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Abstract.
A multigrid approach for the efficient solution of large-scale multidimensional scaling (MDS) problems is presented.

The main motivation is a recent application of MDS to isometry-invariant representation of surfaces, in particular,
for expression-invariant recognition of human faces. Simulation results show that the proposed approach significantly
outperforms conventional MDS algorithms.
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1. Introduction. Multidimensional scaling (MDS) is a generic name for a family of algorithms
that construct a configuration of points in a target metric space from information about inter-point
distances (dissimilarities), measured in some other metric space. The range of MDS applications is
very broad and ranges from stock market analysis [18] to computational chemistry [1] and breast
cancer diagnosis [23]. MDS is widely used in dimensionality reduction, data analysis and visualiza-
tion applications, when, for example, one wishes to understand complicated high-dimensional data
structures and represent them by low-dimensional ones [3, 24].

From the point of view of the underlying optimization problem, MDS is known to be hard, as it
involves a nonlinear non-convex objective function requiring heavy computation, whose gradient and
Hessian are also heavy to compute, and moreover, the Hessian is full. Current MDS algorithms are
notoriously slow, and limited to small data sets. Efficiently solving large-scale MDS problems arising
in numerous applications has been a challenge for long time.

In many cases, the dissimilarities can be thought of as geodesic distances measured on a smooth
Riemannian manifold, and the underlying geometry can be used to advantage. This particular setting
of the MDS problem is known as the isometric embedding problem, and from the geometric point of
view, it is the problem of representing the intrinsic structure of a Riemannian manifold in some other
metric space. The isometric embedding problem was found to be important in numerous applications.
Schwartz et al. [26] embedded a convoluted 3D surface of the brain cortex into a plane to study its
structure as a 2D image. A similar approach was used in [28, 19] for texture mapping. Elad and
Kimmel [14, 16] proposed embedding surfaces into a higher dimensional Euclidean space in order to
compute their isometry-invariant signatures, which were called canonical forms. This approach was
applied in [7, 8] to the problem of 3D face recognition.

The results presented here are motivated mainly by the 3D face recognition application. One
of the greatest challenges in human face recognition is the ability to recognize people with varying
facial expressions, as facial expressions can change the facial appearance dramatically. The 3DFACE
prototype 3D face recognition system developed at the Department of Computer Science, Technion
(Figure 1.1) uses MDS to compute an expression-invariant representation (canonical form) of the facial
surface [8]. Constructing such a representation requires an efficient solution to a large-scale isometric
embedding problem. One of the most crucial considerations in the face recognition application is the
computation time. In the current implementation, near real-time computation of canonical forms is
achieved mainly by CPU power and “technically” rather than algorithmically fast implementation in
C, optimized for AMD Opteron 64-bit processor with SSE extensions [10].

In this paper, we propose the multigrid framework to boost the performance of standard MDS
algorithms. The scope of the paper is the following: In Section 2, we define the MDS problem and
standard methods used for its solution. Section 3 describes the particular instance of the MDS problem
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Fig. 1.1. A prototype 3D face recognition system developed in the Technion (a) and a screenshot from its user
interface (b) showing correct recognition of one of the authors.

arising in isometric embedding of Riemannian manifolds. In Section 4 we introduce a multigrid MDS
algorithm. Section 5 shows experimental results on the problem of facial surface embedding, and
Section 6 concludes the paper.

2. Multidimensional scaling. Let ∆ be a symmetric N × N dissimilarity matrix with non-
negative elements δij and zero diagonal. The goal of multidimensional scaling is to find a set of points
x1, ...,xN in an m-dimensional metric space with the metric dij ≡ d(xi,xj), such that dij ≈ δij for
all i, j = 1, ...N . In the majority of cases, the target space is an m-dimensional Euclidean space Rm

(which is also the assumption here), though other choices are also possible [15, 9, 27]. Practically, this
influences only the way in which the distances dij are computed.

One of the common methods in MDS is to obtain the configuration of points by the minimization
of the stress

s(X;∆,W) =
∑

i>j

wij(dij(X)− δij)2, (2.1)

where X = (xij) is the N×m matrix of coordinates of the resulting points in an m-dimensional space,
called the configuration matrix [21]. The symmetric N ×N matrix of weights W = (wij) determines
the relative contribution of distances to the error criterion. We will distinguish between the weighted
stress, where some values of wij are specified, and the non-weighted stress, where wij = 1.

2.1. First-order methods. Optimization of s(X) can be performed by first-order, gradient
descent-type methods, in which the direction at the k + 1st iteration is X(k+1) = −∇s(X(k)). The
gradient of s(X) with respect to X is given by

∂

∂xkl
s(X;∆,W) = 2

∑

j 6=k

wkj
(dkj − δkj)

dkj
(xkl − xjl), k = 1, ..., N ; l = 1, ...,m; (2.2)

and can be written as

∇s(X;∆,W) = 2VX− 2B(X;∆,W)X, (2.3)

where V is a matrix with elements

vij =
{ −wij if i 6= j∑N

j=1 wij if i = j
, (2.4)
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and B is a matrix with elements

bij =




−wijδijd

−1
ij (X) if i 6= j and dij(X) 6= 0

0 if i 6= j and dij(X) = 0
−∑

j 6=i bij if i = j
. (2.5)

It was observed [20] that the first-order optimality condition, ∇s(X) = 0, can be written as X =
V†B(X)X, and that the sequence

X(k+1) = V†B(X(k))X(k), (2.6)

converges to the local minimum of s(X) (here † denotes matrix pseudoinverse). The algorithm using
this multiplicative update is called SMACOF [12, 13, 3]. It can be easily shown to be equivalent to
weighted gradient descent with constant step size X(k+1) = − 1

2V
†∇s(X(k)), and if a non-weighted

stress is used, it is essentially a gradient descent with constant step size X(k+1) = − 1
2N∇s(X(k)).

SMACOF is widely used for large-scale MDS problems. Its disadvantage is slow convergence in the
proximity of the minimum, which is inherent to all first-order methods.

2.2. Second-order methods. Some recent works (e.g. [21]) propose using second-order (Newton-
type) algorithms for stress minimization. A basic Newton iteration has the form X(k+1) = −H−1∇s(X(k)),
where H represents the Hessian, which is a fourth-order tensor in this notation. If X is column-stacked
into a Nm× 1 vector, the Hessian can be represented by a Nm×Nm matrix, consisting of m2 blocks
of size N ×N . Each block is given by

Hkl =
{

H̃kl if k 6= l

H̃kl + 2(V −B) if k = l
; 1 ≤ k, l ≤ m, (2.7)

where

h̃kl
ij =

{ −2wij(xik − xjk)(xil − xjl)δijd
−3
ij if i 6= j

2
∑

j wij(xik − xjk)(xil − xjl)δijd
−3
ij if i = j

. (2.8)

The Newton method has quadratic convergence, as, in the proximity of the minimum, a function
is accurately approximated by a quadratic function. The disadvantage of the Newton method is the
relatively high computational complexity required for the Hessian construction and inversion.

2.3. Remarks. The MDS problem is in all respects a hard optimization problem. The stress is
a nonlinear non-convex function w.r.t. X, therefore convex optimization algorithms do not guarantee
convergence to a global minimizer of s(X) and can converge to local minima. Practice shows, however,
that often a good initialization can prevent convergence to local minima; we will show a way to choose
such an initialization in the particular case of isometric embedding.

Another characteristic of the MDS problem is the high computational complexity of the stress
function and its derivatives; this stems from the fact that the matrix ∆ is full. Analyzing the
computational complexity of the stress s(X) and its derivatives ∇s(X),∇2s(X) (see Table 2.1), two
conclusions can be made. First, the stress and the gradient computation complexity is roughly the
same. It therefore follows that the complexity of line search, which is necessary in first-order algorithms
like conjugate gradients, becomes excessive. In many cases, gradient descent with constant step size
(or, equivalently, the SMACOF algorithm with multiplicative update) is advantageous. Secondly, the
Newton algorithm is efficient only for small-scale problems (practically, hundreds of points), as the
cost of Hessian construction and inversion (requiring O(N3m3) operations) becomes prohibitive with
large N .

Unfortunately, though the Hessian is structured, it is not sparse. The diagonals of each block
are N times larger than the rest of the elements, which leads to a structure with dominant 2m − 1
diagonals. The Hessian can be approximated by such a multidiagonal matrix, yet, since the diagonals
in each block consist of sums of all the block elements, the construction cost of the sparse Hessian
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Table 2.1
Approximate computational complexity (in terms of multiplication operations) of the stress function s(X) and its

derivatives ∇s(X),∇2s(X). N denotes the number of points, m denotes the embedding space dimension. Cs denotes
the complexity of square root computation in terms of multiplication operations; typically Cs ≈ 25.

Weighted Non-weighted

s 1
2
N(N − 1)(3 + Cs)

1
2
N(N − 1)(2 + Cs)

∇s 1
2
N(N − 1)(3 + Cs) + 2Nm 1

2
N(N − 1)(2 + Cs) + Nm

∇2s 1
2
N(N − 1)(8 + Cs)m2 1

2
N(N − 1)(7 + Cs)m2

approximation is similar to the construction cost of the full Hessian. The only advantage that can be
achieved by this is the reduction of the Hessian inversion complexity for each Newton step. However,
the convergence of the Newton method using such an approximation is usually inferior in comparison
to other alternatives.

3. Isometric embedding. In a general MDS problem, the only data given is the dissimilarity
matrix ∆, and it can arise from any finite metric space. Usually, there is no additional information
about the “origin” of these dissimilarities. Yet, in many cases it can be assumed that the dissimilarities
are geodesic distances on a smooth Riemannian manifold. We call such cases the isometric embed-
ding problem. In isometric embedding, we represent the intrinsic geometry of a smooth Riemannian
manifold using the intrinsic geometry of some other manifold (in our case, Rm).

As an illustration, think of the problem of Earth mapping (also known as the “map-maker prob-
lem”). We wish to map the spherical surface of the Earth into a plane, preserving in the best possible
way the distances between geographic objects (Figure 3.1). In other words, we embed a sphere into
an Euclidean space. Since a “pure” isometric embedding does not exist in this case, we are looking
for a near-isometric embedding that minimally distorts the original geodesic distances.

In the discrete setting, we have an m′-dimensional manifold S, which is sampled at N points
ξ1, ..., ξN , and the geodesic distances δij ≡ δ(ξi, ξj) between all the points are computed. Isometric
embedding is a mapping between two finite metric spaces,

ϕ : ({ξ1, ...ξN} ⊂ S,∆) → ({x1, ...xN} ⊂ Rm,D), (3.1)

trying to achieve dij ≈ δij . This can be seen as a particular case of the general MDS problem, in
which we assume that the dissimilarities δij arise from sampling the geodesic distances on a smooth
Riemannian manifold. What is more important, is that the geometric relations between the original
points are known. They can either be given explicitly, as a grid or triangulation, or inferred from ∆
itself.1

In the 3D face recognition application, which was our main motivation, isometric embedding is used
to create expression-invariant representations of facial surfaces [7]. The embedding allows to get rid of
the deformations of the facial surface introduced by the facial expressions (which can be approximated
as isometries of the facial surface [11]) and creates a representation which can be treated as a rigid
object (see example in Figure 3.2). The facial surfaces (two-dimensional manifolds) are represented by
N ≈ 3000 points and N2 corresponding inter-point geodesic distances, which are measured numerically
using the Fast Marching Algorithm [22]. Then, 40 iterations of the SMACOF algorithm are performed
to embed the facial surface into R3; as the initialization, the original 3D coordinates of the points are
used (this allows to avoid convergence to local minima in most cases [10]).

4. Multigrid isometric embedding. Our previous results [10] demonstrated that substantial
performance improvement can be achieved by using a multiresolution initialization to the embedding
problem. Here, we extend those attempts into a genuine multigrid approach.

1One possibility is to define adjacent points as nearest neighbors in the sense of the dissimilarity δij . For example,
starting with a point 1, we find its nearest neighbor i1 = argminjδ1j . These two points will be merged at a coarser res-
olution level, with the dissimilarities δij involved in the computation of the interpolation coefficients (e.g. interpolation
coefficients inversely proportional to δij or δ2

ij). The process is repeated for the remaining points in a similar manner.
This idea is general and not limited to smooth Riemannian manifolds.
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Fig. 3.1. Illustration of the isometric embedding problem arising in cartography. A planar map (b) of the Earth
(a) is created by embedding the spherical surface into R3, such that the geodesic distances are replaced with Euclidean
ones.

 

     
     

     
 
 
 
 

Fig. 3.2. Example of canonical forms (second row) of facial surfaces (first row) and their insensitivity to facial
expressions.

Originally, multigrid methods were introduced in the context of differential equations [17, 2, 4, 5].
More recently, this framework was adapted to non-linear discrete optimization problems (see for
example [25]). The optimization problem minX s(X) is equivalent to the solution of the non-linear
equation ∇s(X) = 0, arising from the first-order optimality conditions. The spirit of multigrid is
to solve the nonlinear problem ∇s(X) = 0 using a sequence of approximate solutions to nonlinear
problems of the form ∇s(X) = T, solved on coarse grids. The term T arises from the residual
transferred from previous levels. In the optimization problem formulation, we need to minimize
functions of the form s(X)− trace(XTT), whose gradient equals ∇s(X)−T.

4.1. Modified stress. The second (linear) term makes the function s(X) − trace(XTT) un-
bounded. To overcome this problem, we define the modified stress

ŝ(X;∆,W) =
∑

i>j

wij(dij(X)− δij)2 + λ

m∑

j=1

(
N∑

i=1

xij

)2

, (4.1)
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and use it instead of s(X) hereinafter. For 0 < λ < ∞ such a modification does not change the
solution of the original problem, but restricts the center of mass of the resulting set of points to be
at the origin. Since the second term is quadratic, the function ŝ(X)− trace(XTT) is bounded. This
modification results in an increment by 2λ of every element of the diagonal blocks, Hkk.

4.2. Coarsening strategy. We use a hierarchy of grids Ω1 ⊃ ... ⊃ ΩR, constructed in a mul-
tiresolution manner, where R is the coarsest resolution level, and denote by Nr the number of grid
points at the r-th level. The transfer from resolution level r to the coarser level r +1 or the finer level
r−1 is performed using an Nr+1×Nr matrix Pr+1

r (referred to as restriction operator in the multigrid
literature) and an Nr−1 ×Nr matrix Pr−1

r (interpolation operator), respectively. These matrices are
sparse (typically, every row contains from 1 up to 4 non-zero elements) and are often chosen to satisfy

Pr+1
r = (Pr

r+1)
T. (4.2)

The optimization problem is transferred to the next coarser level by applying a restriction operator
P̃r+1

r (not necessarily equal to Pr+1
r ) to the matrices ∆ and W. Consequently, we have a hierarchy

of problems of the form

sr(Xr,Tr) ≡ ŝ(Xr;∆r,Wr)− trace(XT
r Tr), (4.3)

that need to be solved at each level.

4.3. V-cycle. The simplest multigrid algorithm is the V-cycle. The complete nonlinear multigrid
optimization algorithm can be defined recursively in the following manner:

MG_Vcycle(Xr,Tr,∆r,Wr,Kr,K
′
r)

• If r = R (coarsest level) solve

min
XR

sR(XR,TR)

and return.
• Otherwise:

– Relaxation: Apply Kr iterations of an unconstrained optimization algorithm to sr(Xr,Tr)
initialized with Xr and obtain X′

r.
– Compute

G′
r = ∇sr(X′

r);
X′

r+1 = Pr+1
r X′

r;
G′

r+1 = ∇sr+1(X′
r+1);

Tr+1 = Gr+1 −Pr+1
r Gr.

– Apply the multigrid method on the coarser level,

X′′
r+1 ← MG_Vcycle(X′

r+1,Tr+1,∆r+1,Wr+1,Kr+1,K
′
r+1)

– Correction:

Er = Pr
r+1(X

′′
r+1 −X′

r+1);
X′′

r ← X′
r + Er.

– Relaxation: Apply K ′
r iterations of an unconstrained optimization algorithm to sr(X,T)

initialized with X′′
r and obtain X′′′

r .

The procedure MG_Vcycle(X,T,∆,W,K, K ′) is initialized with some X and T = 0 on the finest
grid. The whole algorithm is repeated for a few iterations. When multigrid works well, a small number
of V-cycles is required to obtain an accurate solution.

From the point of view of computation complexity it may be advantageous to use SMACOF itera-
tions as the relaxation procedure at higher-resolution levels and Newton iterations at coarser resolution
levels.
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Fig. 4.1. Schematic representation of a V-cycle (a) and a F-cycle (b).

4.4. F-cycle. Another popular MG cycle is the F-cycle [6]. In the recursive definition, the F-
cycle procedure MG_Fcycle(Xr,Tr,∆r,Wr,Kr,K

′
r) is very similar to V-cycle, except the recursive

call, which has the form

X′′
r+1 ← MG_Fcycle(X′

r+1,Tr+1,∆r+1,Wr+1,Kr+1,K
′
r+1),

X′′
r+1 ← MG_Vcycle(X′′

r+1,Tr+1,∆r+1,Wr+1,Kr+1,K
′
r+1).

The difference between V-cycle and F-cycle is shown in Figure 4.1.

5. Results. The simulations in this paper focus on the face recognition application. We per-
formed three experiments. The goal of the first two experiments was comparing the standard SMA-
COF algorithm with our multigrid implementation (V-cycle) on problems of different size. Ran-
dom initialization (Experiment I) and initialization using the original point coordinates (Experiment
II) were used. A facial surface patch was sampled several times by a different number of points
(N = 225, 625, 1425 and 3249) for each test. The geodesic distances between all the points were
computed using the Fast Marching algorithm [22]. The embedding space dimensionality was m = 3
in all the experiments.

Three resolution levels were used in the multigrid algorithm; each subsequent level containing
1
4 of the points of the previous one. The grids were formed in a dyadic manner. The relaxation
of each level was based on gradient descent SMACOF-like iterations described in Section 4. The
optimization was terminated when the stress function at subsequent iterations decreased by less than
1% (this stopping criterion is common in MDS literature, see e.g. [3]). For comparison, a conventional
SMACOF algorithm was executed with the same initialization and was terminated when reaching the
same stress achieved by the multigrid algorithm.

The algorithm performance was evaluated by the stress value versus the execution time and the
computational complexity in terms of multiplication operations (FLOPs). The square root operation
was estimated as Cs = 25 FLOPs. All tests were performed on a PC with a 2 GHz Mobile Intel
Pentium 4 processor and 1 GB RAM. The algorithms were implemented in MATLAB under Windows
XP.

Tables 5.1 and 5.2 and Figure 5.1a-b show a comparison between a conventional SMACOF algorithm
and the multigrid version in terms of convergence time and complexity in Experiments I and II,
respectively. Figure 5.1c shows the boosting obtained by the multigrid implementation.

Several conclusions can be drawn from these results. First, multigrid implementation demonstrates
significant performance improvement (over 6 times in Experiment II). The improvements contributed
by the multigrid algorithm, when compared to standard SMACOF, become more pronounced as the
size of the problem increases. That is, for large-scale problems the improvement is dramatic. Secondly,
the multigrid algorithm converges approximately in the same number of iterations independent of N
(in both experiments), while the number of standard SMACOF iterations grows with N . Thirdly,
in Experiment I, the multigrid algorithm appears to be less sensitive to initialization (the standard
deviation of the total convergence time divided by the mean convergence time is by an order of
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Table 5.1
Experiment I: Comparison of multigrid and standard SMACOF algorithm on isometric embedding problems of

different size, random initialization, results averaged over 10 runs. Overall execution time shown in seconds, overall
complexity shown in MFLOPs.

N
SMACOF MG

Iterations Time Complexity Iterations Time Complexity
225 71.3 7.6± 1.78 113.26± 26.2 13.6 5.28± 0.36 65.83± 4.7
625 73 52.94± 10.16 894.53± 172.77 13.2 30.63± 1 480.86± 15.36
1425 111.5 421.76± 110.5 (7.07± 1.86)× 103 14.2 164.52± 5.53 (2.67± 0.079)× 103

3249 156 (2.79± 1.17)× 103 (5.13± 2.11)× 104 15.2 854.41± 29.67 (1.49± 0.04)× 104

magnitude smaller for the multigrid algorithm than for the standard SMACOF). Finally, the multigrid
algorithm appears to be less likely to converge to local minima if random initialization is used; this is
a similar phenomenon to what was observed when using multiresolution initialization [10].

In Experiment III, different variations of the multigrid algorithm were compared on a large problem
(N = 3249). Specifically, we compared V-cycle with 3 and 4 resolution levels and F-cycle with 4
resolution levels. The results are shown in Table 5.3 and Figure 5.2. F-cycle with four resolution
levels shows the best results; it outperforms the standard SMACOF algorithm by 8.12 times in sense
of execution time and by 10.17 times in sense of overall complexity.

Table 5.2
Experiment II: Comparison of multigrid and standard SMACOF algorithm on isometric embedding problems of

different size, initialization with the original points in R3. Overall execution time shown in seconds, overall complexity
shown in MFLOPs.

N
SMACOF MG

Iterations Time Complexity Iterations Time Complexity
225 18 2.03 29.62 4 1.53 19.22
625 41 30.41 507.03 4 9.26 145.72
1425 58 212.80 3.71× 103 4 47.75 753.5
3249 72 1.29× 103 2.38× 104 4 224.37 3.90× 103

Table 5.3
Experiment III: Comparison of different multigrid algorithms, initialization with the original points in R3. Overall

execution time shown in seconds, overall complexity shown in MFLOPs.

Algorithm Iterations Time Complexity
SMACOF 93 1.68× 103 3.03× 104

V-cycle (R = 3) 4 276.15 3.90× 103

V-cycle (R = 4) 4 220.42 3.89× 103

Full MG (R = 4) 3 205.15 2.99× 103

6. Conclusions. We propose a multigrid framework for efficient solution of multidimensional
scaling problems. Tested on on large-scale embedding problems arising in 3D face recognition, our
multigrid implementation demonstrates an order of magnitude better performance compared to the
conventional SMACOF algorithm.

Though presented exclusively on isometric embedding problems, the proposed framework is applica-
ble to general MDS problems. The range of applications in which our multigrid MDS algorithm can
be used is very wide, and includes, to mention a few, problems in data visualization, machine learning,
computational chemistry, etc. Among immediate applications currently under research is the general
problem of isometry-invariant shape recognition and real-time texture mapping on complicated 3D
objects.
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Fig. 5.1. Experiment II: Comparison of multigrid and standard SMACOF algorithm on isometric embedding
problems of different size, initialization with the original points in R3. (a) Complexity comparison, (b) execution time
comparison, (c) boosting factor.
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