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Minimal Surfaces Based

Object Segmentation
Vincent Caselles, Ron Kimmel,

Guillermo Sapiro, Member, IEEE, and Catalina Sbert

Abstract—A geometric approach for 3D object segmentation and
representation is presented. The segmentation is obtained by
deformable surfaces moving towards the objects to be detected in the
3D image. The model is based on curvature motion and the
computation of surfaces with minimal areas, better known as minimal
surfaces. The space where the surfaces are computed is induced from
the 3D image (volumetric data) in which the objects are to be detected.
The model links between classical deformable surfaces obtained via
energy minimization, and intrinsic ones derived from curvature based
flows. The new approach is stable, robust, and automatically handles
changes in the surface topology during the deformation.

Index Terms—3D segmentation, minimal surfaces, deformable
models, mean curvature motion, medical images.

————————   ✦   ————————

1 INTRODUCTION
ONE of the basic problems in image analysis is object detection. It
can be associated with the problem of boundary detection, when
boundaries are defined as curves or surfaces separating homoge-
neous regions. “Snakes,” or active contours, were proposed by
Kass et al. in [16] to solve this problem, and were later extended to
3D surfaces. The classical snakes and 3D deformable surfaces ap-
proach are based on deforming an initial contour or surface to-
wards the boundary of the object to be detected. The deformation
is obtained by minimizing a functional designed so that its (local)
minima is at the boundary of the object [3], [33]. The energy usu-
ally involves two terms, one that controls the smoothness of the
surface and the other that attracts it to the object’s boundary. The
topology of the final surface is, in general, as that of the initial one,
unless special procedures are used to detect possible splitting and
merging [23], [30]. This approach is also nonintrinsic, i.e., the en-
ergy functional depends on the parameterization. See, for exam-
ple, [22], [36] for comments on advantages and disadvantages of
such energy approaches for deforming surfaces.

Intrinsic models1 of deformable contours/surfaces were si-
multaneously proposed by Caselles et al. [4] and by Malladi et al.
[22]. In these models, the curve/surface is propagating by an im-
plicit velocity that also contains two terms, one related to the
regularity of the deforming shape and the other that attracts it to

the boundary. This model is given by a geometric deformation
flow (PDE), based on mean curvature motion, and originally was
not presented as the result of minimizing an energy functional.2

Unlike the original snakes models, the ones in [4], [22] are com-
pletely geometric (intrinsic), and do not depend on the parametri-
zation of the evolving curve/surface.3 This model automatically
handles changes in topology when implemented using the level-
sets numerical algorithm [25].

In [5], we have shown the formal mathematical relation be-
tween these two approaches for 2D object detection. We have also
presented an extension and introduced the geodesic active contours.
The geodesic active contours consider the object boundaries as
geodesics in a Riemannian space whose metric is derived from the
image. It has the following main properties:

1) It connects, in a formal mathematical way and for the first
time, energy [16], [33] and curve evolution approaches [4],
[22] of active contours.

2) It presents the snake problem as a geodesic computation one.
3) It improves existing models as a result of the geodesic for-

mulation. This is due to the fact that the formal connection
between intrinsic and classical snakes benefits from the ad-
vantages of both: The geometric and topology independent
form of the models in [4], [22], combined with the important
attraction forces in classical snakes that results from mini-
mizing a meaningful functional. These forces allow, for ex-
ample, the robust detection of objects with high variation in
their boundary gradient. This task was impossible to
achieve with the models in [4], [22] (an example for this is
given later in this paper).

4) It holds formal existence, uniqueness, and stability results
(which also hold for the models in [4], [22]).

5) It stops automatically, and the segmented object is obtained
as the steady state of the flow.

In this paper we extend the results in [5] to 3D object detection.
The metric for the 2D geodesic active contours is extended to 3D.
The resulting flow is based on geometric deformable surfaces. This
flow has advantages over other 3D deformable models similar to
the advantages of the geodesic active contours over previous 2D
approaches. We show that the desired boundary is given by a
“minimal surface,” or a surface of “minimal weighted area.”

Our 3D model is related to a number of previously or simulta-
neously developed results. It is of course closely related to the
works of Terzopoulos and colleagues on energy based deformable
surfaces, as well as to the works in [4], [22]. The similitude and
differences with those approaches and the recent ones in [17], [29],
[31], [34], will be presented after describing the basic principles of
the different models.
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1. We use the term “intrinsic” for these models since they are based
on intrinsic differential geometry.

2. As was shown in [5], [17] for the 2D active contours case and will
be presented later in this paper for the 3D ones, a term is missing in
these intrinsic models to be a complete gradient-descent flow.

3. Dependency on the parametrization means that different repre-
sentations/parametrizations of the evolving surface may yield differ-
ent results.
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2 BASIC APPROACHES TO DEFORMABLE MODELS
2.1 Energy Based Models
The 3D extension of the basic 2D snakes, known as the deformable
surface model, was introduced by Terzopoulos et al. [33]. It was
improved and applied by many others (e.g., [9], [10], [32]). In the
3D case, a parameterized surface v(r, s) = (x(r, s), y(r, s), z(r, s)),
(r, s) Œ [0, 1] ¥ [0, 1], is considered, and the energy functional is
given by
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where P := -! — I ! 2 , or any related decreasing function of the gra-
dient, I is the 3D image where objects are to be detected, and wij
are given constants (model parameters). The first terms of E(v) are
related to the smoothness of the surface, while the last term relates
to the attraction of the surface to the object. The algorithm starts
with an initial surface !0, generally near the desired 3D boundary
O, and tries to move !0 towards a local minimum of E. The idea is
that the surface is attracted to the object via P, while the smooth-
ness constrains are dictated by the first terms in E(v). Note that
E(v) depends on the surface parametrization.

2.2 Intrinsic Models
The 3D intrinsic deformable models for segmentation [4], [22] con-
sider surfaces that smoothly move towards the objects in the im-
age. These models are parametrization independent, that is, the
moving forces depend on intrinsic geometric characteristics of the
image and the evolving surface.

Let Q =: [0, a] ¥ [0, b] ¥ [0, c] and I : Q Æ !+ be a given 3D data

image. Let g I I
pb g : / $= + —FH IK1 1 , where $I , a regularized version of

I, and p = 1 or 2. g(I) acts as an edge detector so that the object we
are looking for is ideally given by the equation g = 0. Our initial
active surface !0 will be embedded as a level set [25] of a function
u0 : Q Æ !+, say !0 = {x : u0(x) = 0}, with u0 being positive in the

exterior and negative in the interior of !0. The evolving active sur-
face is defined by !(t) = {x : u(t, x) = 0} where u(t, x) is the solution of
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with initial condition u(0, x) = u0(x) and Neumann boundary con-

ditions. Here H =
—
—

F
HG

I
KJdiv

u
u  is the sum of the two principal cur-

vatures of the level sets ! (twice its mean curvature,) and n is a
positive real constant. The sign conventions are adopted to obtain
inwards propagating surfaces. For surfaces evolving from the in-
side outwards, we take n < 0. This is a drawback of this model: The
surfaces prefer to propagate in the curvature direction (see, e.g.,
[31]).

This model was heuristically justified in [4], [22]. It can be de-
scribed as the composition of:

1) A smoothing term: Twice the mean curvature in the case of
(1). More efficient smoothing velocities as those proposed in
[2], [7], [24] can be used instead of H.4 Note again that un-
like classical energy based models, this component of the
deforming surface is intrinsic.

2) A constant balloon-type force (n|—u|). Similar to the energy
based models, this term is necessary in this case for the de-
tection of nonconvex objects.

3) A stopping factor (g(I)). Note that the energy models have
an attraction term, obtained from P in E(v), and not a stop-
ping term as (1). The geodesic and minimal surfaces models
improve those approaches.

3 DEFORMABLE MODELS AS MINIMAL SURFACES
In [5], a model for 2D object detection based on the computation of
geodesics in a given Riemannian space was presented. This means
that we compute paths or curves of minimal (weighted) length.
We showed, based on classical principles of dynamical systems,
that both energy-based and curve-evolution-based models are
mathematically related to the minimization of a weighted length
of the form " g(I) ds, where g(I) is a decreasing function of the im-
age gradient as before and s is the Euclidean arc-length. This idea
can be extended to 3D. In this case, length is replaced by surface
area A := " " da, and weighted length by “weighted area”

AR := " " g(I) da
where da is the (Euclidean) element of area. Surfaces minimizing A
are called minimal surfaces [26]. In the same manner, we will denote
by minimal surfaces those surfaces that minimize AR. The area
element da is given by the classical area element in Euclidean
space, while the “area element” dar is given by g(I) da. The basic
element of our deformable model will be given by minimizing AR
by means of an evolution equation obtained from its Euler-
Lagrange. Let us point out the basic characteristics of this flow.

The Euler-Lagrange of A is given by the mean curvature H, that
results in the curvature (steepest descent) flow ∂

∂
! "t = H

r
, where !

is the 3D surface and 
r

"  its inner unit normal. With the sign con-
ventions explained above, the corresponding level set [25] formu-
lation is

u u
u
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—
—
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Therefore, the mean curvature motion provides a flow that com-
putes (local) minimal surfaces [8]. The Euler-Lagrange of AR,
yields the flow

∂
∂
!

" "t g g= - — ◊H
r re j (2)

This is the basic weighted minimal surface flow. Using the level
sets representation, the steepest descent method to minimize AR
yields

∂
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We note that unlike previous intrinsic surface evolution ap-
proaches for 3D object detection [4], [22], the minimal surfaces
model includes a new term, —g ◊ —u. This term is fundamental for
detecting boundaries with fluctuations in their gradient, task that
was not possible with the model (1); see Fig. 3 and [5] for details.

As in the 2D case, we can add a constant force to the minimiza-
tion problem (minimizing the weighted volume " g dx dy dz), ob-
taining the general minimal surfaces model for object detection:

∂
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KJ + —div b g b g (4)

This is the flow we will further analyze and use for 3D object de-
tection. It has the same properties and geometric characteristics as
the geodesic active contours, leading to accurate numerical im-
plementations and topology-free object segmentation. Further-
more, the following results can be proved for this flow:

4. Although curvature flows smooth 2D curves [14], [15], [28], a 3D
geometric flow that smoothes all possible surfaces was not found [24].
Frequently used are mean curvature or the positive part of the Gaus-
sian curvature flows [2], [7].
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THEOREM 1. ([6]) Assume that g ≥ 0 is sufficiently smooth. Then, for
any Lipschitz initial condition u0, there exists a unique viscosity
solution u(t, x) of (4) with u(0, x) = u0(x).

In practice, we choose an initial condition u0 with {x : u0(x) £ 0}
containing the desired object and we let it evolve according to (4).
The active surface !(t) is the boundary of the set {x : u(t, x) £ 0}.
One can show [6] the independence of the evolution from the par-
ticular function u0 used to define the initial active surface. Finally,
the model (4) enables us to show the correctness of the geometric
formulation in some special yet important cases. We have:
THEOREM 2. ([6]) Assume that ! = {x : g(x) = 0} is a compact connected

smooth surface embedded in !3, which is unknotted. Then, if the
constant n is sufficiently large, then !(t) Æ ! in the Hausdorff
distance as t Æ •. The same result can be proved for all compact
smooth surfaces which can be unknotted by adding to them a finite
number of handles, and also for finite unions of surfaces in that
class.

Theorem 2 shows the consistency of the model and covers a
large class of surfaces which can be found in practice. Several is-
sues arise concerning this theorem:

1) How large should the constant n be? It can be seen from the
proof in [6] that n should be larger than the mean curvature
of the evolving surfaces. A reasonable assumption is that n
should be larger than the curvature of the desired surface.
On the other hand, for initial condition of a surface close to
the desired object, one can choose n = 0. In practice, conver-
gence can also be obtained for n = 0 if obstacles do not stop
the active surface, yet the process is slower.

2) The presence of noise may disturb the convergence. This can
be avoided by preprocessing the original image I. In prac-
tice, if the noise is not dominant and is not structured along
a surface, it will not stop the active surface.

3) The above theorem assumes that the desired surface is given
by g(x) = 0. In [6], we give the proof for this case, as stated in
the above theorem. Note that even if g > 0, the solution to
the flow exists, is unique, and arrives to a steady state. If
g(x) > 0 along the desired surface, the equilibrium position
will be along the local minimum and a balance of the forces
yields the result. This is one of the cases where the new
force —g ◊ —u plays an important role (previous intrinsic
models do not have a steady state if g π 0). The determina-
tion of the exact point of equilibrium for a given description
of the image is the subject of further research.

In [12] it was shown that the curvature along the 2D geodesics
minimizing the weighted arclength may be bounded by

k £
—R

S|
T|

U
V|
W|

Œ ¥sup , ,p a b

g I p

g I p0 0

c hd i
c hd i

It is easy to see that there is no need for the geodesic itself for lim-
iting the curvature values. In [12], motivated by [20], this bound
helped in the construction of different potential functions.

A straightforward generalization of this result to our three di-
mensional model yields the bound over the mean curvature H.
From the equations above, it is clear that at steady state (i.e., !t = 0),
the mean curvature along the surface ! is given by

H
g

g=
— ◊

-
r

"
n

We readily obtain the following upper bound for the mean cur-
vature magnitude along the final surface

H £
—RS|T|

UV|W|
+sup

g
g n

where the sup operation is taken over all the 3D domain. The
above bound gives an estimation of the allowed gaps in the edges
of the object to be detected as a function of n. A pure gap is de-
fined as a part of the object boundary at which, for some reason,
g = constant π 0 in a large enough neighborhood. At these loca-
tions |H| = |n|. Therefore, pure gaps of radius larger than 1/n
will cause the propagating surface to penetrate into the segmented
object. It is also clear that n = 0 allows the detection of gaps of any
given size, and the boundary at such places will be detected as the
minimal surface “gluing” the gaps boundaries.

The basic equations for 3D segmentation here described, and
those for 2D in [5], were recently independently proposed in [17],
[18], [35] based on a slightly different initial approach. Shah [29]
also recently presented a 2D active contours formulation as the
one in [5], which is the 2D analogue of the model here described.
Although these works also present the problem of 2D active con-
tours as geodesic computations, they do not show the formal con-
nections between classical energy models and curve evolution
ones. Actually, to the best of our knowledge, none of the previous
works on curve/surface evolution for object segmentation show
the mathematical relation between those models and classical en-
ergy approaches. Actually, in general the two approaches are con-
sidered independent. Although the extension from the 2D model
to the 3D one is easy, no 3D examples are presented in [17], [18],
[29]. Also, not all the theoretical results here quoted [6] can be
found in [17], [18], [29] (in [18] the authors do show a number of
very important theoretical results as those in [6] and quoted here,
as well as the 3D formulation). Three-dimensional examples are
given in [34], where similar equations are proposed. The equations
there are obtained by extending the flows in [4], [22], again with-
out showing that they can be obtained in a natural fashion from a
reinterpretation of energy-based formulations via minimal sur-
faces. In [31], the authors based their work on the models in [4],
[22]. One of the key ideas there, motivated by the shape theory of
shocks developed in [19], is to perform multiple initializations. A
normalized version of A was derived in [13] from a different point
of view, giving as well different flows for 2D active contours. Ex-
tension of that model to 3D was presented in [11].

4 EXPERIMENTAL RESULTS
We now present some examples of our minimal surfaces deform-
able model (4). The numerical implementation is based on the
algorithm for surface evolution via level sets [25]. It allows the
evolving surface to change topology without monitoring the de-
formation. Using new results in [1], the algorithm can be very effi-
cient. In the numerical implementation of (4) we have chosen cen-
tral difference approximation in space and forward difference
approximation in time. This simple selection is possible due to the

Fig. 1. Detection of two linked tori.
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stable nature of the equation, however, when the coefficient n is
taken to be of high value or when the gradient term is dominant,
more sophisticated approximations are required [25].

The first example of the minimal surfaces deformable model is
presented in Fig. 1. A “knotted surface” composed of two tori
forming a “chain” is detected. The initial surface is an ellipsoid
surrounding the two tori (top left). Note how the model manages
to change its topology and detect the final surface (bottom right).

Fig. 2 presents the 3D detection of a tumor in an MRI image.
The initial surface is presented on the left followed by three evolu-
tion steps. The final surface, the “weighted minimal surface,” is
presented on the right. Fig. 3 (top) shows four slices of the 3D
evolving surface painted on the corresponding MRI data. Slices of
the initial surface are represented by the smallest curves inside the
tumor. The outer contours are the detected object, and are obtained
as the steady-state of the flow. The contours in between represent

stages of the evolving surface. When we applied the model with-
out the new gradient term (—g ◊ —u) on the same MRI data, the
propagating surface did not stop at the boundary. This is shown in
Fig. 3, bottom, where the contours propagate outside of the tumor
area (see for example bottom part of the slices, where the contours
exit the tumor area).

Fig. 4 presents the segmentation of the interior and exterior of a
3D MRI data of a bone. The two slices show the process of locating
the outer and inner parts (left). The initial surfaces are represented
by the small curve inside the bone and the square outside it (these
are slices of the initial surface). The other curves represent slices of
the evolving surface. Two views of the final segmentation of the
inner (middle) and outer (right) parts are presented in upper and
lower rows.

Fig. 2. Detection of a tumor in MRI.

   

  
Fig. 3. Slices of the 3D detection in Fig. 2, with the proposed model (top) and the previous models (bottom). This figure shows the importance of
the new gradient term. Without that term, the model fails to stop and continues to evolve as shown.

    

    
Fig. 4. Two slices and two orthographic views of 3D detection of the inner and outer parts of a bone in an MRI image.
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5 CONCLUDING REMARKS
In this paper we presented a novel formulation of deformable
surfaces for 3D object detection, extending our previous 2D work
[5]. The object is given as a “minimal surface.” This means that
detecting the object is equivalent to finding a surface of minimal
“weighted area,” where the weight is given by the image. The
minimal surfaces formulation introduced a new term that attracts
the deforming surface to the boundary, improving the detection of
boundaries with large variations in their gradient. This new term
also frees the model from the need to estimate critical parameters.
Therefore, the minimal surfaces formulation not only connects pre-
vious models, but also improves them. Results regarding existence,
uniqueness, stability, and correctness of the solution obtained by our
model were summarized and will be reported elsewhere.

Experiments for different kind of images were presented. These
experiments demonstrate the ability to detect several objects, as
well as the power to simultaneously detect interior and exterior
boundaries. The subpixel accuracy intrinsic to the algorithm al-
lows us to perform accurate measurements after the object is de-
tected [21], [27].
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