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Abstract—We present a geometric framework for automatically finding intrinsic correspondence between three-dimensional nonrigid

objects. We model object deformation as near isometries and find the correspondence as the minimum-distortion mapping. A

generalization of multidimensional scaling is used as the numerical core of our approach. As a result, we obtain the possibility to

manipulate the extrinsic geometry and the texture of the objects as vectors in a linear space. We demonstrate our method on the

problems of expression-invariant texture mapping onto an animated three-dimensional face, expression exaggeration, morphing

between faces, and virtual body painting.
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1 INTRODUCTION

NONRIGID three-dimensional objects arise in numerous
computer graphics problems, including facial anima-

tion [27] and modeling [33], [29], [3], caricaturization,
expression exaggeration [5], and transplantation from one
face to another [21], [31], [28], cross-parametrization [38],
[37], texture mapping [38], and morphing [1], [26]. The
common denominator of all the above applications is the
correspondence problem, that is, the need to find a mapping
between two objects that copy similar features to similar
features. Such a problem is ill-posed, as the term “similar
features” in this context has a semantic rather than
geometric meaning. For example, there is no doubt how a
“natural” correspondence between a cat and a dog should
look like, since both have two ears, two eyes, a nose, four
legs, and a tail. At the same time, it would probably be more
difficult to agree about a natural correspondence between a
dog and a flamingo, as the bird has only two legs. In
computer graphics applications, esthetic considerations are
usually applied in such cases to judge the quality of the
correspondence.

If the objects have some degree of similarity, the
correspondence problem can be better posed. For example,
consider two instances of a synthetic animation sequence of
a deformable object like the human body. The correspon-
dence in this case is readily available because the points on
the second object are the result of a deformation of the
points on the first one. Nevertheless, unlike synthetic object
animation, in general (for example, when the objects are
acquired by a range scanner), the correspondence is not
available. Hence, in most cases, it must be established from
the geometry of the objects.

Standard approaches for finding correspondence be-
tween two objects start from searching for a common
parametrization. In most cases, this procedure is not fully
automatic and demands a user-assisted selection of a set of
fiducial points [30], [26], [36]. In the dog and flamingo
example, it is up to the user to decide whether the legs of
the flamingo correspond to the front or the rear legs of the
dog. In the problem of 3D facial animation, it is possible to
construct a parametrization of faces that is common to all
expressions [16], [3]. A hybrid method based on fitting 2D
facial images to a deformable 3D model of the face was
proposed in [33] and [29].

Recently, methods based on isometric embeddings have
been introduced in the computer vision community for
deformation-invariant object recognition [17]. It was noted
that, in cases where the deformations approximately
preserve the metric structure, the intrinsic geometry can
be used as an invariant description of the object. Such a
description is created by mapping the object into a low-
dimensional euclidean space (generally, referred to as the
embedding space) such that the geodesic distances are
replaced with euclidean ones. This procedure is called
isometric (or, more correctly, minimum distortion) embedding
and is carried out using a multidimensional scaling (MDS)
algorithm. The embedding, in a sense, allows us to “undo”
the deformation, providing a representation which is up to
the isometric group of the embedding space (in the case of
euclidean embedding, rotations, translations, and reflec-
tions) that is invariant to isometric deformations of the
object. This method was employed to find a degree of
similarity between deformable objects like different expres-
sions of the human face [7], [8], [12].

Embedding the objects into a plane can be thought of as a
method of finding a common parametrization [38]. Never-
theless, the simple euclidean embedding has several draw-
backs. First, in most cases, it introduces an inevitable
distortion due to the fact that a nonflat shape cannot be
isometrically embedded into a euclidean space. Second, an
alignment stage is needed in order to resolve the remaining
degrees of freedom in the embedding space (euclidean
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isometries), which, in turn, requires a dense sampling of the
object (thousands of points) in order for the alignment to be
accurate. Third, attempts to use euclidean embeddings for
texture mapping were practically limited to objects home-
omorphic to a disc [38].

In [11], we proposed a generalization of MDS (herein-
after, GMDS for short) that allows us to embed one object
into another rather than using a common embedding space.
Such an embedding establishes a correspondence between
the two objects. Here, we adopt this approach, as it has
several important advantages over the euclidean embed-
ding computed by the traditional MDS. GMDS can be
applied to objects with arbitrary topology, it does not
require alignment, and since the embedding space can be
chosen to be an isometry of the object itself, the metric
distortion introduced by embedding it into a common space
is avoided. GMDS can be naturally adapted to finding
correspondence between partially missing objects. This
allows us to gracefully deal with occlusions, often encoun-
tered in objects acquired using range scanners. Further-
more, the number of points required for accurately
determining the correspondence can be small (tens or
hundreds). This can be an important criterion in real-time
applications, where computational restrictions force meshes
with low-polygon count.

In this paper, we present an automatic correspondence
procedure that exploits the intrinsic geometric properties of
the objects and is based on the assumption that the objects
are approximately isometric. We validate our approach on
two kinds of such objects, the expressions of a human face
and the deformations of a human body. It appears that the
isometry assumption can be significantly relaxed, implying
that our approach is applicable to correspondence problems
between nonisometric objects, for example, faces of two
different people or an even more extreme example, a camel
and a horse. The intrinsic correspondence gives us the
ability to manipulate the extrinsic geometry and the texture
of the objects as vectors in a linear space [33]. The numerical
core is the GMDS algorithm, which is computationally
efficient and produces results computationally competitive
with previously used methods.

We start with formulating the correspondence problem
between nonrigid objects and introducing the concept of
minimum-distortion embedding in Section 2. Section 3
describes the GMDS problem and a numerical algorithm for
its solution. In Section 4, we address the problem of finding
correspondence between partially missing or topologically
different objects. In Section 5, we consider a broader
perspective for treating surfaces creating a (locally) linear
space in which surfaces can be handled as vectors.
Experimental results related to texture mapping on the
human body, morphing, and animation of human faces are
presented in Section 6. Section 7 concludes the paper.

2 FINDING CORRESPONDENCE BETWEEN

NONRIGID OBJECTS

We model a nonrigid object as a compact connected
Riemannian two-dimensional manifold (surface) S with
the geodesic distances dS : S � S ! IR induced by the
Riemannian metric. From the point of view of metric
geometry, the pair ðS; dSÞ is a metric space, and dS describes
the intrinsic geometry of the object. A surface Q obtained by

means of a bijective map ’ : S ! Q is called a deformation of
S. If dSðs; s0Þ ¼ dQð’ðsÞ; ’ðs0ÞÞ for all s; s0 2 S, we say that
the map ’ is an isometry and that S and Q are isometric. In
practice, deformations preserve the distances only approxi-
mately, such that

jdSðs; s0Þ � dQð’ðsÞ; ’ðs0ÞÞj � �:

We call such deformations �-isometries (or, in general, near
isometries without having � specified).

The essence of the correspondence problem is finding the
map ’, establishing the correspondence between the objects S
and Q from their geometry. If we knew a common
parameterization for S and Q, say, �S : U � IR2 ! S and
�Q : U � IR2 ! Q, we could compute the correspondence as
’ ¼ �Q � ��1

S . However, the mappings �S and �Q are
unknown in practice. Correspondence algorithms based
on common parametrization usually enforce U to be, for
instance, the unit square. When only the geometry is
available, constructing such a common parametrization in a
consistent way is a challenging problem. Theoretically, the
mappings �S and �Q can be estimated by finding
correspondence between some fiducial points or features
located on both objects [26]. Nevertheless, the main
limitation of feature-based approaches is the fact that they
require a robust feature detector. In some cases, feature
detection can be done automatically,1 but usually, it is user
assisted [30], [36], [24].

Zigelman et al. [38] proposed using MDS to embed S and
Q into the plane and thus recover the parameterizations
�S : IR2 ! S and �Q : IR2 ! S. This idea can be problematic
for nonflat objects or objects with complicated topology.
Moreover, since the embedding is performed into the whole
IR2, there is no guarantee that �S and �Q have the same
support.

2.1 Minimum-Distortion Embedding

In many applications, the deformations of an object can be
described as near isometries. For example, different postures
of humans and animals are isometric deformations of their
respective bodies. In [8], we showed empirically that the
deformations of a human face due to natural expressions can
also be approximated by isometries (an example of such
deformations is shown in Fig. 1). Relying on this knowledge,
we can find ’ as a map with the smallest distortion of the
geodesic distances, for example, measured as

dis ’ � sup
s;s02S

jdSðs; s0Þ � dQð’ðsÞ; ’ðs0ÞÞj:

If S and Q are �-isometric, it is guaranteed that dis ’ � �.
Our goal is to find ’ with the minimal distortion dis ’,
which, according to our model, will give a good correspon-
dence between S and Q.

In practical applications, we work with discrete objects.
The surface S is sampled at N points, fs1; . . . ; sNg, and
represented as a triangular mesh. The geodesic distances
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1. In the specific problem of finding correspondence between human
faces, only a few points, such as the eyes and the nose tip, can be detected
sufficiently accurately based on the surface geometry. This is due to the fact
that the geometry of the facial surface contains mostly low-frequency
information, whereas feature detection usually requires high-frequency
information. Blanz et al. [3] establish dense correspondence using optical
flow applied to the texture. However, such an approach is not applicable
when the texture is not available.



between the samples are represented as an N �N matrix
�S ¼ ðdSðsi; sjÞÞ, which is computed numerically using, for
example, the fast marching method (FMM) [25]. Similarly, the
surface Q is represented as ðfq1; . . . ; qMg � Q;�QÞ. In this
discrete setting, we are looking for a map ’ : fs1; . . . ; sNg !
Q such that dSðsi; sjÞ is as close as possible to dQð’ðsiÞ; ’ðsjÞÞ
for all i, j ¼ 1; . . . ; N , that is,

’ ¼ argmin
’

max
i;j¼1;...;N

jdSðsi; sjÞ � dQð’ðsiÞ; ’ðsjÞÞj

¼ argmin
’

dis ’:
ð1Þ

We refer to such’ as a minimum-distortion embedding of S into
Q;’ is a genuine isometry only if S andQ are isometric. Note
that ðQ; dQÞ is tacitly assumed to be a continuous surface here,
as’ðsiÞ can be any point onQ, not necessarily coinciding with
fq1; . . . ; qMg. In practice, the values of dQ must be approxi-
mated numerically from ðfq1; . . . ; qMg � Q;�QÞ. Generally,
S can be a subset ofQ (up to a nearly isometric deformation);
we address this case in Section 4.

3 GENERALIZED MDS

Problem (1) is apparently untractable, as it requires optimiza-
tion over all the maps ’ : fs1; . . . ; sNg ! Q. Nevertheless,
denoting q0i ¼ ’ðsiÞ, i ¼ 1; . . . ; N , we can reformulate (1) as an
optimization over the image ’ðfs1; . . . ; sNgÞ in an MDS-like
spirit. For this purpose, we define the generalized stress

�pðq01; . . . ; q0NÞ ¼
X
i>j

jdSðsi; sjÞ � dQðq0i; q0jÞj
p: ð2Þ

For p ¼ 1, we define

�1ðq01; . . . ; q0NÞ ¼ max
i;j¼1;...;N

jdSðsi; sjÞ � dQðq0i; q0jÞj

¼ dis ’:
ð3Þ

The embedding ’ is computed by minimization of the
generalized stress,

fq01; . . . ; q0Ng ¼ argmin
q0

1
;...;q0

N

�pðq01; . . . ; q0NÞ; ð4Þ

thus establishing a correspondence between the given
N points fs1; . . . ; sNg � S and N points fq01; . . . ; q0Ng on Q.
Note that this approach is based only on the intrinsic
geometry of the surfaces and, thus, independent of the
alignment of the surfaces in the euclidean space. Unlike
methods based on fiducial points, here, we obtain a

correspondence between a dense set of points, since N
can be as large as necessary.

Problem (4) can be considered as a generalization of
MDS [4] to arbitrary metric spaces. We call it the generalized
MDS or GMDS for short [11]. Like in traditional MDS, (4) is
a nonconvex optimization problem and, therefore, convex
optimization algorithms may converge to a local minimum
rather than to the global one [4]. Nevertheless, convex
optimization is widely used in the MDS community if some
precautions are taken in order to prevent convergence to
local minima. In Section 3.3, we show a multiscale
optimization scheme that, in practical applications, shows
good global convergence.

In the case of p ¼ 1, the GMDS can be reformulated as a
constrained optimization problem

min
q0

1
;...;q0

N
;�
� s:t: jdSðsi; sjÞ � dQðq0i; q0jÞj � � ; i > j ð5Þ

with the use of an artificial variable � . This problem is
intimately related to the computation of the Gromov-
Hausdorff distance between metric spaces [22]. This
distance was first used in the context of isometry invariant
surface matching by Mémoli and Sapiro [39] and motivated
our works on GMDS [11], [9]. In practice, small values of p
(for example, p ¼ 2) are usually preferred.

Finally, note that, since fq01; . . . ; q0Ng may be arbitrary
points on the mesh Q, we have to compute the distances dQ
between every pair of points on Q. For this purpose, we use
the three-point geodesic distance approximation, which is
detailed in [9]. The idea of this numerical procedure is to
produce a computationally efficient C1-approximation for dQ
and its derivatives, interpolating their values from the
matrix �Q of pairwise geodesic distances on Q.

3.1 Iterative Solution of the GMDS Problem

Our goal is to bring the generalized stress (2) to a
(possibly local) minimum over fq01; . . . ; q0Ng, represented in
some parametrization domain as vectors of coordinates
fu1; . . . ;uNg. For example, if the surface Q admits some
global parametrization, for example, ½0; 1Þ2 ! Q, every
point on Q can be represented by u 2 ½0; 1Þ2. Global
parametrization is often readily available for objects
acquired using a range scanner. For objects with more
complicated topology, global parametrization may be
cumbersome to construct; in this case, we may represent
a point on Q by the index t of the triangle enclosing it
and a vector u of barycentric coordinates [19] in the local
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Fig. 1. Example of deformations of nonrigid surfaces: a video sequence of one author’s face, acquired using a real-time 3D scanner. Facial

expressions can be modeled as near isometries of the reference facial surface (“neutral expression”).



coordinate system of that triangle. For the sake of
simplicity, in the following, we freely switch between q0i
and their local or global parametric representation, ðti;uiÞ
or ui, respectively. We refer to the latter case as the
parametric GMDS.

The minimization algorithm starts with an initial guess

u
ð0Þ
i of the points and proceeds by iteratively updating their

locations, thus producing a decreasing sequence of stress

values. Let fuðkÞ1 ; . . . ;u
ðkÞ
N g be the optimization variables at the

kth iteration and let fdðkÞ1 ; . . . ;d
ðkÞ
N g be a set of directions such

that displacement of u
ðkÞ
i along them by some step size �ðkÞ

decreases the value of the stress �p. The simplest way to select

the directions is di ¼ �rui�p, known as the gradient descent

algorithm. More efficient ways to chose the step direction

exist, including conjugate gradients and the quasi-Newton

algorithm [2].
The step size � has to be chosen in such a way that it

guarantees a sufficient decrease of �p. When constant step is
used, there is generally a trad-eoff between too small steps,
which result in slow convergence, and too large steps, which
are liable to increase the value of �p. In order to provide a
guaranteed decrease of �p, we adaptively select the step size
at every iteration using the Armijo rule, which first sets� ¼ �0

and then successively reduces it by some factor� 2 ð0; 1Þuntil

�pðu1; . . . ;uN0
Þ � �pðu1 þ �d1; . . . ;uN0

þ �dN0
Þ

� ���
X
i

dT
i rui�pðu1; . . . ;uN0

Þ;

where � 2 ð0; 1Þ. An empirical choice we use is � ¼ 0:3, and
� ¼ 0:5. We start with a large initial value of �0, gradually
refining it at each iteration. A similar rule can be applied
when the update is performed for a single point per
iteration, yielding a block-coordinate descent algorithm.

When a global parametrization is used, we must restrict
ui þ �di to remain inside the parametrization domain. This
is done by applying a projection operator PU on the point
coordinated after each iteration, forcing them to the
parametrization domain U . When the barycentric represen-
tation is used, it is impossible to simply add �di to ui, since
the latter might leave the triangle ti, thus invalidating the
barycentric representation. Instead, the displacement is
performed by following a polylinear path starting at ui,
propagating along a straight line in the direction di until the
first intersection with the triangle boundary, then proceed-
ing along a line inside the triangle adjacent to the
intersected edge, and so on, until the total length of the
path is � by a path unfolding algorithm [9].

3.2 Complexity

The complexity of the generalized stress and its gradient
computation is OðN2Þ. In practice, N varies between tens to
hundreds of points, therefore, GMDS is computationally
efficient. In our implementation of the parametric version of
GMDS, the computation of the stress �p and its gradient
r�p in a problem with N ¼ 100 points takes about 80 ms on
a mobile Intel Pentium IV 2-GHz CPU. The number of
function and gradient evaluations required for the optimi-
zation is usually of the order of 100.

3.3 Multiresolution Optimization

Multiresolution methods are widely employed to resolve the
problem of local convergence in nonconvex problems such as
the one we have here. The key idea of a multiresolution
optimization scheme is to work with a hierarchy of problems,
starting from a coarse version of the problem containing a
small number of variables (points). The coarse level solution
is interpolated to the next resolution level and is used as an
initialization for the optimization at that level. The process is
repeated until the finest level solution is obtained. Such a
multiresolution scheme can be thought of as a smart way of
initializing the optimization problem. Small local minima
tend to disappear at coarse resolution levels, thus reducing
the risk of local convergence, which is more probable when
working at a single resolution.

Formally, let us denote by S1 � S2 � . . . � SR ¼ S an
R-level hierarchy of our data. We denote jSrj ¼ Nr, where
NR ¼ N . The points at the ðrþ 1Þst resolution level are
obtained by removing part of the points in the rth level. The
corresponding distance matrices �1; . . . ;�R ¼�S are
created as submatrices of �S . One possibility to construct
such a hierarchy is the farthest point sampling (FPS) strategy
[18]. At the coarsest resolution level S1, we select N1 points.
Usually, some prior information about the object can be
employed for the initialization of the coarsest level. For
example, in the human body, the points can be located at
the body extremities. In the case of human faces, the
coarsest level can be initialized with points located at the
nose tip and the eyes (the rough location of these points can
be easily found from the analysis of the intrinsic geometry
of the facial surface [8]). If no prior information is available,
random initialization is used. Note that, unlike in feature-
based approaches, these points are used only as initializa-
tion and need not be located precisely. At the next
resolution level, we add points in the following manner:
sN1þ1 is selected as the most distant point from S1, and so
on, sNrþk ¼ arg maxs2S dSðs; fs1; . . . ; sNrþk�1gÞ. Taking the
first Nr points from the sequence produced in this manner,
we obtain Sr.

Let us assume that, at the rth resolution level, Sr ¼
fs1; . . . ; sNrg is embedded into Q using the iterative mini-
mization algorithm described above. As a result, the set of
images ’tðSrÞ ¼ fs01; . . . ; s0Nrg on the mesh Q is obtained. At
the next resolution level, we have to embed a larger set Srþ1

0

into Q, solving the minimization problem for fs01; . . . ; s0Nrþ1g.
The initialization for the first Nr points is readily available
from the solution at the previous level. The initial locations for
the remaining points q0i for i ¼ Nr þ 1; . . . ; Nrþ1 have to be
interpolated.

It is reasonable to initialize q0i as a point on Q such that
the geodesic distances from it to the points q01; . . . ; q0Nr are as
close as possible to the geodesic distances from si to
s1; . . . ; sNr . Formally, q0i can be expressed as

q0i ¼ arg min
q

X
j2NðsiÞ

dQðq; q0jÞ � dSðsi; sjÞ
� �2

; ð6Þ

where NðsiÞ denotes the neighborhood of si on S. Note that
practically the minimum can be found by exhaustively
searching over all samples or even a coarser subset of Q.
The complexity of such a search is OðNrMÞ, which is of the

BRONSTEIN ET AL.: CALCULUS OF NONRIGID SURFACES FOR GEOMETRY AND TEXTURE MANIPULATION 905



same order as the complexity of the iterative minimization
process.

4 PARTIAL EMBEDDING

When working with objects acquired by means of a range
scanner, due to occlusions, parts of the objects may be
missing. In some cases, missing data can result in the objects
having different topologies. Think, for example, of a hole in
one of the objects, which contradicts our fundamental
assumption that the objects are near isometric. Let us
assume to be given S0 � S, a patch of the surface S. Our
approach requires the embedding of S0 into Q. Never-
theless, if we try to apply the GMDS straightforwardly, we
may find significant distortions of the geodesic distances.
This results from the fact that geodesic distances corre-
sponding to geodesics that have passed through S n S0 may
change while we have tacitly assumed that the metric on S0
is the restricted metric dSjS0 . We call geodesic distances that
violate this assumption inconsistent.

In order to guarantee a correct embedding, inconsistent
distances must be excluded. In the discrete setting, given S0
sampled at fs1; . . . ; sN 0 g, we denote by P 	 f1; . . . ; N 0g �
f1; . . . ; N 0g the set of pairs of points between which the
geodesic distances are consistent. Consequently, the mini-
mum-distortion embedding can be defined as

’ ¼ argmin
’

X
ði;jÞ2P

jdSðsi; sjÞ � dQð’ðsiÞ; ’ðsjÞÞjp:

This can be equivalently formulated as the minimization of
the weighted generalized stress

�pðq01; . . . ; q0NÞ ¼
X
i>j

wijjdSðsi; sjÞ � dQðq0i; q0jÞj
p

 !1=p

; ð7Þ

where wij ¼ 1 if ði; jÞ 2 P and 0 otherwise.
If the surface S is available, we can define the incon-

sistent distances as those in which dS0 ðsi; sjÞ 6¼ dSðsi; sjÞ, i,
j ¼ 1; . . . ; N 0. Otherwise, we must remove distances be-
tween pairs of points ði; jÞ close to the boundary @S0, for
which

dS0 ðsi; @S0Þ þ dS0 ðsj; @S0Þ < dS0 ðsi; sjÞ:

In practice, when the surfaces are given in a discrete
representation, the above criteria are applied to finite sets of
points, and the geodesic distances are computed numerically.

5 CALCULUS OF NONRIGID OBJECTS

In a broader perspective, we can think of nonrigid objects as
points in some infinite-dimensional space. Let S be an object
and IM denote an abstract subspace of all the near-isometric
deformations of S. It is known empirically that the intrinsic
dimensionality of IM is usually low, and it can be represented
approximately as an abstract manifold [32]. Assume that we
have a sequence of smooth deformations of S, represented as
a smooth trajectory St : ½0; T 
 ! IM. For example, it can be a
3D video sequence acquired by a range scanner, where t is
thought of as the time. Let St and Stþdt be two adjacent
samples on the trajectory St (or, in other words, two

consecutive frames in the video sequence), and let st and
stþdt be the corresponding extrinsic coordinates. If the step dt
is sufficiently small, the difference betweenSt andStþdt is also
small. We can therefore linearize the manifold IM around the
pointSt, approximating its generally non-euclidean structure
by a euclidean one (Fig. 2). The piece of the trajectoryS�2½t;tþdt

is replaced by a linear displacement, which can be repre-
sented abstractly as dS ¼ Stþdt � St (though the subtraction
between surfaces is not yet formally defined). Broadly
speaking, our construction resembles the notion of tangent
space in Riemannian geometry. In this way, we obtain an
ability to work with surfaces as with vectors in a linear space,
which provides us with a calculus of nonrigid objects: the ability
to “add” and “subtract” two surfaces.

The knowledge of the correspondence ’t : St ! Stþdt
between St and Stþdt is crucial in order to think of surfaces
as of vectors and be able to apply arithmetic operations on
their extrinsic coordinates. Thus, in terms of extrinsic
coordinates, we can write dS as ds ¼ stþdt � ’t � st. Conse-
quently, once the correspondence ’t has been established
using the GMDS, we can approximate Stþ	dt by the
following convex combination:

stþ	dtðsÞ ¼ ð1� 	ÞstðsÞ þ 	stþdtð’tðsÞÞ ð8Þ

for all s 2 St and 	 2 ½0; 1
. If in addition, the surfaces are
endowed with the textures represented as vector fields �t :
St ! IR3 and �tþdt : Stþdt ! IR3, we can similarly construct
the texture �tþ	dt by blending between the corresponding
pixels.

Varying the value of 	 continuously from 0 to 1, we can
create a linear interpolation between St and Stþdt (see Fig. 2
for a geometric illustration). Such an interpolation is useful,
for example, as a method of temporal superresolution of a
3D video. Since the video is given at a finite sampling rate,
rarely exceeding 30 frames per second, we can produce the
missing frames by linear interpolation between the given
adjacent frames.

If our objects are different faces S and Q, such an
interpolation will produce a morphing effect: a face that
gradually turns from S into Q. Note that the morphing is
applied both to the extrinsic geometry of S and Q and their
textures; the extrinsic geometries should be at least roughly
aligned for a graceful morphing effect. This stage is trivial
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Fig. 2. Geometric illustration of interpolation and extrapolation of

deformations of nonrigid objects.



because we have the correspondence between the surfaces,
therefore, a rigid transformation that will align them is
found straightforwardly (in fact, it can be expressed
analytically).

Allowing for 	 < 0 or 	 > 1, we can extrapolate the
trajectory beyond ½t; tþ dt
. As a particular example in the
facial animation problem, if St is a neutral posture of the
face and Stþdt is an expression, we can exaggerate this
expression by taking 	 > 1. This approach can be extended
for facial features exaggeration or caricaturization. Suppose
we are given an ensemble of representative faces S1; . . . ;SN .
After finding correspondences between them, we can create
the average face (androgenus) �S. Given a new face Q, we can
compute the combination Q	 ¼ 	Q� ð1� 	Þ �S. By taking
	 > 1, we exaggerate the difference between Q and the
average facial features �S, thus emphasizing the nonaverage
features of Q and, thereby, creating a 3D caricature. The
degree of caricaturization is controlled by the value of 	.
Using PCA, similarly to Vetter and Blanz [33], we can find a
linear basis, in which each vector corresponds to an
“archetype” of a face (for example, male or female, fat or
skinny, and so forth).

Another interesting application, suggested by one of the
reviewers, may be the simulation of an aging effect. Two
surfaces in this case are the instances of the same face at
different ages, and 	 serves as the aging parameter.
Extrapolation in this case can show how a face should look
after aging.

6 APPLICATIONS AND RESULTS

6.1 Virtual Body Painting

A contemporary stream of art, known as body painting,
presents the challenge of drawing clothes on the human
body skin in order to create an illusion of genuine clothes.
When the person moves, the drawn picture deforms
naturally with the skin, thus looking realistic practically in
every pose of the body. In the computer graphics world,

this “virtual dressing” effect can be achieved by texture

mapping. As an illustration of a possible application,

imagine that we would like a human actor to be used as a

character in a computer game. The actor is scanned in

several poses, then an artist draws the texture that should

be mapped on the character. In order to avoid drawing a

different texture for each pose, the texture from some

reference pose Q must be transferred to the rest of the poses

of the character. Assume that the texture �Q is drawn on Q.

We wish to map it onto a deformed version of the object (a

different pose of the character), S. The new texture is given

by �S ¼ �Q � ’, where ’ is the correspondence between S
and Q computed using GMDS.

We demonstrate the GMDS approach in a virtual body

painting experiment, using as a reference a public domain

mesh of a headless human body containing about 2,600 ver-

tices. Four poses were created by deforming the body in a

CAD program. We painted two textures (Fig. 3) that were

mapped onto the reference surface. The GMDS algorithm was

employed to embed 200 points on the reference object into its

four different poses in order to establish the correspondence

between the objects. Optimization was performed using the

multiresolution scheme with six resolution levels, created

using the farthest point sampling. The coarsest resolution was

initialized with four points placed at the body extremities

(hands and legs). The correspondences obtained from the

embedding are depicted in Fig. 4. The texture mapping

coordinates were transferred from the reference mesh to the

four poses by inverse square distance-weighted interpola-

tion. The final results are depicted in Fig. 5 (for better

rendering, a head was added to each object). Texture

mapping allows us to visualize the correspondence between

the surfaces. The mapping is good in general, despite some

small yet noticeable artifacts, for example, in the fourth

column of the second row in Fig. 5.
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Fig. 3. Two textures used in the virtual body painting experiment.



6.2 Virtual Makeup

In the motion picture industry, one of the challenges is the
creation of visually realistic moving human faces. The
current level of computer graphics allows to render a 3D
animated head and embed it into the movie. Nevertheless,
such 3D animation is computationally intensive and usually
lacks the realism of genuine human face movements. On the
other hand, the rapid development of 3D real-time video
acquisition techniques [23] opens a new direction for
creating a synthetic character by scanning an actor and
replacing his or her facial texture with a virtual one,
automatically mapping a single image onto a 3D video
sequence and creating a “virtual makeup” effect [10].

Thinking of the 3D video sequence frames as deformable
objects and assuming the isometric model of facial expres-
sions, the knowledge of the intrinsic correspondence between
two facial surfaces allows expression-invariant texture
mapping onto all the frames of the video sequence. We must
note that expressions with open and closed mouth are
topologically different, as opening the mouth creates a “hole”
in the facial surface. This can be solved by imposing a
topological constraint on the facial surface as described in
Section 4, excluding the geodesics passing through the lips by
setting the appropriate weights wij in (7) to zero (see Fig. 6).

A scheme of the whole procedure is depicted in Fig. 7.
The reference surface S (for example, the first frame in the
video sequence) is first cropped to remove the lips and
leave only the facial contour. The remaining surface S0 is
subsampled using farthest point sampling, and the geodesic
distance between the samples are computed using FMM.
The distances crossing the cropped lips region are assigned
zero weights. The points are then embedded into the target
surface Q (one of the 3D video frames) using GMDS, which
produces the correspondence ’. For initialization, it is
reasonable to select facial features that appear in every face
and whose location can be roughly determined using
intrinsic geometric information—the nose tip and the eye
sockets (characterized by their Gaussian curvatures [6]).

The texture �S is transferred from the reference surface S
onto Q similarly to the virtual body painting problem.

In our experiment shown here, we mapped “virtual
makeup” to a real 3D video sequence of a face, acquired by
a structured light scanner at 640� 480 spatial resolution,
three frames per second (Fig. 1). The lip contour in the
reference frame was segmented manually. The cropped
reference frame was sampled at 100 points; all the rest of
the frames were sampled uniformly at about 3,000 points. The
surfaces were triangulated using Delaunay triangulation;
then, the geodesic distances were computed using FMM [25].
The correspondence was found by embedding 100 points on
S into Q using a multiresolution optimization scheme.

Fig. 8 depicts a synthetic Shrek-like character, created
from the video sequence by mapping a synthetic face
texture image. The obtained faces look real and the texture
alignment is good even in cases of strong facial expressions.
Slight artifacts can be attributed to alignment imperfections
of the reference texture image.

6.3 Synthesis and Exaggeration of Facial
Expressions

The same 3D face video data were used to demonstrate the
idea of calculus of nonrigid objects, presented in Section 5.
The correspondences found in the previous experiment were
used to transform the extrinsic geometry of the surfaces. Fig. 9
shows interpolation between two frames computed accord-
ing to (8). If, for example, we take the first frame to be a
“neutral expression” and the second one to be a “sad”
expression, varying	 continuously in the range [0, 1] creates a
natural transition between the “neutral” and the “sad” faces.
Taking 	 beyond 1 creates an exaggerated sad expression,
depicted in Fig. 10.

6.4 Morphing between Different Faces

So far, we have assumed that the deformations of our
nonrigid object, for example, the expressions of the face in
the virtual makeup experiment can be described by near
isometries. Practice shows that the surfaces do not necessarily
have to be isometric in order for the minimum-distortion

908 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2007

Fig. 4. Visualization of correspondence between poses of the human body, established using GMDS. Different colors depict corresponding patches

built around 100 points on the objects used in the embedding.



mapping to be a good correspondence. For example, thinking
of two faces as flexible rubber masks, the correspondence
problem is that of putting one mask onto the other while
trying to stretch it as little as possible. It is obvious that, in
most cases, the geometry features (nose, forehead, mouth,
and so forth) of the two masks will coincide, because, in a
broad sense, all human faces have similar geometry. Conse-
quently, given two faces of different subjects, we can still use
the same principle to find correspondence between them.

To exemplify this idea, we took a female and a male face
from the Notre Dame database [15], [20] (denoted by S and
Q, with the textures �S and �Q, respectively). Each face was
subsampled at approximately 3,000 points and triangulated.
Fifty points were taken on S and embedded into Q using
GMDS. A multiresolution scheme with five resolution
levels was used. Fig. 11 shows the progress of the algorithm
at different resolutions. The inverse of a resulting corre-
spondence was then used to map the texture �S from S to
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Fig. 5. Virtual body painting experiment. The texture is transferred from a reference pose of the human body (left column, outlined in gray) to its
different poses. The correspondence between the objects is established by embedding 200 points on the reference object into its poses using the
GMDS algorithm.



Q, as �Q ¼ �S � ’�1. Fig. 12 shows a synthetic face with

male geometry and a female texture, obtained in this way.

Fig. 13 depicts a morphing effect between S andQ, obtained

by interpolating the extrinsic geometry and the texture

according to (8).

7 CONCLUSION

We presented a procedure for establishing dense correspon-

dence between nonrigid surfaces. Exploiting the empirical

fact that facial expressions can be modeled as isometries, our

approach is based on finding the minimum-distortion

mapping between two surfaces. This is carried out by a

procedure similar to MDS. The algorithm is computationally

efficient though currently not real-time. Our preliminary

results show that near-real-time performance can be achieved

by exploiting multigrid optimization [13], [14] for the GMDS
and implementation on graphics processors (GPU).

Being purely geometric, our approach is applicable when
texture is not available. Since it is based on the intrinsic
geometry (geodesic distances measured on the surfaces),
the method requires neither alignment based on the
extrinsic geometry nor feature detection and tracking. We

find correspondence between an arbitrarily dense set of
points, as opposed to feature-based methods, which are
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Fig. 6. The open mouth problem. Red: the cropped lips region S n S0.
Blue dotted: a geodesic between the points s1 and s2 on S. Black: the

corresponding inconsistent geodesic on S0.

Fig. 7. Processing stages in the virtual makeup problem: (a) reference

surface, (b) cropping and subsampling, (c) correspondence establish-

ment using GMDS, (d) texture mapping onto the reference surface, and

(e) texture mapping onto the target surface.

Fig. 8. Virtual makeup experiment. A few frames from the video sequence with a Shrek texture image mapped using the correspondence established

by GMDS.
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Fig. 9. Expression interpolation between two frames in the video sequence (in the first row, the faces are shown without texture to emphasize the

natural look of the synthetic expressions).

Fig. 10. Expression exaggeration. Shown from left to right are three expressions and their exaggerated versions.

Fig. 11. Stages of the multiresolution GMDS algorithm used to find correspondence between female ðSÞ and male ðQÞ faces. Denoted in white circles

(first row) are the source points on the surface S, in green circles are the initialization onQ, and in blue crosses are the optimization result. Shown left

to right are resolution levels from the coarsest (3 points) to the finest (50 points).



usually limited to a small set of fiducial points that can be
robustly detected and tracked. An additional advantage is
that the minimum-distortion embedding approach uses a
global criterion for finding the correspondence. This is
especially important when working with noisy data. The
fact that we use geodesic distances between all the points
can be thought of as a means of regularization, which

usually prevents outliers from compromising the corre-
spondence quality. From this perspective, there exists
similarity between GMDS and elastic graph matching
approaches [34], [35]. Finally, handling missing data is
natural in our approach using the weighted generalized
stress minimization.

The proposed method has a wide range of applications
in computer graphics and computer vision. We demon-

strated only a few of them, including invariant texture
mapping onto animated objects, expression synthesis and
exaggeration, texture substitution, and morphing.
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