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Abstract. A novel scheme for the detection of object boundaries is presented. The technique is based on active
contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally
split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries.
The proposed approach is based on the relation between active contours and the computation of geodesics orminimal
distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image
content. This geodesic approach for object segmentation allows to connect classical “snakes” based on energy
minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric
active contours are improved, allowing stable boundary detection when their gradients suffer from large variations,
including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are
presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental
results of applying the scheme to real images including objects with holes and medical data imagery demonstrate
its power. The results may be extended to 3D object segmentation as well.
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1. Introduction

Since original work by Kass et al. (1988), extensive
research was done on “snakes” or active contour mo-
dels for boundary detection. The classical approach is
based on deforming an initial contour C0 towards the
boundary of the object to be detected. The deformation
is obtained by trying to minimize a functional designed
so that its (local) minimum is obtained at the boundary
of the object. These active contours are examples of

the general technique of matching deformable models
to image data by means of energy minimization (Blake
and Zisserman, 1987; Terzopoulos et al., 1988). The
energy functional is basically composed of two com-
ponents, one controls the smoothness of the curve and
another attracts the curve towards the boundary. This
energy model is not capable of handling changes in
the topology of the evolving contour when direct im-
plementations are performed. Therefore, the topology
of the final curve will be as the one of C0 (the initial
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curve), unless special procedures, many times heuris-
tic, are implemented for detecting possible splitting
and merging (Leitner and Cinquin, 1991; McInerney
and Terzopoulos, 1995; Szeliski et al., 1993). This is a
problemwhen an un-known number of objects must be
simultaneously detected. This approach is also non-
intrinsic, since the energy depends on the parametriza-
tion of the curve and is not directly related to the objects
geometry. As we show in this paper, a kind of “re-
interpretation” of this model solves these problems.
See for example (Malladi et al., 1995) for comments
on other advantages and disadvantages of energy ap-
proaches of deforming contours, as well as an extended
literature on snakes.
Recently, novel geometric models of active contours

were simultaneously proposed by Caselles et al. (1993)
and by Malladi et al. (1994, 1995, —). These models
are based on the theory of curve evolution and geo-
metric flows, which has received a large amount of
attention from the image analysis community in recent
years (Faugeras, 1993; Kimia et al., —; Kimmel and
Bruckstein, 1995; Kimmel et al., 1995, —; Kimmel
and Sapiro, 1995; Niessen et al., 1993; Romeny, 1994;
Sapiro et al., 1993, Sapiro and Tannenbaum, 1993a, b,
1994a, b, 1995). In these active contours models, the
curve is propagating (deforming) by means of a ve-
locity that contains two terms as well, one related to
the regularity of the curve and the other shrinks or ex-
pands it towards the boundary. The model is given
by a geometric flow (PDE), based on mean curvature
motion. This model is motivated by a curve evolution
approach andnot an energyminimization one. It allows
automatic changes in the topology when implemented
using the level-sets based numerical algorithm (Osher
and Sethian, 1988). Thereby, several objects can be
detected simultaneously without previous knowledge
of their exact number in the scene and without using
special tracking procedures.
In this paper a particular case of the classical en-

ergy snakes model is proved to be equivalent to find-
ing a geodesic curve in a Riemannian space with a
metric derived from the image content. This means
that in a certain framework, boundary detection can
be considered equivalent to finding a curve of mini-
mal weighted length. This interpretation gives a new
approach for boundary detection via active contours,
based on geodesic or local minimal distance computa-
tions. Then, assuming that this geodesic active contour
is represented as the zero level-set of a 3D function, the
geodesic curve computation is reduced to a geometric
flow that is similar to the one obtained in the curve

evolution approaches mentioned above. However, this
geodesic flow includes a new component in the curve
velocity, based on image information, that improves
those models.1 The new velocity component allows
us to accurately track boundaries with high variation in
their gradient, including small gaps, a task that was dif-
ficult to accomplish with the previous curve evolution
models. We also show that the solution to the geodesic
flow exists in the viscosity framework, and is unique
and stable. Consistency of the model is presented as
well, showing that the geodesic curve converges to the
right solution in the case of ideal objects. A number of
examples of real images, showing the above properties,
are presented.
The approach here presented has the following main

properties: 1) Describes the connection between en-
ergy and curve evolution approaches of active contours.
2) Presents active contours for object detection as a
geodesic computation approach. 3) Improves existing
curve evolution models as a result of the geodesic for-
mulation. 4) Allows simultaneous detection of interior
and exterior boundaries in several objects without spe-
cial contour tracking procedures. 5) Holds formal ex-
istence, uniqueness, stability, and consistency results.
6) Does not require special stopping conditions.
In Section 2 we present the main result of the paper,

the geodesic active contours. This section is divided
in four parts: First, classical energy based snakes are
revisited and commented. A particular case which will
be helpful later is derived and justified. Then, the rela-
tion between this energy snakes and geodesic curves is
shown and the basics of the proposed active contours
approach for boundary detection is presented. In the
third part, the level-sets technique for curve evolution
is described, and the geodesic curve flow is incorpo-
rated to this framework. The last part, 2.4, presents
further interpretation of the geodesic active contours
approach from the boundary detection perspective and
shows its relation to previous deformablemodels based
on curve evolution. After the model description, the-
oretical results concerning the proposed geodesic flow
are given in Section 3. Experimental results with the
proposed approach are given in Section 4 followed by
concluding remarks in Section 5.

2. Geodesic Active Contours

In this section we discuss the connection between
energy based active contours (snakes) and the com-
putation of geodesics or minimal distance curves in a
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Riemannian space derived from the image. From this
geodesic model for object detection, we derive a novel
geometric partial differential equation for active con-
tours that improves previous curve evolution models.

2.1. Energy Based Active Contours

Let us briefly describe the classical energy based
snakes. Let C(q): [0, 1] → R2 be a parametrized pla-
nar curve and let I : [0, a] × [0, b] → R+ be a given
image in which we want to detect the objects bound-
aries. The classical snakes approach (Kass et al., 1988)
associates the curve C with an energy given by

E(C) = α

� 1

0
|C �(q)|2 dq+ β

� 1

0
|C ��(q)|2 dq

− λ

� 1

0
|∇ I (C(q))| dq, (1)

where α, β, and λ are real positive constants. The first
two terms control the smoothness of the contours to be
detected (internal energy),2 while the third term is re-
sponsible for attracting the contour towards the object
in the image (external energy). Solving the problem of
snakes amounts to finding, for a given set of constants
α, β, and λ, the curve C that minimizes E . Note that
when considering more than one object in the image,
for instance for an initial prediction of C surrounding
all of them, it is not possible to detect all the objects.
Special topology-handling procedures must be added.
Actually, the solution without those special procedures
will be in most cases a curve which approaches a con-
vex hull type figure of the objects in the image. In
other words, the classical (energy) approach of snakes
can not directly deal with changes in topology. The
topology of the initial curve will be the same as the
one of the, possibly wrong, final curve. The model de-
rived below, as well as the curve evolution models in
(Caselles et al., 1993; Malladi et al., 1994, 1995, —),
overcomes this problem.
Another possible problem of the energy based mod-

els is the need to select the parameters that control
the trade-off between smoothness and proximity to
the object. Let us consider a particular class of snakes
model where the rigidity coefficient is set to zero, that
is, β = 0. Two main reasons motivate this selec-
tion, which at least mathematically restricts the general
model (1): First, this selection will allow us to derive
the relation between this energy based active contours
and geometric curve evolution ones, which is one of

the goals of this paper. This will be done in Section 2.2
through the presentation of the proposed geodesic ac-
tive contours. Second, as we will see in Sections 2.2
and 2.4, the regularization effect on the geodesic ac-
tive contours comes from curvature based curve flows,
obtained only from the other terms in (1) (see Eq. (16)
and its interpretation after it). Thiswill allow to achieve
smooth curves in the proposed approach without hav-
ing the high order smoothness given by β �= 0 in
energy-based approaches.3 Moreover, the secondorder
smoothness component in (1), assuming an arc-length
parametrization, appears in order to minimize the to-
tal squared curvature (curve known as “elastica”). It is
easy to prove that the curvature flowused in the new ap-
proach and presented below decreases the total curva-
ture (Angenent, 1991). The use of the curvature driven
curvemotions as smoothing termwas proved to be very
efficient in previous literature (Alvarez et al., 1993;
Caselles et al., 1993; Kimia, —; Niessen et al., 1993;
Malladi et al., 1994, 1995,—; Sapiro andTannenbaum,
1993), and is also supported by our experiments in Sec-
tion 4. Therefore, curve smoothing will be obtained
also with β = 0, having only the first regularization
term. Assuming this (1) reduces to

E(C) = α

� 1

0
|C �(q)|2 dq− λ

� 1

0
|∇ I (C(q))| dq. (2)

Observe that, by minimizing the functional (2), we
are trying to locate the curve at the points of maxima
|∇ I | (acting as “edge detector”), while keeping cer-
tain smoothness in the curve (object boundary). This
is actually the goal in the general formulation (1) as
well. The tradeoff between edge proximity and edge
smoothness is played by the free parameters in the
above equations.
Equation (2) can be extended by generalizing

the edge detector part in the following way: Let
g: [0, +∞[→ R+ be a strictly decreasing function
such that g(r) → 0 as r → ∞. Hence, −|∇ I | can
be replaced by g(|∇ I |)2, obtaining a general energy
functional given by

E(C) = α

� 1

0
|C �(q)|2 dq+ λ

� 1

0
g(|∇ I (C(q))|)2 dq

=
� 1

0
(Eint(C(q)) + Eext(C(q))) dq. (3)

The goal now is to minimize E in (2) for C in a certain
allowed space of curves.4 Note that in the above energy
functional, only the ratio λ/α counts. The geodesic ac-
tive contours will be derived from (2).
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The functional in (2) is not intrinsic since it depends
on the parametrization q that until now is arbitrary.
This is an undesirable property, since parametrizations
are not related to the geometry of the curve (or object
boundary), but only to the velocity they are traveled.
Therefore, it is not natural for an object detection prob-
lem to depend on the parametrization of the represen-
tation. Actually, if we define a new parametrization of
the curve via q = φ(r), φ : [c, d] → [0, 1], φ� > 0,
we obtain

� 1

0
|C �(q)|2 dq=

� d

c
|(C ◦ φ)�(r)|2(φ�(r))−1 dr,

� 1

0
g(|∇ I (C(q))|) dq=

� d

c
g(|∇ I (C ◦ φ(r))|)φ�(r) dr,

and the energies can change in any arbitrary form. One
of our goals will be to present a possible solution to this
problem by choosing a parametrization that is intrinsic
to the curve (geometric).

2.2. The Geodesic Curve Flow

We now proceed and show that the solution of the par-
ticular energy snakes model (2) is given by a geodesic
curve in a Riemannian space induced from the image I .
(A geodesic curve is a (local)minimal distance path be-
tween given points.) To show this, we use the classical
Maupertuis’ Principle (Dubrovin et al., 1984) from dy-
namical systems. Giving all the background on this
principle is beyond the scope of this paper, so we will
restrict the presentation to essential points and geomet-
ric interpretation. Let us define

U(C) := −λg(|∇ I (C)|)2,

and write α = m/2. Therefore,

E(C) =
� 1

0
L(C(q)) dq,

where L is the Lagrangian given by

L(C) := m
2

|C �|2 − U(C).

The Hamiltonian (Dubrovin et al., 1984) is then given
by

H = p2

2m
+ U(C),

where p := mC �. In order to show the relation between
the energy minimization problem (2) and geodesic
computations, we will need the following Theorem
(Dubrovin et al., 1984).

Theorem 1 (Maupertuis’ Principle). Curves C(q) in
Euclidean space which are extremal corresponding to
the Hamiltonian H = p2

2m + U(C), and have a fixed
energy level E0 (law of conservation of energy), are
geodesics, with non-natural parameter, with respect
to the new metric (i, j = 1, 2)

gi j = 2m(E0 − U(C))δi j .

This classical Theorem explains, among other
things, when an energy minimization problem is equi-
valent to finding a geodesic curve in a Riemannian
space. That means, when the solution to the energy
problem is given by a curve of minimal “weighted dis-
tance” between given points. Distance is measured in
the given Riemannian space with the first fundamental
form gi j (the first fundamental form defines the metric
or distance measurement in the space). See the men-
tioned references (specially Section 3.3 in (Dubrovin
et al., 1984)) for details on the theorem and the cor-
responding background in Riemannian geometry. Ac-
cording to the above result, minimizing E(C) as in (2)
with H = E0 (conservation of energy) is equivalent to
minimizing

� 1

0

�
gi jC �

iC �
j dq, (4)

or (i, j = 1, 2)
� 1

0

�
g11C �

1
2 + 2g12C �

1C �
2 + g22C �

2
2 dq, (5)

where (C1, C2) = C (components of C), gi j = 2m(E0−
U(C))δi j .
We have just transformed the minimization (2) into

the energy (5). As we see from the definition of gi j ,
Eq. (5) has a free parameter, E0. We deal now with
this energy. Based on Fermat’s Principle, we will mo-
tivate the selection of the value of E0. We then present
an intuitive approach that brings us to the same se-
lection. In Appendix A, we extend our formulation
without a-priori fixing E0.
Fixing the ratio λ/α, the search for the path mini-

mizing (2) may be considered as a search for a path in
the (x, y, q) space, indicating the non-intrinsic nature
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of this minimization problem. The Maupertuis Princi-
ple of least action used to derive (5) presents a purely
geometric principle describing the orbits of the mini-
mizing paths (Born and Wolf, 1986). In other words,
it is possible using the above theorem to find the pro-
jection of the minimizing path of (2) in the (x, y, q)

space onto the (x, y) plane by solving an intrinsic prob-
lem. Observe that the parametrization along the path
is yet to be determined after its orbit is tracked. The
intrinsic problem of finding the projection of the mini-
mizing path depends on a single free parameter E0
incorporating the parametrization as well as λ and α

(E0 = Eint − Eext = α|C �(q)|2 − λg(C(q))2).
The question to be asked is whether the problem

in hand should be regarded as the behavior of springs
and mass points leading to the non-intrinsic model (2).
We shall take one step further, moving from springs to
light rays, and use the following result from optics to
motivate the proposed model (Born and Wolf, 1986;
Dubrovin et al., 1984):

Theorem 2 (Fermat’s Principle). In an isotropic
medium the paths taken by light rays in passing from a
point A to a point B are extrema corresponding to the
traversal-time (as action). Such paths are geodesics
with respect to the new metric (i, j = 1, 2)

gi j = 1
c2(X )

δi j .

c(X ) in the above equation corresponds to the speed of
light at X . Fermat’s Principle defines the Riemannian
metric for light waves. We define c(X ) = 1/g(X )

where “high speed of light” corresponds to the presence
of an edge, while “low speed of light” corresponds
to a non-edge area. The result is equivalent then to
minimizing the intrinsic problem

� 1

0
g(|∇ I (C(q))|)|C �(q)| dq, (6)

which is the same formulation as in (5), having selected
E0 = 0.
We shall return for a while to the energy model (2)

to further explain the selection of E0 = 0 from the
point of view of object detection. As was explained
before, in order to have a completely closed form for
boundary detection via (5), we have to select E0. It was
shown that selecting E0 is equivalent to fixing the free
parameters in (2) (i.e., the parametrization and λ/α).
Note that by Theorem1, the interpretation of the snakes

model (2) for object detection as a geodesic computa-
tion is valid for any value of E0. The value of E0 is
selected to be zero from now on, which means that
Eint = Eext in (2). This selection simplifies the no-
tation (see Appendix A), and clarifies the relation of
Theorem 1 and energy-snakes with (geometric) curve
evolution active contours that results form theorems
1 and 2. At an ideal edge, Eext in (2) is expected
to be zero, since |∇ I | = ∞ and g(r) → 0 as r → ∞.
Then, the ideal goal is to send the edges to the zeros
of g. Ideally we should try as well to send the inter-
nal energy to zero. Since images are not formed by
ideal edges, we choose to make equal contributions
of both energy components. This choice, which co-
incides with the one obtained from Fermat’s Principle
and as said before allows to show the connection with
curve evolution active contours, is also consistent with
the fact that when looking for an edge, we may travel
along the curve with arbitrarily slow velocity (given by
the parametrization q, see equations obtained with the
above change of parametrization). More comments on
different selections of E0, as well as formulas corre-
sponding to E0 �= 0, are given in Appendix A.
Therefore, with E0 = 0, and gi j = 2mλg(|∇ I (C)|)2

δi j , Eq. (4) becomes

Min
� 1

0

√
2mλg(|∇ I (C(q)|)|C �(q)| dq. (7)

Since the parameters above are constants, without loss
of generality we can set now 2λm = 1 to obtain

Min
� 1

0
g(|∇ I (C(q)|)|C �(q)| dq. (8)

We have transformed the problem of minimizing
(2) into a problem of geodesic computation in a
Riemannian space, according to a new metric.
Let us, based on the above theory, give the above

expression a further geodesic curve interpretation from
a slightly different perspective. The Euclidean length
of the curve C is given by

L :=
�

|C �(q)| dq =
�

ds, (9)

whereds is theEuclidean arc-length (orEuclideanmet-
ric). It is easy to prove that the flow

Ct = κ �N (10)
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where κ is the Euclidean curvature (Guggenheimer,
1963),5 gives the fastest way to reduce L , that is, moves
the curve in the direction of the gradient of the func-
tional L . This flow is known as the Euclidean curve
shortening flow (Grayson, 1987). Looking now at (8),
a new length definition in a different Riemannian space
is given,

LR :=
� 1

0
g(|∇ I (C(q)|)|C �(q)| dq. (11)

Since |C �(q)| dq = ds, we obtain

LR :=
� L(C)

0
g(|∇ I (C(q)|) ds. (12)

Comparing this with the classical length definition as
given in (9), we observe that the new length is ob-
tained by weighting the Euclidean element of length
ds by g(|∇ I (C(q)|), which contains information re-
garding the boundary of the object. Therefore, when
trying to detect an object, we are not just interested in
finding the path of minimal classical length (

�
ds) but

the one that minimizes a new length definition which
takes into account image characteristics. Note that (8)
is general, besides being a positive decreasing func-
tion, no assumptions on g were made. Therefore, the
theory of boundary detection based on geodesic com-
putations given above can be applied to any general
“edge detector” functions g. Recall that (8) was ob-
tained from the particular case of energy based snakes
(2) usingMaupertuis’ Principle, which helps to identify
variational approaches that are equivalent to computing
paths of minimal length in a new metric space.
In order to minimize (8) (or LR) we search for the

gradient descent direction of (8), which is away ofmin-
imizing LR via the steepest-descent method. There-
fore, we need to compute the Euler-Lagrange (Strang,
1986) of (8). Details on this computation are given in
Appendix B. Thus, according to the steepest-descent
method, to deform the initial curve C(0) = C0 towards
a (local) minima of LR , we should follow the curve
evolution equation (compare with (10))

∂C(t)
∂t

= g(I )κ �N − (∇g · �N ) �N , (13)

where κ is the Euclidean curvature as before, �N is the
unit inward normal, and the right hand side of the equa-
tion is given by the Euler-Lagrange of (8) as derived
in Appendix B. This equation shows how each point in

the active contour C should move in order to decrease
the length LR . The detected object is then given by the
steady state solution of (13), that is Ct = 0.6
To summarize, Eq. (13) presents a curve evolution

flow that minimizes the weighted length LR , which
was derived from the classical snakes case (2) via
Maupertuis’ Principle of least action. This is the basic
geodesic curve flow we propose for object detection
(the full model is presented below). In the following
section we embed this flow in a level-set formulation in
order to complete the model and show its connection
with previous curve evolution active contours. This
embedding will also help to present theoretical results
regarding the existence of the solution of (13), as we do
in Section 3. We note that minimization of a normal-
ized version of (12) was proposed in (Fua and Leclerc,
1990) from a different perspective, leading to a differ-
ent geometric method.

2.3. The Level-Sets Geodesic Flow: Derivation

In order to find the geodesic curve, we computed the
corresponding steepest-descent flow of (8), Eq. (13).
Equation (13) is represented using the level-sets ap-
proach (Osher and Sethian, 1988; Sethian, 1989),
which we proceed to describe.
Assume that the curve C is a level-set of a function

u: [0, a]×[0, b] → R. That is, C coincides with the set
of points u = constant (e.g., u = 0). u is therefore an
implicit representation of the curve C. This representa-
tion is parameter free, then intrinsic. It is also topology
free since different topologies of the zero level-set do
not imply different topologies of u, making it appro-
priate for curve evolution applications as was origi-
nally introduced by Osher and Sethian (1988), Sethian
(1989). It is easy to show, see Appendix C, that if the
planar curve C evolves according to

Ct = β �N ,

for a given function β, then the embedding function u
should deform according to

ut = β|∇u|,

where β is computed on the level-sets. By embedding
the evolution of C in that of u, topological changes of
C(t) are handled automatically and accuracy and stabi-
lity are achieved using the proper numerical algorithm
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(Osher and Sethian, 1988). This level-set representa-
tion was formally analyzed in (Chen et al., 1991; Evans
and Spruck, 1991; Soner, 1993), proving for example
that in the viscosity framework, the solution is indepen-
dent of the embedding function u (see Section 3 as well
as Theorems 5.6 and 7.1 in (Chen et al., 1991)). In our
case u is initiated to be the signed distance function.
Therefore, based on (8) and embedding (13) in u, we
obtain that solving the geodesic problem is equivalent
to searching for the steady state solution ( ∂u

∂t = 0) of
the following evolution equation (u(0, C) = u0(C)):

∂u
∂t

= |∇u|div
�
g(I )

∇u
|∇u|

�

= g(I )|∇u|div
� ∇u

|∇u|

�
+ ∇g(I ) · ∇u

= g(I )|∇u|κ + ∇g(I ) · ∇u, (14)

where the right hand of the flow is the Euler-Lagrange
of (8) with C represented by a level-set of u, and the
curvature κ is computed on the level-sets of u.7 That
means, (13) is obtained by embedding (13) into u for
β = g(I )κ −∇g · �N . On the equation above we made
use of the fact that

κ = div
� ∇u

|∇u|

�
.

Equation (13) is the main part of the proposed active
contour model.

2.4. The Level-Sets Geodesic Flow:
Boundary Detection

Let us proceed and explore the geometric interpretation
of the geodesic active contours Eq. (13) from the point
of view of object segmentation, as well as its relation to
other geometric curve evolution approaches to active
contours. In (Caselles et al., 1993; Malladi et al., 1994,
1995, —), the authors proposed the following model
for boundary detection:

∂u
∂t

= g(I )|∇u|div
� ∇u

|∇u|

�
+ cg(I )|∇u|

= g(I )(c + κ)|∇u|, (15)

where c is a positive real constant. Following (Caselles
et al., 1993; Malladi et al., 1994, 1995, —), Eq. (15)
can be interpreted as follows: First, from the results in

Appendix C, the flow

ut = (c + κ)|∇u|,

means that each one of the level-sets C of u is evolving
according to

Ct = (c + κ) �N ,

where �N is the inward normal to the curve. This equa-
tion was first proposed in (Osher and Sethian, 1988;
Sethian, 1989), were extensive numerical research on
it was performed. It was recently introduced in com-
puter vision in (Kimia et al., —), were deep research
was performed for shape analysis. The previously pre-
sented Euclidean shortening flow

Ct = κ �N , (16)

denoted also as Euclidean heat flow, is well known for
its very satisfactory geometric smoothing properties
(Angenent, 1991; Gage and Hamilton, 1986; Grayson,
1987). (It was extended in (Sapiro and Tannenbaum,
1993a, b, 1994) for the affine group and in (Olver
et al., 1994, —; Sapiro and Tannenbaum, 1993) for
others.) The flow decreases the total curvature as well
as the number of zero-crossings and the value of max-
ima/minima curvature. Recall that this flow alsomoves
the curve in the gradient direction of its length func-
tional. Therefore, it has the properties of “shortening”
as well as “smoothing.” This shows that having only
the first regularization component in (1), α �= 0 and
β = 0, is enough to obtain smooth active contours
as argued in Section 2.1 when the selection β = 0
was done. The constant velocity c �N , which is re-
lated with classical mathematical morphology (Sapiro
et al., 1993) and shape offsetting in CAD (Kimmel and
Bruckstein, 1993), is similar to the balloon force intro-
duced in (Cohen, 1991). Actually this velocity pushes
the curve inwards (or outward) and it is crucial in the
above model in order to allow convex initial curves
to capture non-convex shapes. That is, to detect non-
convex objects.8 Of course, the c parameter must be
specified a priori in order to make the object detec-
tion algorithm automatic. This is not a trivial issue
as pointed out in (Caselles et al., 1993) where possi-
ble ways of estimating this parameter are considered.
Summarizing, the “force” (c + κ) acts as the inter-
nal force in the classical energy based snakes model,
smoothness being provided by the curvature part of
the flow. The Euclidean heat flow Ct = κ �N is ex-
actly the regularization curvature flow that “replaces”
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the high order smoothness term in (1) as discussed in
Section 2.1.
The external image dependent force is given by the

stopping function g(I ). The main goal of g(I ) is ac-
tually to stop the evolving curve when it arrives to the
objects boundaries. In (Caselles et al., 1993; Malladi
et al., 1994, 1995, —), the authors choose

g = 1
1+ |∇ Î |p

, (17)

where Î is a smoothed version of I and p = 1 or 2.
Î was computed using Gaussian filtering, but more
effective geometric smoothers, as those in (Alvarez
et al., 1992; Sapiro and Tannenbaum, 1994b), can be
used as well. This topic is currently being investi-
gated (Malladi and Sethian). Note that other decreas-
ing functions of the gradient may be selected as well.
For an ideal edge, ∇ Î = δ, g = 0, and the curve stops
(ut = 0). The boundary is then given by the set u = 0.
In contrast with classical energy models of snakes,

the curve evolution model given by (15) is topology
independent. That is, there is no need to know a priori
the topology of the solution. This allows it to detect
any number of objects in the image, without knowing
their exact number. This is achievedwith the help of the
mentioned level-set numerical algorithm for curve evo-
lution, developed in (Osher and Sethian, 1988; Sethian,
1989) and already used by others for different im-
age analysis problems (Chopp, 1991; Kimia et al., —;
Kimmel et al., 1995, —; Kimmel and Sapiro, 1995;
Sapiro et al., 1993; Sapiro and Tannenbaum, 1993a,
1995). In this case, the topology changes are automat-
ically handled without the necessity to add specific
monitoring on the deforming curve or any heuristic
criterion.
Let us return to our model. Comparing Eqs. (13)

to (15), we see that the term ∇g · ∇u, naturally incor-
porated via the geodesic framework, is missing in the
old model. This term attracts the curve to the bound-
aries of the objects (∇g points toward the middle of
the boundaries). Note that in the old model, the curve
stops when g= 0. This only happens at an ideal edge.
In cases where there are different gradient values along
the edge, as often happens in real images, g gets dif-
ferent values at different locations along the bound-
aries. It is necessary to restrict the g values, as well
as possible gaps in the boundary, so that the propa-
gating curve is guaranteed to stop. This makes the
geometric model (15) inappropriate for the detection
of boundaries with (un-known) high variations of the

gradients. In the proposed model, the curve is attracted
towards the boundary by the new gradient term. Ob-
serve in Fig. 1 the 1D case of an image I of an object of
high intensity value and low intensity background. In
Figs. 1(a) and (b), I and its smoothed version Î are pre-
sented. Figure 1(c) shows g and its gradient vectors.
Observe the way the gradient vectors are all directed
towards the middle of the boundary. Those vectors
direct the propagating curve into the “valley” of the g
function. In the 2D case,∇g · �N is effective in case the
gradient vectors coincide with normal direction of the
propagating curve. Otherwise, it will lead the propa-
gating curve into the boundary and eventually force it to
stay there. To summarize, this new force increases the
attraction of the deforming contour towards the bound-
ary, being of special help when this boundary has high
variations on its gradient values. Thereby, it is also
possible to detect boundaries with high differences in
their gradient values, as well as small gaps. The second
advantage of this new term is that we partially remove
the necessity of the constant velocity given by c. This
constant velocity, that mainly allows the detection of
non-convex objects, introduces an extra parameter to
the model, that in most cases is an undesirable prop-
erty. In our case, the new term will allow the detection
of non-convex objects as well. This constant motion
term may help to avoid certain local minima (as the

Figure 1. Geometric interpretation of the attraction force in 1D.
The original edge signal I , its smoothed version Î , and the derived
stopping function g are given. The evolving contour is attracted to
the valley created by ∇g · ∇u (see text).
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balloon force), and is also of importance when starting
from curves inside the object as we will see in Sec-
tion 4. In case we wish to add this constant velocity,
in order for example to increase the speed of conver-
gence, we can consider the term cg(I )|∇u| like an “area
constraint” to the geodesic problem (8) (c being the La-
grange multiplier),9 obtaining

∂u
∂t

= |∇u|div
�
g(I )

∇u
|∇u|

�
+ cg(I )|∇u|. (18)

This equation is of course equivalent to

∂u
∂t

= g(c + κ)|∇u| + ∇u · ∇g, (19)

and means that the level-sets move according to

Ct = g(I )(c + κ) �N − (∇g · �N ) �N . (20)

Equation (18), which is the level-sets representation
of the modified solution of the geodesic problem (8)
derived from the energy (2), constitutes the general
geodesic active contour model we propose. The solu-
tion to the object detection problem is then given by the
zero level-set of the steady state (ut = 0) of this flow.
As described in the experimental results, it is possible
to choose c = 0 (no constant velocity), and the model
still converges (in a slower motion). The advantage is
that we have obtained a model with less parameters.10
An important issue of the proposed model is the se-

lection of the stopping function g in our model. Ac-
cording to the results in (Caselles et al., 1993) and in
Theorem 5 in Section 3, in the case of ideal edges the
described approach of object detection via geodesic
computation is independent of the choice of g, as
long as g is a positive strictly decreasing function and
g(r) → 0 as r → ∞. Since real images do not con-
tain ideal edges, g must be specified. In the following
experimental results we use g as in Malladi et al. and
Caselles et al., given by (17). This is a very simple
“edge detector”, similar to the ones used in previous
active contours models, both curve evolution and en-
ergy based ones, and suffers from thewell known prob-
lems of gradient based edge detectors. In spite of this,
and as we can appreciate from the following examples,
accurate results are obtained using this simple func-
tion. The use of better edge detectors, as for example
energy ones (Freeman and Adelson, 1991; Perona and
Malik, 1991), will immediately improve the results.
We are currently investigating the use of different met-
rics to define edges, and incorporating these metrics in
the geodesic model. As pointed out before, the results

here described, and the described approach of object
segmentation via geodesic computation, are indepen-
dent of the specific selection of g.

3. Existence, Uniqueness, Stability,
and Consistency of the Geodesic Model

Before proceeding with the experimental results, we
want to present results regarding existence and unique-
ness of the solution to (18). Based on the theory of vis-
cosity solutions (Crandall et al., 1992), the Euclidean
heat flow as well as the geometric model (15), are well
defined for non-smooth images as well (Caselles et al.,
1993; Chen et al., 1991; Evans and Spruck, 1991). We
now present similar results for our model (18). Note
that besides the work in (Caselles et al., 1993), there
is not much formal analysis for active contours ap-
proaches in the literature. The results presented in this
section, together with the results on numerical anal-
ysis of viscosity solutions, ensures the existence and
uniqueness of the solution of the geodesic active con-
tours model.
Let us first recall the notion of viscosity solutions;

see (Crandall et al., 1992) for details. We re-write
Eq. (18) in the form (u(0,X ) = u0(X ))

∂u
∂t

− g(X )ai j (∇u)∂i j u − ∇g · ∇u− cg(X )|∇u| = 0

[t,X ) ∈ [0, ∞) × R2, (21)

where ai j (q) = δi j − pi ,p j
|p|2 if p �= 0. We used in (21)

and we shall use below the usual notations ∂i = ∂
∂xi

and ∂i j = ∂2

∂xi ∂x j , together with the classical Einstein
summation convention. The terms g(X ) and ∇g are
assumed to be continuous.
Equation (21) should be solved in D = [0, 1]2 with

Neumann boundary conditions. In order to simplify
the notation and as usual in the literature, we extend the
images by reflection to R2 and we look for solutions
verifying u(X + 2h) = u(X ), for all X ∈ R2 and h ∈
Z2. The initial condition u0 as well as the data g(X )

are taken extended to R2 with the same periodicity.
Let u ∈ C([0, T ]×R2) for some T ∈]0, ∞[. We say

that u is a viscosity sub-solution of (21) if for any func-
tion φ ∈ C(R × R2) and any local maxima (t0,X0) ∈
]0, T ]×R2 of u − φ we have if ∇φ(t0,X0) �= 0, then

∂φ

∂t
(t0,X0) − g(X0)ai j (∇φ(t0,X0))∂i jφ(t0,X0)

− ∇g(X0) · ∇φ(t0,X0) − cg(X0)|∇φ(t0,X0)| ≤ 0,
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and if ∇φ(t0,X0) = 0, then

∂φ

∂t
(t0,X0) − g(X0) lim

q→0
sup ai j (q)∂i jφ(t0,X0) ≤ 0,

and

u(0,X ) ≤ u0(X ).

In the same way, a viscosity super-solution is defined
by changing in the expressions above “local maxima”
by “local minima”, “≤” by “≥”, and “lim sup” by
“lim inf.” A viscosity solution is a functions which
is both a viscosity sub-solution and a viscosity super-
solution. Viscosity solutions is one of the most popular
frameworks for the analysis of non-smooth solutions
of PDE’s, having physical relevance as well. The vis-
cosity solution coincides with the classical one if this
exists.
With the notion of viscosity solutions, we can now

present the following result regarding our geodesic
model:

Theorem 3. Let W1,∞ denote the space of bounded
Lipschitz functions in R2. Assume that g≥ 0 is such
that supX ∈R2 |Dg1/2(X )| < ∞and supX ∈R2 |D2g(X )|
< ∞. Let u0 ∈BUC(R2) ∩W1,∞(R2).11 Then

1. Equation (21) admits a unique viscosity solution

u ∈ C([0, ∞) × R2) ∩ L∞(0, T ;W 1,∞(R2))

for all T < ∞. Moreover, u satisfies

inf u0 ≤ u(t,X ) ≤ sup u0.

2. Let v ∈ C([0, ∞) ×R2) be the viscosity solution of
(21) corresponding to the initial data v0 ∈ C(R2)∩
W1,∞(R2). Then

� u(t, ·) − v(t, ·) �∞≤� u0 − v0 �∞

for all t ≥ 0. This shows that the unique solution is
stable.

The assumptions of Theorem 3 are just technical.
They imply the smoothness of the coefficients of (21)
is required to prove the result using the method in
(Alvarez et al., 1992; Caselles et al., 1993). In particu-
lar, Lipschitz continuity in X is required. This implies
a well defined trajectory of the flow Xt = ∇g(X ), go-
ing to every point X0 ∈ R2, which is reasonable in our
context. The proof of this theorem follows the same

steps of the corresponding proofs for the model (15);
see (Caselles et al., 1993), Theorem 3.1, and we shall
omit the details (see also (Alvarez et al., 1992)).
In the next Theorem, we recall results on the inde-

pendence of the generalized evolution with respect to
the embedding function u0. Let �0 be the initial active
contour, oriented such that it contains the object. In this
case the initial condition u0 is selected to be the signed
distance function, such that it is negative in the interior
of �0 and positive in the exterior. Then, we have

Theorem 4 (Theorem 7.1 (Chen et al., 1991)). Let
u0 ∈ W 1,∞(R2) ∩ BUC(R2). Let u(t, x) be the so-
lution of the proposed geodesic evolution equation as
in previous theorem. Let �(t) := {X : u(t,X ) = 0}
and D(t) := {X : u(t,X ) < 0}. Then, (�(t),D(t))
are uniquely determined by (�(0),D(0)).

This Theorem is adopted from (Chen et al., 1991),
where a slightly different formulation is given. The
techniques there can be applied to the present model.
Let us present some further remarks on the proposed

geodesic flows (13) and (18), aswell as the previous ge-
ometric model (15). First note that these equations are
invariant under increasing re-arrangements of contrast
(morphology invariant (Alvarez et al., 1993)). This
means that�(u) is a viscosity solution of the flow if u is
and�: R → R is an increasing function. On the other
hand, while (13) is also contrast invariant, i.e., invariant
to the transformation u ← −u (remember that u is the
embedding function used by the level-set approach),
Eqs. (15) and (18) are not due to the presence of the
“constant velocity” component cg(I )|∇u|. This has a
double effect. First, for Eq. (13), it can be shown that
the generalized evolution of the level-sets�(t) only de-
pends on �0 ((Evans and Spruck, 1991), Theorem 2.8),
while for (18), the result in Theorem 4 is given. Sec-
ond, for Eq. (13) one can show that if a smooth classical
solution of the curve flow (13) exists and is unique, then
it coincides with the generalized solution obtained via
the level-sets representation (13) during the lifetime
of the classical solution ((Evans and Spruck, 1991),
Theorem 6.1). The same result can then be proved for
the general curve flow (20) and its level-set representa-
tion (18), although a more delicate proof, on the lines
of Corollary 11.2 in (Soner, 1993), is required.
We have just presented results concerning the exis-

tence, uniqueness, and stability of the solution of the
geodesic active contours. Moreover, we have observed
that the evolution of the curve is independent of the
embedding function, at least as long as we precise its
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interior and exterior regions. These results are pre-
sented in the viscosity framework. To conclude this
section, let us mention that, in the case of a smooth
ideal edge �̂, one can prove that the generalizedmotion
�(t) converges to �̂ as t → ∞, making the proposed
approach consistent:

Theorem 5. Let �̂ = {X ∈ R2 : g(X ) = 0} be a
simple Jordan curve of class C2 and Dg(X ) = 0 in �̂.
Furthermore, assume u0 ∈ W 1,∞(R2)∩BUC(R2) is of
class C2 and such that the set {X ∈ R2 : u0(X ) ≤ 0}
contains �̂ and its interior. Let u(t,X ) be the solution
of (18) and �(t) = {X ∈ R2 : u(t,X ) = 0}. Then, if
c, the constant component of the velocity, is sufficiently
large, �(t) → �̂ as t → ∞ in the Hausdorff distance.

This theorem is proved in (Caselles et al., 1995) for the
extension of the geodesic model for 3D object segmen-
tation. In this theorem, we assumed c to be sufficiently
large. A similar result can be proved for the basic
geodesic model, that is for c = 0, assuming the max-
imal distance between �̂ and the initial curve �(0) is
given and bounded (to avoid local minima).

4. Experimental Results

Let us present some examples of the proposed geodesic
active contours model (18). The numerical implemen-
tation is based on the algorithm for curve evolution
via level-sets developed by Osher and Sethian (1988),
Sethian (1989) and recently used by many authors

Figure 2. Inward motion to detect two objects, separated by only a few pixels. The original image is given on the left and the one with the
deforming contours on the right. The deforming contour (u = 0) is represented by a green contour, and the final one (the geodesic) by a red
one. The initial contour is given by the frame of the image, surrounding both objects. See Section 4 for more details on this and next images.

for different problems in computer vision and image
processing. The algorithm allows the evolving curve
to change topology without monitoring the deforma-
tion. This means that several objects can be detected
simultaneously, although it is not required to know that
there are more than one in the image. Note that when
implementing ourmodelwith this algorithm, the exten-
sion of the image-based speed performed in (Malladi
et al., 1994, 1995, —) is not necessary. Furthermore,
using new results in (Adalsteinsson and Sethian, 1993;
Malladi et al., —), the algorithm can be made to con-
verge very fast. In the numerical implementation of
Eq. (18) we have chosen central difference approxima-
tion in space and forwards difference approximation in
time. This simple selection is possible due to the stable
nature of the equation, however, when the coefficient c
is taken to be of high value, more sophisticated approx-
imations are required (Osher and Sethian, 1988). See
the mentioned references for details on the numerics.
In the following figures, the original image is pre-

sented on the left and the one with the deforming con-
tours on the right. The deforming contour (u = 0) is
represented by a green contour, and the final one (the
geodesic) by a red one. In the case of inward motion,
the original curve surrounds all the objects. In the case
of outward motion, it is any given curve in the interior
of the object.
Figure 2 presents two wrenches with inward flow.

Note that this is a difficult image, not only for the ex-
istence of 2 objects, separated by only a few pixels,
but also for the existence of many artifacts, like the
shadows, which can derive the edge detection to a
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Figure 3. An example of outward flow. The original curves are given as two small circles inside the objects. Note that both curves deform
simultaneously and independently. Both interior and exterior boundaries are detected. The initial curves manage to split and detect all the
contours in both objects. This splitting is automatic.

wrong solution. We applied the geodesic model (18) to
the image, and indeed, both objects are detected. The
original connected curve splits in order to detect both
objects. The geodesic contours also manages not to be
stopped by the shadows (false contours), due to the
stronger attraction force provided by the term ∇g · ∇u
towards the real boundaries. Observe that the process
of preferring the real edge over the shadow one, starts
at their connection points, and the contour is pulled to
the real edge, “like closing a zipper.” We run the model
also with c = 0, obtaining practically the same results
with slower convergence.
Figure 3 presents an outward flow. The original

curves are the two small circles, one inside each of the
objects. Note that both curves deform simultaneously
and independently. In the case of energy approaches,
disjoint curves must be tracked to ensure that they con-
tribute to different energy functionals. This tracking is
not necessary in our model, it is not necessary to know
how many disjoint deforming contours there are in the
image. Note also here that the interior and exterior
boundaries are both detected. The initial curves man-
age to split and detect all the contours in both objects.
This splitting is automatic. We can also appreciate in
the lower left corner, that the geodesic active contours
split in a very narrow band (only a few pixels width),
managing to enter in very small regions.
Figure 4 presents another example of a medical

image. The tumor in the image is an acousticus neuri-
noma, and includes the triangular shaped portion at the
top left part. For this image, an inward deforming con-
tourwas used. The results are presented in Fig. 5, where

Figure 4. An example of tumor detection in MRI via geodesic
active contours. The tumor in the image is an acousticus neurinoma,
and includes the triangular shaped portion at the top left part.

the tumor portion is shownafter zoomout for better pre-
sentation. Note that due to the intrinsic sub-pixel ac-
curacy of the algorithm, very accurate measurements,
as tumor area, can be computed. For comparison, the
same image was also applied to the model without the
new gradient term (∇g · ∇u), that is, the geometric
models developed by Caselles et al. (1993) and Mal-
ladi et al. (1994). We observed that due to the large
variation of the gradient along the object boundaries
and the high noise in the image, the curve did not stop
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Figure 5. Detection of the tumor in Fig. 4. For this image, an inward deforming contour was used. The tumor portion is shown after zoom out
for better presentation. The same parameters as in Figs. 2 and 3 were used, showing the robustness of the algorithm.

Figure 6. Object detection in an ultrasound image. The fetus is accurately detected by the geodesic active contours. In this case, the image
was smoothed with a Gaussian kernel before the detection was performed.

at the correct position and the tumor was not detected.
The result was a curve that shrinks to a point, instead
of detecting the tumor. This can be probably solved by
additional, more complicated stopping conditions, that
incorporate a-priori knowledge of the image quality for
example. In our case on the other hand, the stopping
is obtained automatically without the necessity of in-
troducing new parameters. Exactly the same algorithm
can be used for completely different type of images, as
the wrenches and the medical one.
We conclude the geodesic experiments with an ul-

trasound image, to show the flexibility of the approach.
This is given in Fig. 6, where the fetus is detected. In
this case, the imagewas smoothedwith aGaussian-type
kernel (2–3 iterations of a 3× 3 window filter are usu-
ally applied) before the detection was performed. This

avoids possible local minima, and together with the
attraction force provided by the new term, allowed to
detect an object with gaps in its boundary. In general,
gaps in the boundary (flat gradient) can be detected
if they are of the order of magnitude of 1/(2c) (after
smoothing). Note also that the initial curve is closer
to the object to be detected (compare with Fig. 2), to
avoid further possible detection of false contours (lo-
cal minima). Although this problem is significantly re-
duced by the new term incorporated in our geodesic
model, is not completely solved. In many applications,
as interactive segmentation of medical data, this is not
a problem, since the user can provide a rough initial
contour as the one in Fig. 6 (or remove false contours).
This problem might be automatically solved using bet-
ter stopping function g, as explained in the previous
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Figure 7. Example of the geodesicmodel extension to 3D (minimal
surfaces, from (Caselles et al., 1995)). In the figure, the object to
be detected is composed of two torus, one inside the other (knotted
surface). The initial surface is an ellipsoid surrounding the two torus
(top left). Following figures show the surface evolution. Note how
the model manages to split and detect this very different topology
(bottom right).

sections, or by higher values of c, the constant velo-
city, imitating the balloon force of Cohen et al. Another
classical technique for avoiding some local minima is
to solve the geodesic flow in amultiscale fashion. Start-
ing from a contour surrounding all the image, and a low
resolution of it, the algorithm is applied. Then, the re-
sult of it (steady state) is used as initial contour for the
next higher resolution, and the process continues up
to the original resolution. Multiresolution can help as
well to reduce the computational complexity (Geiger
et al., 1995).
The final example, Fig. 7, is taken from (Caselles

et al., 1995), and presents the 3D extension of the
geodesic flow. The basic idea for 3D, theoretically and
experimentally studied in (Caselles et al., 1995), is to
replace the computation of geodesics or minimal dis-
tance paths by the computation of minimal surfaces.

That is, the arc-length ds in (12) is replaced by a
Euclidean area element. Correctness of the model is
studied in the mentioned paper as well. In the figure,
the object to be detected is composed of two torus, one
inside the other (knotted surface). The initial surface is
an ellipsoid surrounding the two torus (top left). Fol-
lowing figures show the surface evolution. Note how
the model manages to split and detect this very differ-
ent topology (bottom right). The complete 3D model
is beyond the scope of this paper, and we refer the in-
terested reader to the mentioned reference.

5. Concluding Remarks

A geodesic formulation for active contours was pre-
sented. It was shown that a particular case of the clas-
sical energy-snakes or active contours approach for
boundary detection leads to finding a geodesic curve
in a Riemannian space derived from the image con-
tent. This proposes a new scheme for object boundary
detection based on geodesic or minimal path compu-
tations. This approach also gives possible connections
between classical energy based deformable contours
and geometric curve evolution ones. The geodesic for-
mulation introduced a new term to the curve evolution
models that further attracts the deforming curve to the
boundary, improving the detection of boundaries with
large differences in their gradient. This term also par-
tially frees the model from the need to estimate crucial
parameters. Thereby, the geodesic formulation also im-
proves previous approaches. The result is an active con-
tour approach which is intrinsic (geometric) and topol-
ogy independent. We also presented results regarding
existence, uniqueness, stability, and consistency of the
solution obtained by the proposed active contours.
Experiments for different kinds of images were pre-

sented. These experiments demonstrate the ability to
detect several objects, as well as the ability to detect
interior and exterior boundaries at the same time. The
sub-pixel accuracy intrinsic to the algorithm allows
to perform accurate measurements after the object is
detected (Sapiro et al., 1995).
It is interesting to note that other image processing

and computer vision problems, like shape from shad-
ing (Kimmel and Bruckstein, 1995; Kimmel et al., —;
Oliensis and Dupuis, 1991; Rouy and Tourin, 1992),
can be reformulated as the computation of geodesics or
minimal distances. The metric is specified by the im-
age and the application. Here we have shown that the
snakes or deforming contours are also members of the
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geodesics family. We are currently investigating this
geodesic-type approach for other problems in image
analysis, as well as the use of better image metrics to
incorporate into the geodesicmodel. Thesemetrics, to-
gether with multi-scale implementations as in (Geiger
et al., 1995) and fast numerical algorithms as those in
(Adalsteinsson and Sethian, 1993), will improve pos-
sible initialization difficulties as those in Fig. 6 as well
as performance speed.
The formulation of 3D active surfaces is an impor-

tant topic for many applications as well; see for exam-
ple (Cohen et al., 1992). Extension of the 2D curve
evolution model developed in (Caselles et al., 1993;
Malladi et al., 1994, 1995, —) is not straightforward,
since an extension of the Euclidean heat flow was not
yet developed (Alvarez et al., 1993; Caselles and Sbert,
1994; Olver et al., 1996). The geodesic formulation
given by (8) can be extended to 3D replacing the 2D
gradient by a 3D one and Euclidean arc-length (ds)
by area. Then, using the level-sets representation, the
corresponding geometric flow can be computed. Re-
sults in this direction are reported in (Caselles et al.,
1995).

Appendix A

Let us present the analogue to Eq. (7) when E0 is a ge-
neral value. Note that E0 gives the difference between
Eint and Eext in (2). If E0 �= 0, then instead of (7), the
following minimization is obtained:

Min
� 1

0

√
2m

�
E0 + λg(I )2|C �| dq. (A1)

In order for all the computations after Eq. (7) to hold,
the expression above is equivalent to (7) if

g ←
√
2m

�
E0 + λg(I )2.

As pointed out before, E0 represents the trade-off be-
tween α and λ in (2) (as well as the parametrization),
as is clear from the expressions above. Let us further
develop this point here for completeness.
Re-writing E0 + λg2(I ) as a quadratic form (

√
E0

+ Q)2, it is easy to show that Q = −
√
E0 +�

E0 + λg(I )2 and (A1) becomes

Min
�� 1

0
Q ds+

�
E0L

�
,

where L is the Euclidean length of the curve. Since
Q is an edge detector as g, we see that basically the

minimization problem has an extra term related to the
length of the curve. The importance of this length in
the minimization is given by the exact value of E0,
manifesting the relation between E0 and the trade-off
parameters α and λ in the energy expression (2). Note
that as explained before, the Euler-Lagrange of L is κ ,
and this will appear as an extra term in the correspond-
ing flow if E0 �= 0. Then, the new geodesic flow will
be (compare with (13))

∂C(t)
∂t

= Q(I ) κ �N−(∇Q · �N ) �N+
�
E0κ �N (A2)

The extra term appears un-related to Q, which is the
edge detector part of the algorithm. Therefore, select-
ing E0 too big, will give too much importance to the
minimization of L , and may cause the flow to miss the
edges. This is clear also from (2), which (A2) is try-
ing to minimize. Having E0 = 0 is the only option
which makes all the components of the geometric flow
that minimizes (2) to be g-dependent, giving a further
justification for this selection.

Appendix B

We now compute the Euler-Lagrange of (8), to obtain
the geodesic flow (13). For the simplification of the
notation, we sometimeswriteC(t) for the curveC(t, q),
omitting the space parameter q, as well as g(C) instead
of g(|∇ I (C)|).
Consider the functional

LR(C) =
� 1

0
g(C(t, q))|Cq(t, q)| dq,

where C: [0, 1] → R2 is a closed (C1) curve. Let us
compute the first variation of LR at some closed curve
C0, assumed to be of class C2. Consider a variation C
of C0, that is

C: (−�, �) × [0, 1] → R2

(t, q) → C(t, q),

is a C2 function of (t, q) such that C(0, q) ≡ C0 and
C(t, 0) = C(t, 1), t ∈ (−�, �) (� > 0). Assuming a
given orientation of C, we compute the derivative of
LR(C) with respect of t , obtaining

d
dt
LR(C(t)) =

� 1

0

d
dt
g(C(t, q))|Cq(t, q)| dq

+
� 1

0
g(C(t, q))

d
dt

|Cq(t, q)| dq.



              
P1: PMR/SRK P2: PMR/PMR P3: PMR/PMR QC:
International Journal of Computer Vision KL405-03-Caselles February 13, 1997 9:29

76 Caselles, Kimmel and Sapiro

Therefore,

d
dt
LR(C(t)) =

� 1

0
(∇g(C(t, q)) · Ct (t, q))|Cq(t, q)| dq

+
� 1

0
g(C(t, q))( �T (t, q) · Ctq(t, q)) dq,

where �T (t, q) denotes the unit tangent to the curve
C(t, q). Integrating by parts in the second termwe have
that the above expression is equal to

=
� 1

0
(∇g(C(t, q)) · Ct (t, q))|Cq(t, q)| dq

−
� 1

0
(g(C(t, q)) �T (t, q))q · Ct (t, q)) dq

=
� 1

0
[(∇g(C(t, q)) · Ct (t, q))|Cq(t, q)|

− (∇g(C(t, q)) · Cq(t, q))( �T (t, q) · Ct (t, q))

− g(C(t, q)) �Tq(t, q) · Ct (t, q)] dq

=
� 1

0
[(∇g(C(t, q)) · Ct (t, q)

− (∇g(C(t, q)) · Cs(t, q))

× ( �T (t, q) · Ct (t, q)))|Cq(t, q)|
− g(C(t, q)) �Tq(t, q) · Ct (t, q)] dq.

Let s denote the arc-length of C(t). Since �Tq = �Ts |Cq |,
parametrizing the curves by arc-length, the above inte-
gral writes

� L(C(t))

0
[ (∇g(C(t, s)) · Ct (t, s))

− (∇g(C(t, s)) · �T (t, s))
( �T (t, s) · Ct (t, s))
−g(C(t, s)) �Ts(t, s) · Ct (t, s)] ds.

To simplify the notation let us remove the arguments
in the expression above, obtaining

d
dt
LR(C(t)) =

� L(C(t))

0
[∇g(C) − (∇g(C) · �T ) �T

− g(C) �Ts] · Ct ds.

At t = 0,

d
dt
LR(C(t))|t=0 =

� L(C0)

0
[∇g(C0) − (∇g(C0) · �T ) �T

− g(C0) �Ts] · Ct (0) ds.

Since �Ts = κ �N , we have

d
dt
LR(C(t))|t=0 =

� L(C0)

0
[∇g(C0) − (∇g(C0) · �T ) �T

− g(C0)κ �N ] · Ct (0) ds,

and

d
dt
LR(C(t))|t=0 =

� L(C0)

0
[(∇g(C0) · �N ) �N

− g(C0)κ �N ] · Ct (0) ds.

This expression gives the Gateaux derivative (first vari-
ation) of LR atC = C0. Then, according to the steepest-
descent method, to connect an initial curve C0 with a
local minimum of LR(C)we should solve the evolution
equation

Ct = g(C)κ �N − (∇g(C) · �N ) �N .

This gives (13), that is, the motion of the level-sets of
(13), minimizing (8). To compute the motion of the
embedding function u, the results in next Appendix
are used. Following the same steps as before, it can
also be shown that (13) is the flow corresponding to
the steepest-descent of

E(u) =
�

R2
g(X )|∇u| dX .

Appendix C

We present a geometric result concerning the evolution
of the embedding function u given the flow of its level-
sets.
Consider a planar curve evolving according to

Ct = β �N ,

for a given function β. We want to represent C as the
level-set of a function u:R2 → R. The question is how
u should evolve. This embedding process was first pro-
posed in the curve evolution framework in (Osher and
Sethian, 1988), and we proceed to give a very simple
geometric derivation of it. Formal justification of the
method, on the lines described in Section 3, was later
provided in (Chen et al., 1991; Evans andSpruck, 1991;
Soner, 1993). Assume that u is negative in the interior
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of the zero level-set and positive in its exterior (usu-
ally, the signed distance function is used). Consider a
level-set, defined by

{� ∈ R2 : u(�, t) = 0}.

We have to find the evolution of u(t) such that the
evolving curve C(t) is represented by the evolving zero
level-set �(t), that is C(t) ≡ �(t). By differentiating
the definition above with respect to t we obtain

∇u · �t + ut = 0.

Note that for any level-set, the following relation holds:

∇u
|∇u|

= − �N .

In this equation, the left hand uses terms of the surface
u, while the right hand is related to the planar curve C.
The combination of the relations above gives the re-
quired result

ut = β|∇u|.

Completing this, we still need to clarify that the evo-
lution�(t) of C0 is independent of the embedding func-
tion u0. We also need to verify the coincidence of �(t)
with the classical solution C(t) when this exists. As
pointed out in Section 3, this was analyzed by a num-
ber of authors (Chen et al., 1991; Evans and Spruck,
1991; Soner, 1993), and the basic results are described
in Section 3. In order to present formal proof of the
theorems in Section 3, a large amount of viscosity solu-
tions theory is required, and this is beyond the scope of
this paper. The details can be found in the mentioned
references.
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Notes

1. Although this term appears in similar forms in classical energy
snakes, it was missing in previous curve evolution ones. Here
we show how this important term is naturally incorporated to the
model via the geodesic formulation.

2. Other smoothing constraints can be used, but this is the most
common one.

3. Note that having β �= 0 gives a fourth order component in the
Euler-Lagrange of (1).

4. In order to simplify the notation, we will sometimes write g(I )
or g(X) (X ∈ R2) instead of g(|∇ I |).

5. κ = |Css |
6. This formulation, and its 3D extension Caselles et al. (1995),
were recently independently proposed also by Kichenassamy
et al. (1995) and Shah (1995) based on a different approach
(without showing the relation between classical energy and curve
evolution snakes).

7. The curvature of a level set is given by κ = (uxxu2y−2uxuyuxy+
uyyu2x )/|∇u|3.

8. A convex curve remains convex when evolving according to the
Euclidean heat flow (Gage and Hamilton, 1986).

9. Constant velocity is derived from an energy involving area. That
is, C = c �Nminimizes the area enclosed by C. Therefore, adding
constant velocity is like solving LR + cArea(C).

10. As pointed out before, the value of c was crucial in previous
geometric curve evolution based deformable contours. In the
new model, convergence may be achieved without determining
this parameter. The geodesic flow (13) is able to detect non-
convex curves.

11. In our experimental results, the initial function u0 will be the
distance function, with u0 = 0 at the boundary of the image.
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