Given the potential values P, ; = P(iAx, jAy) on
a grid (e.g., the pixel grid), the numerical method ap-
proximating U; ; in Eq. (16) is given by

Uis1,j,0D)?
+ (max{u — U j_1,u — Ui j11,.0D)> = P2, (18)

(max{u — Uj_y j, u —

where, for simplicity, we assume Ax = Ay = 1. In
(Rouy and Tourin, 1992) the numerical viscosity solu-
tion was obtained by solving the above equation at each
grid point, selecting for U; ; the largest u that satisfies
Eq. (18). The grid points were selected in an arbitrary
way, and thus it was claimed that convergence is ob-
tained after infinite number of such iterations. Where
each iteration involves an arbitrarily selection of a grid
point (i, j), and updating the value of U; ; at that point.
In practice, it means many passes on the image.

The Fast Marching Method introduces order in the
selection of the grid points. It is based on the fact
that information is propagating from the source point
‘outwards’. It needs only one pass on the image (see
beginning of Section 4.1). Following (Sethian, 1996),
the method goes as follows:

e Initialization:

— For each point in the grid, let U; ; = oo (large
positive value). Label all points as far.

— Set the start point (i, j) = po to be zero:
Up, = 0, and label it trial.

e Marching Loop:

— Let (imin» Jmin) be the trial point with the smallest
U value.

— Label the point (imin, jmin) as alive, and remove
it from the trial list.

— For each of the 4 neighboring grid points (k, [)
of (imina jmin):

x If (k, 1) is labeled far, then label it trial.

x If (k, I) is not alive, then compute Uy ; accord-
ing to Eq. (18), selecting the largest solution to
the quadratic equation, which is the only valid
solution. i.e., solve with respect to u

(max{u — min{Us_y ;, U414}, 0})*
+ (max{u — min{Uy;_1, U141}, 0})?
=P, (19)

and let Uy = u.

The algorithm is based on the fact that solving
Eq.(19),the value ata pixel (k, [) depends only on those
neighboring pixels that have lower value than Uy ;.
For efficiency, the trial list is kept as min heap struc-
ture. We refer to (Sethian, 1995, 1996; Adalsteinsson
et al., 1996; Kimmel and Sethian, 1996) for further
details on the above algorithm, as well as a proof of
correct construction. Using a min-heap structure for
the trial list, the algorithm computational complexity
is O(N log N) where N is the number of grid points.
It has similar complexity to that of graph search based
algorithms like the A* or (Dijkstra, 1959; Sedgewick,
1988). For example on a SPARC 1000, it took a second
to compute the U surface of a 256 x 256 image. This
is a first order numerical scheme. As an example for
accuracy we should note that the Euclidean distance
(P;;j = 1) from a straight line is accurate with sub
pixel accuracy (error = 0). In general, the consistency
condition guarantees that as the grid is refined, the so-
lution converges to the true continuous one. See also
(Tsitsiklis, 1995) for a nice related work on combining
a numerically consistent scheme with the O (N log N)
efficiency of Dijkstra graph search algorithms.

4.5. Global Snake Minimization between Two
End Points

Shortest Path between pyandp;. Using the approach
of (Kimmel et al., 1995) described in Section 3.2, the
shortest path between a start point py and a destination
point pp, according to the energy minimization is the
set of points p,, = (X, yu) that satisfy:

Wo + U)X, ym) = (111}1:{(Uo + U, »)}, (20)



where Uy and U, correspond to the minimal action
obtained in the previous section with paths starting at
po and p; respectively. A natural combination is to use
the above method in order to locate the minimal set, and
then let the model defined in (Caselles et al., 1995) take
over and refine the result. However, we recommend an
easier way to compute the path by back propagation.

Back Propagation from p;. Inorder to determine the
minimal path between py and p;, we need only to cal-
culate Uy and then slide back on the surface Uy from
(p1, Uo(p1)) to (po, 0). The surface of minimal action
Uy has a convex like behavior in the sense that starting
from any point (g, Up(g)) on the surface, and following
the gradient descent direction, we will always converge
to po. It means that Uy has only one local minimum
that is of course the global minimum and is reached
at po with value zero. We show in Figs. 13 and 14
an example of 3D representation of the z = Uy (x, y)
surface and a level set image of the same Ujy. Given the
point py, the path of minimal action connecting py (the
minimal point in Uy, U(pg) = 0) and p; is the curve
C(o) starting at p; and following the opposite gradient
direction on Uy:

aC
— = =V,

3 C(0) = p 21)
o

Then the solution C(s) is obtained by arclength pa-
rameterization of C(—o) with C(0) = poand C(L) =
p1. The minimal path can be obtained this way since
VU is tangent to the geodesic. This is a consequence of
the results in (Bellman and Kalaba, 1965) that show that
the light rays (geodesics, constant parameter curves)
are orthogonal to the wave fronts (equal cost contours).
The gradient of U is therefore orthogonal to the wave
fronts since these are its level sets.

The back propagation procedure is a simple steep-
est gradient descent. It is possible to make a simple
implementation on a rectangular grid: given a point
q = (i, j), the next point in the chain connecting g to
p is selected to be the grid neighbor (k, /) for which
U (k, 1) is the minimal, and so forth. Of course, a better
tracking can be obtained using a more precise estima-
tion of the gradient of U. In our examples we have
chosen the discrete steepest descent just described, be-
cause of its simplicity, and the fact that it is used only
for presentation purpose. Being a local operation, back
propagation suffers from angular error accumulation.
See (Kimmel and Sethian, 1996) for a more sophisti-
cated high order ODE integrator developed for other
purposes. It is used in the examples of Fig. 11.
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We back track the path of minimal action connecting
the two points, which is the global minimum of the
snake energy defined in Eq. (8).

Using back propagation following the gradient of
U, once the surface U is available, the minimal path
between the start point py and any other point p can
be obtained without additional computation. This ap-
proach is used for example to simultaneously track four
roads in the same image, as shown in Fig. 10. Notice
that in (Merlet and Zerubia, 1993), a back propagation
is made from all pixels along the image boundary. We
could also apply the same idea with our approach, and
then deal with the meaningless parts of the paths.

Note that if at some point along the path, we have
VU, = 0, there may be more than one path that reaches
the global minimum. This will be the case in Section 6
where we find two minimal paths from a saddle point.
In this case, we perform back propagation with two ini-
tial opposite directions. These directions can be found
either directly, as the steepest descents on the discrete
grid, or from the eigenvectors of the second differential
operator.

5. Discussion on the Potential Term
5.1. Regularization Properties

We now show how the constant w and the potential
P in Eq. (8) control the smoothness of the solution.
A qualitative understanding of a similar control was
used in (Fischler et al., 1981). Here, we first introduce
quantitative results in the form of geometric bounds on
the curvature of the final contour.

We shall make use of the following lemmas to intro-
duce an upper bound on the curvature along the result-
ing contour C(s) by controlling the potential P. We also
assume that the potential is given as a positive function.

Lemma 1. Given a potential P > 0, the curvature
) 2 . S
magnitude |k| = || % | along the geodesics minimizing

/ P(C(s)) ds, (22)
Q

where s is the arclength parameter, or f P(C(v))
IC’ (v)|| dv for an arbitrary parameter v, is bounded by

lic| < sup MV (23)

Proof: Following (Caselles et al., 1995) (see also
(Dubrovin et al., 1984)), the Euler-Lagrange equation



68 Cohen and Kimmel

of (22) is given by
Piin — (VP,nyn = 0. (24)

It indicates the curve’s behavior at the minima of (22).
This yields the following expression for the curvature
along the geodesics of P:
(VP, i)
R
Since 7 is a unit vector, the numerator is a projection
on a unit vector operation. Thus, we can conclude that
along any geodesic path minimizing (22) the curvature
magnitude is bounded by Eq. (23). O

(25)

K =

Using Lemma 1, an a priori bound of the curvature
magnitude may be obtained by evaluation of sup and inf
over the image domain D instead of the curve domain
2 in (23). We readily have the following result which
applies to our case with the energy of (8):

Lemma 2. Given a potential P > 0 defined on the
image domain D, and let P=w+ P, the curvature
magnitude |k | along the geodesics minimizing the en-
ergy of (8) is bounded by

| < SUPD{IIVPII}‘

w

Proof: Since P > 0 we have that ian{I;} > w.
Using this relation and Eq. (23) we have:

| < sup{ ||vﬁ||} _ sup{ IVP] }
T P g |P+w

(26)

< sup IVPIL] _ supp{lIV P}
“ p |P+w)] T w+infp{P}
vP
< supp |l ||}. 27
w
a

Equation (26) enables us to control the behavior of
any geodesic minimizing (8), and especially the min-
imal geodesics that interest us. Lemma 1 also gives
a nice interpretation of the connection between the
curvature of the resulting contour, and the ratio between
the gradient magnitude and the value of the potential P.
When the curve’s normal is orthogonal to the slope of
P, so that the curve is directed towards the valley, then
the curvature is zero implying a straight line. While
if the curve travels along a contour of equal height in
P, then the normal 7 coincides with the slope of P
and the curvature increases causing the curve to bend
and direct the curve to flow into the valley, where the
potential is lower.

The conclusion is that to decrease the limit of the
curvature magnitude of the geodesics in Eq. (26), and
thereby lead to a smoothing effect on the resulting con-
tour, we have two alternatives:

e Smoothing the potential (or the image) to decrease
supp (| V P}

e Increasing the constant w added to P, increases the
denominator without affecting supp{||VP||}. This
gives a justification for referring to w as a regular-
ization parameter in Section 3.1.

Figure 4 shows the effect of changing w on the so-
lution (it varies between 0.04 and 0.4). The potential
shown in Fig. 3 is based on the image gradient like in
(4) (the range of P and V P is normalized between O
and 1).

A possible application of the bound in Eq. (26) would
be to limit the domain in which the curve lies and thus
reduce computation of the minimal action only to this
area of the image.

Figure 3. Bird image: original on the left, potential in the middle and minimal path on the right.



Figure 4. Regularization effect by increasing the coefficient w from left to right.
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Figure 5. Line image. From left to right: original, potential, minimal action (random look up table to show the level set propagation starting

from the bottom left), minimal path between bottom left and top right.

5.2. Attraction Potential

As noted in Section 2, it is useful in some cases to
define a potential from an edge image. These edge
points may be extracted from the original image us-
ing an edge detection operator or given as a set of data
points. This kind of potential is often used in the lit-
erature (see (Cohen, 1995) for several possibilities of
selecting such potential functions). Choosing this po-
tential function is useful when the edge detection op-
eration produces most of the edge points but has gaps
in the contours, as shown in Fig. 5. The distance based
potential considers the distance from the detected edge
points to be the penalty. In this case the gradient of the
potential points towards the closest detected point.
Also, the use of such a potential may avoid node con-
centration at some high gradient points. Indeed, since
the gradient norm usually changes its values along a
boundary contour, this operation assigns an equal at-

traction weight along the boundary. Several approaches
of generating ‘attraction potentials’ from such data for
various reconstruction methods were surveyed in (Co-
hen and Cohen, 1993) and a ‘physical’ interpretation
was given as weak springs linking the curve to data
points.

Let I(x,y) : D C R?> - R* be a given gray level
image. Applying a standard edge detector to I results in
a set of points in the image domain (D) some of which
correspond to true edge points. These points are scat-
tered over the image domain and serve as the key points
in generating a single boundary contour. Finding such
a contour is usually referred to as ‘shape modeling’
that is used for object segmentation and classification
(Malladietal., 1994, 1995; Malladi and Sethian, 1994).
The difficulty here is that there is no order in the set of
points and that it is unknown in advance which points
belong to the boundary. This is defined as implicit
constraints in (Cohen, 1996).
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Denote by £(x,y) : D — {0, 1} a binary func-
tion representing the result of applying a standard edge
detector on the image I/, where 1 corresponds to a de-
tected edge point. One possible way of defining a po-
tential P : D — IR™ is as a function of the distance
map (Cohen and Cohen, 1993), where each point p
is assigned with a value representing the shortest Eu-
clidean distance to an edge point:

ds(p)=£((iir)1£l{dist(p,q)}, and  P(p)= f(de(p))
(28)

where dist(p, q) is the Euclidean distance between the
two points p and ¢ and f is an increasing function. An
example of distance map is shown in Fig. 5. Consistent
numerical approximations of (28) for the computation
of d¢ on a sequential computer may again be imple-
mented by using the fast marching method (Sethian,
1996). Quick sequential algorithms (Borgefors, 1984;
Danielsson, 1980) were used for defining the attrac-
tion potential in (Cohen and Cohen, 1993). Sub-pixel
estimation of the distance using a parallel algorithm
was presented in (Kimmel et al., 1996). It gives a high
sub-pixel precision of the distance. This is one pos-
sible application of shortest path estimation (Kimmel
et al., 1995; Sussman et al., 1994) presented briefly
in Section 3.2. Note also that the distance potential
selection P may be also considered as the normalized
force introduced in (Cohen, 1991) for stabilizing the
results (i.e., for P = d¢ we have |[VP| = %) since
IVdg|| = 1 almost everywhere. The motivation for
choosing such a potential is that the penalty grows as a
function of the distance from the edge points.

This last equality is useful in the context of the pre-
vious section to obtain an estimation of the curvature’s
bound when P = w + dg. From Eq. (26), we have:

1
k] < —, (29)
w
i.e., w is the minimur{l curvature radius along the final
contour. In the case P = w + f(d¢), the upper bound
becomes

[

|| < sup (30)
d

where d ranges from O to the maximal distance in the
image. The bound in (30) can be easily found for the
functions f(d) = ad?or fd)=1- e~%4* which cor-
responds to robust statistics (see (Cohen, 1996)).

A synthetic example is presented in Fig. 5 where the
potential used is obtained from a distance map to the
edge points. Observe the way the level curves propa-
gate faster along the line.

6. Closed Boundary Extraction
from a Single Point

It is often needed to detect a closed contour. Our pre-
vious approach of finding a minimal path between two
given end points, detects the two paths that complete a
closed contour only if both ways correspond to a global
minimum. In the general case of selecting the second
point, it is clear that although both ways are local min-
ima, only one is a global minimum. Assuming only
one start point pg is given on the closed contour, let
us compute the minimal action U from this start point.
We should then find a second point p; that is located
on the unknown contour, from which the two geodesics
have the same energy. This means we have to find a
point p; from which there is more than one minimal
curve connecting it to the source py. These special
points are the saddles of U.

6.1. Justification of the Search for Saddle Points

A saddle point is a surface point at which there are two
descents and two ascents. The descents indicate reach-
ability by two minimal geodesics in our case. Assum-
ing that all the points at the boundary of a closed shape,
belong to one of two (“left” or “right”) geodesics con-
necting it to the start point. There is only one point p;
at which the “left” and “right” geodesics have the same
length, i.e., their meeting point, which is a saddle of U.

Since U is maximal at p; along both ways (“left”
or “right”), the derivative of U along the direction tan-
gent to the path is zero. As mentioned before, the two
minimal paths are orthogonal to the level sets of U.
Thus, the derivative of U along the normal to the path
is also zero, which means that DU (p;) = 0. Since U is
maximal at p; along the path, U has a negative second
derivative in that direction. Since w > 0, at any point
of the image there has to be a direction in which U in-
creases, and for which the second directional derivative
has to be positive. As a consequence, D>U (p;) has to
have opposite sign eigenvalues, that is one definition
of a saddle point.

The saddle points may serve as clues in closing con-
tours of objects that are contained within the image
domain. When the user searches for a closed contour



from py, an automatic search for saddle points on U is
performed. Back propagating from a saddle point p;
to both directions will connect the saddle to the source
point py by two curves. (see end of Section 4.5). Al-
ternatively, computing the minimal action surface from
the saddle point and searching for the minimal set of
the sum of both action surfaces, yields the desired re-
sult as a set of points (to be refined). Thereby, a closed
contour is formed representing the complete boundary
of an object.

6.2. Saddle Points Characterization

In order to detect such a saddle point, we can compute
the gradient |VU| and the Gaussian curvature (kk3),
and check for |VU| < € and 1k, < 0.

Another way to find the saddle points on U is to use
a simple test to determine the number of level cross-
ings. Consider a small radius circle centered at a can-
didate point ¢ and embedded in the horizontal plane
(x,y,U(q)). Denote the number of level crossings to
be the number of points this circle intersects with the
surface (x, y, U(x, y)). It is shown in Fig. 6 that this
number at a saddle point is equal to four, while for most
surface points it is two, and at maximum and minimum
points there are no level crossings. In our implemen-
tation of the number of level crossings, for each point
(i, j) in the pixels grid, we simply count the number
of sign changes in U(k,[) — U (i, j) while traveling
around the 8 neighbors (k, /) of the point.

6.3. Saddle Points Filtering

Although there are only few saddle points in U (see
Fig. 14 for example), finding the level crossing for ev-
ery point g in the domain is not enough. It is necessary
to filter out the insignificant saddles that have a rela-
tively large value of P or U.

This usually reduces the number of candidates to a
relatively small number (only two remain after simple
filtering of the saddles in Fig. 14). In a favorable case
where there are not many gaps in the boundary contour,
another criteria that will do the work is to consider only
those saddle points that are close to edge points, since
it is obvious that the contour should pass close to an
edge point. Selecting the right regularization constant
w will obviously filter out most of the saddles that
are formed due to noise, yet will obviously introduce
further constraints on w. According to our experience,
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selecting the right w for a smoothing effect reduces the
number of saddles to the only interesting ones. Since
we are dealing with a user interactive procedure, it is
possible to paint the candidate saddle points on the
image and let the user pick the right saddle among the
filtered saddle points. Selecting the right saddle point
will close the contour and segment the object.

7. Examples and Results

We demonstrate the performance of the proposed al-
gorithm (using the minimal action algorithm described
in Section 4.4) by applying it to several real images.
The images were scaled to 128 x 128 pixels, and the
gray levels for P were normalized between 0 and 1.
Parameter w is usually of the order of 0.1.

7.1. Open Contour: Road and Medical Image

In the first example, we are interested in a road detec-
tion between two points in the image of Fig. 7. Road
areas are brighter and correspond to higher gray levels.
The potential function P was thus selected to be the op-
posite of the gray level image itself: P = 1 — I. Min-
imizing this potential along a curve yields a path that
follows the middle of the road. This example illustrates

yo
’

T

Figure 6. Illustrating the number of level crossings. At the top,
a maximum and a minimum points give 0, at the bottom left, a
saddle point gives 4, and at the bottom right, other points give 2 level
crossings.
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Figure 7. Road Image. Original on the left. Minimal action U from bottom left start point: in the middle, black corresponds to lower values
of U, on the right a random look up table is used to render the level curves of U.

the efficiency of our approach compared to classical
snakes. We do not claim that this is a road detection
algorithm as one can find for example in (Fischler et al.,
1981; Geman and Jedynak, 1996). For such an appli-
cation, if the two edges of the road are needed rather
than the middle way, our result could be refined using
either ribbon snakes (Neuenschwander et al., 1994) or

a thick contour potential like in (Davatzikos and Prince,
1993).

Given a start point pg on the bottom left, the image
of minimal action U (x, y) from this point is shown in
Fig. 7. Observe the way the level curves propagate
faster along the road. At the left of Fig. 8, we show
how a bad initialization for classical snakes leads to

Figure 8. Local and global minimum. The initial data is shown at the top and the result at the bottom. The left and middle columns show
the results of two different initializations of the classical snakes. The right example shows our path of minimal action connecting the two black

points as start and end points.
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Figure 9. Two examples of applying the approach of (Neuenschwander et al., 1994) with two slightly different initializations. In both cases

the curve is trapped by a local minimum (see text).

an insignificant local minimum and requires a very
accurate initial guess, as in the middle example, to
guarantee convergence to the desired solution. It is
shown that given two end points, the proposed proce-
dure detects the path of minimal action as the desired
road.

Note, that using a completely different ap-
proach based on classical snakes, the authors of
(Neuenschwander et al., 1994) have also found a way
to solve efficiently the snake problem with fixed end
points. Although their method behaves better than clas-
sical snakes, it does not ensure to converge to the global
minimum and may be trapped in a bad local minimum
solution as we illustrate in the following example. Us-
ing the same road image, Fig. 9 presents two examples
for which their method leads to a local minimum. At
the top, taking the same end points as in Fig. 8, the part
of curve close to the upper right end point is trapped by
the white building below it, like in the left example of
Fig. 8. Atthe bottom, if the end point is slightly shifted,
the curve follows the road correctly from both ends but
at some point it prefers a short-cut. Note, that in both
examples we do not present the final curve position but
its position at some intermediate time from which it
is not possible to return back to the correct road. The
interactive tool for outlining roads in aerial or medi-
cal images presented in (Neuenschwander et al., 1994)
could also make use of our method between fewer con-
straint points or key-points to solve some cases in which
there are many erroneous local minima.

Our approach can be used for the minimization of
many paths emerging from the same point in one single
calculation of the minimal action. Figure 10 shows an
application of this operation for the road image. Given
a start point in the upper left area, the path achieving
the global minimum of the energy is found between
this point and four other given points to determine the
roads graph in our previous image.

InFig. 11, we show an application to the detection of
blood vessels in a medical angiographic image of the
eye fundus. Here also, the potential is obtained from
the image itself to detect higher gray levels. These
results make use of high order ODE integrators for the
back propagation as described in (Kimmel and Sethian,
1996).

Note that our method is very efficient in finding
boundaries in a static image. In a sequence of images,
it may be faster to use it once for the first image. For
the subsequent images, the boundary found in the pre-
vious image is usually a good initialization for classical
or geodesic active contours (Kass et al., 1988; Caselles
et al., 1995).

7.2. Closed Contour: Medical Image

In this third example, we want to extract the left ven-
tricle in an MR image of the heart. The potential is a
function of the distance to the closest edge in a Canny
(1986) edge detection image (see Fig. 12). Since itis a



Figure 10. Many paths are obtained simultaneously connecting the start point on the upper left to four other points. The minimal action is
shown on the left.
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Figure 11. Finding vessels in a medical angiographic image of the eye fundus; At the top, the original image and multiple path detection with
a start point on the left of the image. At the bottom, the level sets of U are shown on the left and the paths are superimposed on the surfaces
obtained with elevation U on the middle and 7 on the right.
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Figure 12. MRI heart image: original image on the left, edge image in the middle, distance map on the right.

Figure 13. MRI heart image: minimal action U represented as a
graph surface. The start point is the lower point (U = 0) located on
the bottom left of the ventricle at pixel (48, 44).

closed contour we use the saddle points classification
in closing the boundaries of a single object in the heart
image (see Figs. 13 and 14). Given a single point,
saddle point classification is used to find the second
end point. The closed contour is formed of the two
minimal paths joining the start and end points.

8. Concluding Remarks

In this paper we presented a method for integrating
objects boundaries by searching for the path of mini-
mal action connecting two points. The search for the
global minimum makes sense only after the two end
points are determined, and the ‘action’ or ‘potential’ is
generated from the image data. The proposed approach
makes snake initialization an easier task that requires
only one or two end points and overcomes one of the
fundamental problems of the active contour model, that
is being trapped by an insignificant local minimum.

Figure 14. MRI heart image: from left to right, level set curves of the minimal action from previous figure; heart ventricle detection: to find
the second end point, saddle point classification is used on the middle image (after filtering, only two of these points remain). The number of
level crossings appears in black for 0 (maximum and minimum), gray for 2 (most of the points) and white for 4 (saddle). After filtering the
white pixels, the selected saddle point is used to find the two half contours on the right. The contour is white and the two end points are the two
black pixels. The start point is on the lower left and the other one is the detected saddle.
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Applying the proposed procedure to real images gave
very promising results that were compared to the re-
sults obtained by other approaches that search for local
solutions.

An upper bound over the curvature magnitude of
the final contour was obtained by the ratio of gradient
magnitude and the value of the potential. It was shown
that controlling the smoothness of the final contour is
possible by adding a regularization term to the potential
function, thereby decreasing this bound.

The result of the proposed procedure may be consid-
ered either as the solution or as initial condition for clas-
sical snake models, or even more naturally for geodesic
active contours for further refinement. In the later case,
refinement to the proper solution should be almost im-
mediate.
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Notes

1. Our contribution here does not deal with the way to find the ideal
potential, but only to find the global minimum given this poten-
tial. We give examples with intensity, gradient or distance map
potentials.

2. We shall refer to arc-length parameter as s, to differ from an
arbitrary parameter v.
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