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Abstract

We propose an efficient computational solver for eikonal equations on parametric three-dimensional manifolds. Our
approach is based on the fast marching method for solving the eikonal equation in Oðn log nÞ steps on n grid points by
numerically simulating wavefront propagation. The obtuse angle splitting problem is reformulated as a set of small integer
linear programs, that can be solved in OðnÞ. Numerical simulations demonstrate the accuracy of the proposed algorithm.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Construction of distance maps is important in computational geometry. It arises in various applications
including medical imaging, robot motion planning, navigation, and geophysics to name a few. The problem
of computing distances on curved manifolds has been previously addressed primarily in the two-dimensional
case. Sethian [7] proposed an Oðn log nÞ-efficient algorithm for computation of weighted distance maps on
domains with weighted Euclidean metric, termed as fast marching. A similar algorithm was developed by
Tsitsiklis [11].

The main idea of the fast marching algorithm is to simulate a wave front advancing from a set of source
points. The propagating front can be thought of as a ‘‘prairie fire’’ evolution with some slowness field F

towards directions where the grid has not yet been ‘‘burnt out’’. At time t ¼ 0, the fire starts at the source
points, and the algorithm computes the time values T for each vertex at which the advancing fire front reaches
it. Mathematically, the problem of weighted distance map computation can be formulated as the viscosity
solution of the eikonal equation
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where S is the set of source points. Intuitively, the distance T grows from the source points with a gradient
magnitude equal to F. In optics and acoustics, the eikonal equation governs the propagation of waves through
a medium with inhomogeneous (yet often isotropic) coefficients for the speed of light (sound). The solution of
the eikonal equation demonstrates that electromagnetic or acoustic waves traverse the path between two
points, which takes the least time, a physics law known as Fermat’s principle.

The fast marching method proposed by Sethian in [7] can be easily generalized to any dimension, yet, it is
limited to orthogonal grids. This limitation also applies to Tsitsiklis’ method. In two dimensions, a variety of
solutions has been proposed to overcome this limitation. Over the last decade, Sethian’s algorithm was gen-
eralized to arbitrary triangulated two-dimensional manifolds [3], unstructured meshes [8], implicit unorganized
surfaces [4], and parametric two-manifolds [9]. Unlike the well-studied two dimensional case, the situation dif-
fers dramatically for three-dimensional manifolds. Due to the problem of obtuse angles articulated later in this
introduction, existing three-dimensional eikonal solvers can handle only weighted Euclidean (flat) manifolds,
or non-flat manifolds with orthogonal parameterization. However, construction of such a grid is as compli-
cated as computing the distance map itself.

This paper aims to fill this apparent gap by presenting an extension of the fast marching method to curved
(non-Euclidean) three dimensional manifolds. Following [9], we focus our discussion on parametric manifolds,
i.e. volumes consisting of a three-dimensional parameterization domain U, which is mapped by x : U 7!Rm to
some region in Rm where the manifold is immersed. The derivatives
ni ¼
ox

oui
ð2Þ
of x with respect to u constitute a local coordinate system on the parametric manifold, which is usually non-
orthogonal. Geodesic distances in the volume are calculated according to the differential element
ds2 ¼ duTGdu; ð3Þ

where du ¼ ðdu1; du2; du3ÞT, and G is the metric tensor, whose elements are given by gij ¼ nT

i nj. The local coor-
dinate system fn1; n2; n3g is orthogonal if and only if G is diagonal. Our goal is to find an approximate solution
to the continuous eikonal equation
krGT ðuÞk2 ¼ ðruT ÞTG�1ðuÞruT ¼ F 2ðuÞ ð4Þ

on a discrete numerical grid, obtained by sampling the parameterization domain U. The discrete solution is
required to converge to the continuous one as the grid is refined. It is convenient to select a regular Cartesian
grid with unit steps as the parametrization domain U. Each grid point un is connected to its neighbors accord-
ing to some connectivity pattern. Among the variety of possibilities, the simplest choice is to consider six-
neighbor connectivity, which implies that each point un is connected to six neighboring points un þm,
m ¼ ð�1; 0; 0ÞT; ð0;�1; 0ÞT; ð0; 0;�1ÞT. This pattern forms eight right-angle simplices in the parameterization
domain with edges parallel to the axes u1, u2 and u3 (Fig. 1). Another possible grid connectivity is based on 18
neighbors: the six neighbors as before, plus additional 12 neighbors m ¼ ð0;�1;�1ÞT; ð�1; 0;�1ÞT;
ð�1;�1; 0ÞT. As shown in Fig. 1(right), this scheme populates each octant with three simplices with the angles
45�; 45�; 60� at un and one 60�; 60�; 60� simplex (the angles are measured between the edges xðun þmiÞ � xðunÞ).

Let us examine a particular simplex formed by connecting some point u0 in the parameterization domain to
three neighboring points ui ¼ u0 þmi, where m1;m2, and m3 are integer displacement vectors selected accord-
ing to the grid connectivity pattern. These points are mapped to the vertices xi ¼ xðuiÞ in the volume. In local
coordinates, we can write
xi ¼ x0 þ m1
i n1 þ m2

i n2 þ m3
i n3 ¼ x0 þ Nmi; ð5Þ
where N ¼ ðn1; n2; n3Þ. The angles formed at the vertex x0 of the simplex can be described by the scalar prod-

ucts eij ¼ ðxi � x0ÞTðxj � x0Þ ¼ mT
i NTNmj ¼ mT

i GmT
j , or in matrix notation
E ¼MTGM; ð6Þ

where M ¼ ðm1;m2;m3Þ. The simplex is termed acute if the angles \x1x0x2;\x1x0x3, and \x2x0x3 are non-ob-
tuse, which holds if and only if all off-diagonal elements of E are non-negative. A simplex having at least one



Fig. 1. Grid connectivity based on 6 (left) and 18 (right) neighbor points.
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obtuse angle at the vertex x0 is termed obtuse. It is remarkable that the simplex geometry required for distance
map computation is contained entirely in the matrix E. This can be advantageous in applications where the
manifold itself is unavailable, and only its metric is known.

Table 1 outlines the fast marching algorithm on three-dimensional parametric grids. Solution of the eikonal
equation starts by setting zero distance to the set of source points and updating the neighboring points by sim-
ulating an advancing wavefront. By construction, the updated value cannot be smaller than the values of the
supporting vertices. This monotonicity property ensures that the solution is always propagated outwards by
fixing the vertex with the smallest T. The latter implies that the values of fixed vertices are never recomputed.
Since the update step has constant complexity, the overall complexity of the fast marching algorithm is deter-
mined by the procedure that finds the smallest T in the close list. Heap sorting-based priority queue allows to
implement this task in Oðlog nÞ, where n is the number of vertices. Since each vertex is fixed only once, the
overall complexity is Oðn log nÞ.

In the numerical core of the algorithm lies the update step, which given the time of arrival of the wavefront
to three vertices of a simplex, computes the time of arrival to the fourth one. In the two-dimensional version of
the fast marching algorithm [3], a vertex is updated by simulating a planar wavefront propagating inside the
simplex (triangle); the values of the two supporting vertices allow to compute the front direction. In this paper,
we extend this scheme to three dimensions and show that in the particular case of orthogonal grids, it corre-
sponds to the first-order upwind discrete differential operator proposed by Sethian [7].

Similarly to the two-dimensional case, we show that the discussed update procedure is suitable only for
acute simplices. If this is not the case, it may occur that the supporting values are not yet available while
Table 1
Fast marching algorithm on parametric three-dimensional manifolds

Input: Parameterization grid U, weight function F : U 7!Rþ, set of source points S � U

Initialization:

1. Initialize the source points with T ðSÞ ¼ 0 and assign them the Fixed attribute

2. Initialize the rest of the grid points with T ¼ 1 and assign them the Unprocessed attribute

Iteration:

1. Mark all Unprocessed vertices sharing a simplex with a Fixed vertex as Close

2. Update all Close vertices from three Fixed vertices in the simplex

3. Mark the Close vertex with minimum T as Fixed

4. If Unprocessed 6¼ ; return to step 1.

Output: The distance map T : X 7! Rþ.
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updating the vertex, since the wavefront reaches some of the supporting vertices after it reaches the updated
vertex. In the two dimensional case, Kimmel and Sethian [3] proposed to ‘‘split’’ obtuse angles by adding vir-
tual connections to other grid points. However, unlike the two-dimensional case where one split is always suf-
ficient to solve the obtuse angle problem, in the three-dimensional case more virtual edges might be required.
This fact does not allow for a simple extension of the two-dimensional splitting scheme to three dimensions
and presents the main obstacle in developing an eikonal solver for general three-dimensional manifolds. Here,
we introduce a simple procedure for splitting the obtuse angles, working entirely in the parametric domain,
which extends the technique introduced in [9] for two-dimensional manifolds.

It is worthwhile noting that although our algorithm is based on fast marching, the order in which the grid
points are updates does not necessarily have to be priority queue-based. In recent studies [10,12,6,5], and [2] as
well as in classical works dating back to [1], an alternating raster scan update order is considered instead. The
family of such fast sweeping algorithms is advantageous due to their well-structured memory access and easy
parallelization, which makes them especially attractive for implementation on single instruction multiple data
(SIMD) architectures. The major disadvantage of the fast sweeping algorithms is that the number of iterations
required for producing a consistent distance map is data-dependent. Our update scheme and splitting tech-
nique can be used within both families of algorithms.

The paper is organized as follows: In Section 2 we present an update scheme based on the planar wavefront
model. In Section 3 we present a splitting procedure used to convert the numerical grid into one consisting of
acute simplices only. In Section 4, numerical results assessing the proposed method are presented. Finally, Sec-
tion 5 concludes the paper.
2. The update step

Let u0 be a grid point being updated and let there be a simplex formed by u0 and other three grid points
u1; u2; u3 with fixed times of wavefront arrival T 1, T 2 and T 3. Our goal is to simulate wavefront propagation
from the supporting vertices along the simplex and compute the time of arrival T 0 to u0

1.
Although the fast marching algorithm works on the orthogonal grid in the parameterization domain U, the

update must take into account the true geometry of the simplex. We henceforth assume, without loss of gen-
erality, that the simplex parameterized by ui, i ¼ 0; . . . ; 3, lies in R3 in such a way that x1 ¼ 0, x2 ¼ ðx2; 0; 0ÞT,
x3 ¼ ðx3; y3; 0Þ

T, and x0 ¼ ðx0; y0; z0ÞT, such that x2; y3; z0 > 0. We refer to this coordinate system as to canon-

ical. Note, that the values x2, x3, y3, x0, y0 and z0 can be expressed in terms of geometrical quantities of the
simplex, and can be therefore precomputed for the given grid. We will further assume that the simplex is acute;
treatment of obtuse simplices is addressed in Section 3.

We focus on the case where the wave propagation velocity is F � 1 in the entire volume. An extension to
weighted distance maps can be achieved by casting the original eikonal equation krGT k ¼ F to kr~GT k ¼ 1,
where eG ¼ G=F represents a modified metric.

We adopt the planar model, assuming the wavefront to be a plane propagating from a (virtual) source
described by the equation nTxþ p ¼ 0, where n defines the propagation direction. We demand that the sup-
porting vertices x1, x2 and x3 lie at distances T 1, T 2 and T 3, respectively, from the latter plane (Fig. 2, left).
Formally, this can be expressed as the following set of coupled equations:
1 Sin
choose
nTx1 þ p ¼ T 1;

nTx2 þ p ¼ T 2;

nTx3 þ p ¼ T 3;

ð7Þ
which, in the canonical coordinate system, yields p ¼ T 1 and
ce the point u0 might be part of more than one simplex, contributions from all the simplices sharing u0 should be considered. We
the one that yields the smallest updated value for T.



Fig. 2. Planar wavefront approximation scheme.
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nx ¼
T 2 � T 1

x2

;

ny ¼
T 3 � T 1

y3

� ðT 2 � T 1Þx3

x2y3

;

nz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

x � n2
y

q
:

ð8Þ
The negative solution for nz corresponds to wavefront propagating downwards and thus reaching x0 before x1,
x2 and x3. In order to enforce consistency of the update, the negative solution is discarded [3]. The value of T 0

is updated according to the distance of the vertex x0 from the planar source, namely,
T 0 ¼ nTx0 þ p ¼ x0nx þ y0ny þ z0nz þ T 1: ð9Þ
In the special case where the grid is Cartesian, one has x1 ¼ ðh; 0; 0ÞT, x2 ¼ ð0; h; 0ÞT, x3 ¼ ð0; 0; hÞT and

x0 ¼ ð0; 0; 0ÞT, or in canonical coordinates, x1 ¼ ð0; 0; 0ÞT, x2 ¼
ffiffiffi
2
p

h; 0; 0
� �T

, x3 ¼
ffiffi
1
2

q
h;

ffiffi
3
2

q
h; 0

� �T

and

x0 ¼
ffiffi
1
2

q
h;

ffiffi
1
6

q
h;

ffiffi
1
3

q
h

� �T

, where h denotes the grid step. Eq. (9) reduces to
T 0 ¼ �
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT 1 þ T 2 þ T 3Þ2 � 3ðT 2

1 þ T 2
2 þ T 2

3 � h2Þ
q

þ T 1 þ T 2 þ T 3

3
: ð10Þ
Reformulating the latter result, T 0 can be considered as a solution of
T 0 � T 1

h

� �2

þ T 0 � T 2

h

� �2

þ T 0 � T 3

h

� �2

¼ 1; ð11Þ
which is exactly the three-dimensional extension of the first-order Cartesian fast marching scheme
DxT
� �2 þ DyT

� �2 þ DzT
� �2 ¼ 1 ð12Þ
proposed by Sethian [7], where
DxT ¼ maxfD�xT ;�DþxT ; 0g ð13Þ

is the upwind first-order discrete derivative along the x axis, and D�x, Dx are the standard backward and for-
ward discrete derivatives along the x axis. Dy and Dz are defined in a similar way.
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As its two-dimensional analog, the planar update scheme produces a first-order approximation to the con-
tinuous distance map. This map is exact when the source is indeed a plane and is particularly accurate for
extended surface-shaped sources whose curvature radius is significantly larger than the grid step.
2.1. Monotonicity and consistency

The update of x0 has to be monotone, i.e. an increase of T 1, T 2 or T 3 should increase T 0. In other words, we
require that
oT 0

oT i
> 0 ð14Þ
for i ¼ 1; 2; 3, or in vector notation,
rT T 0 ¼ ðrT nTÞx0 þrT p > 0: ð15Þ
Differentiating Eqs. (7) and nTn ¼ 1 with respect to T i, one obtains rT p ¼ ð1; 0; 0ÞT and
rT nT ¼
�1 �1 0

1 0 0

0 1 0

0B@
1CAðx2; x3; anÞ�1

; ð16Þ
where a 6¼ 0 is some proportion coefficient. Hence,
rT T 0 ¼
�1 �1 0

1 0 0

0 1 0

0B@
1CA x2 x3 anx

0 y3 any

0 0 anz

0B@
1CA
�1

x0 þ
1

0

0

0B@
1CA

¼ 1

x2y3nz

�y3nz nzðx3 � x2Þ �x3ny þ y3nx þ x2ny

y3nz �x3nz x3ny � y3nx

0 x2nz �x2ny

0B@
1CAx0 þ

1

0

0

0B@
1CA: ð17Þ
Substituting rT nT and rT p into (15) and using the fact that x2; y3; nz > 0, after some algebraic manipulations,
the monotonicity conditions assume the form
qT
i n < 0; ð18Þ
where
q1 ¼ x3 � x0 ¼ �ðx0 � x3Þ � ðx0 � x1Þ
q2 ¼ x0 � x2 ¼ �ðx0 � x1Þ � ðx0 � x2Þ
q3 ¼ x0 � x3 þ x2 � x0 � x2 � x3 ¼ �ðx0 � x2Þ � ðx0 � x3Þ:

ð19Þ
Recognizing in qi the normals to the faces of the simplex, the monotonicity conditions have a very simple geo-
metric interpretation: the wavefront propagation direction n must lie inside the semi-infinite cone created by
the simplex.

Yet another requirement is the consistency condition T 0 > T i. Substituting nTx0 þ T 1 > nTxi þ T 1 yields
nTðx0; x0 � x2; x0 � x3Þ > 0; ð20Þ
meaning that the wavefront propagation direction n has to form an acute angle with the simplex edges. Since
this has to hold for every n coming from within the simplex, in order to satisfy the consistency condition, the
simplex must be acute. Here we address the update of an acute simplex only and defer the issue of obtuse angle
splitting to the next session.
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Conditions (18) and (20) should guarantee that update is performed only from a simplex that contains the
characteristic direction, which makes the update scheme upwind [8]. However, since n is only an approximation
of the characteristic direction, it may happen that the conditions are not satisfied although the true character-
istic does lie inside the simplex. For a sufficiently small simplex this can happen only if any of the three inner
products nTx0, nTðx0 � x2Þ, and nTðx0 � x3Þ is sufficiently close to zero. This corresponds to the situation in
which T 0 can be computed from one of the triangles (two-dimensional simplices) x1x0x2, x1x0x3, x2x0x3, or
one of the edges (one-dimensional simplices) x1x0, x2x0, x3x0. In this case, a two-dimensional or a one-dimen-
sional update is performed.

To derive the two-dimensional update scheme, let us assume without loss of generality that T 0 is being

updated from the triangle x1; x0; x2, whose vertices in the canonical coordinates are x01 ¼ x1, x02 ¼ x2, and

x00 ¼ x0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

0 þ z2
0

p� �
.

As in the three-dimensional case, we adopt the planar wavefront model and solve the coupled system of
equations
nTx01 þ p ¼ T 1;

nTx02 þ p ¼ T 2;

nTn ¼ 1;

ð21Þ
which, in the canonical coordinate system, yields
T 0 ¼ nTx00 þ p ¼ T 1 þ x0

T 2 � T 1

x2

þ y 00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðT 2 � T 1Þ2

x2
2

s
; ð22Þ
where y00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

0 þ z2
0

p
. The unit vector n 2 R2 expresses the wavefront propagation direction in the triangle

plane. Derivation of the monotonicity condition closely follows that of the three-dimensional update scheme.
Differentiating Eq. (21) with respect to T i, one obtains rT p ¼ ð1; 0ÞT and
rT nT ¼
�1 0

1 0

� �
ðx2; anÞ�1

; ð23Þ
where a 6¼ 0 is some proportion coefficient. Hence,
rT T 0 ¼
�1 0

1 0

� �
x2 anx

0 any

� ��1

x0 þ
1

0

� �
¼ 1

x2ny

x2ny þ y00nx � x0ny

x0ny � y 00nx

� �
: ð24Þ
Demanding rT T 0 > 0, we get
�y00; x0

� �
n > 0;

y00; x2 � x0

� �
n > 0;

ð25Þ
which can be interpreted geometrically as requiring n to come from within the triangle x1; x0; x2. The consis-
tency conditions for the two-dimensional update are
T 0 � T i ¼ nT x00; x
0
0 � x1

� �
> 0: ð26Þ
Like in the three-dimensional case, requiring (26) to be satisfied by every n coming within the triangle x1; x0; x2

requires the angle \x1x0x2 to be acute. The latter demand is satisfied if the simplex is acute.
If conditions (25) and (26) are satisfied in none of the three triangles, the path is restricted to the simplex

edges, and the trivial Dijkstra-type update
T 0 ¼ minfT 1 þ kx1 � x0k; T 2 þ kx2 � x0k; T 3 þ kx3 � x0kg
is performed. The complete update step is summarized in Table 2.



Table 2
The three-dimensional acute simplex update scheme

Input: The simplex vertices coordinates x1, x2, x3 and x0; the arrival times T 1, T 2, and T 3 of the supporting

vertices, and the current value T 0.

1. If conditions (18),(20) hold, compute T 00 according to (9). else

1.1 If conditions (25),(26) are satisfied for the triangle x0x1x2, compute T 00 according to (22).

1.2 Else if conditions (25),(26) are satisfied for the triangle x0x1x3, compute T 00 according to (22).

1.3 Else if conditions (25),(26) are satisfied for the triangle x0x2x3, compute T 00 according to (22).

1.4 Else, set

T 00 ¼ minfT 1 þ kx1 � x0k; T 2 þ kx2 � x0k; T 3 þ kx3 � x0kg.

2. Output the time of arrival minfT 0; T 00g.
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2.2. Numerical stability

So far, we have shown that our update scheme yields a consistent solution to the eikonal equation assuming
infinite-precision arithmetics. However, roundoff and truncation errors typical to finite-precision arithmetics
may compromise the numerical stability of the algorithm.

Let us assume that T i is affected by a small numerical error �, which, in turn, influences the computed time
of arrival T 0. Using first-order Taylor expansion2 in the three-dimensional update scheme,
2 Ar
T i mu
~T 0 � T 0 þ
oT 0

oT i
� 6 T 0 þ

oT 0

oT 1

				 				þ oT 0

oT 2

				 				þ oT 0

oT 3

				 				� �
�: ð27Þ
Observe that from (20) it follows that oT 0

oT 1
þ oT 0

oT 2
þ oT 0

oT 3
¼ 1. When monotonicity conditions (18) are satisfied, one

has oT 0

oT i
P 0, and consequently ~T 0 6 T 0 þ �. Since the error in T 0 does not grow with the distances T i, the three-

dimensional update is numerically stable.
Let us now examine the two-dimensional update, assuming without loss of generality that T 0 is being

updated from the triangle x1; x0; x2. It is easy to observe from (24) that oT 0

oT 1
þ oT 0

oT 2
¼ 1, and we obtain again that

~T 0 6 T 0 þ �. Since the one-dimensional update T 0 ¼ T i þ kxi � x0k does not amplify numerical errors, we con-
clude that the entire update scheme is numerically stable.
3. Splitting obtuse angles

For three-dimensional manifolds with non-trivial metric, we are likely to encounter obtuse simplices, which
cause inconsistent update. In fact, observe that when 6-neighborhood connectivity is used, four of the eight
simplices formed at x0 will have at least one non-acute angle at x0. The situation is somehow ameliorated when
higher-order connectivity is used, but obtuse simplices are usually inevitable. This section describes a prepro-
cessing algorithm, which creates an acute numerical grid by adding virtual connections to non-neighboring
grid points.

Unlike the two-dimensional case, a three-dimensional simplex can have from zero to three obtuse angles at
the updated vertex. The splitting procedure has to connect the updated grid point u0 to, at least, one grid
point, so that

C1. the obtuse simplex x0x1x2x3 is replaced by at least two acute simplices formed at x0; and
C2. the new simplices span a spatial angle containing that spanned by the original simplex.

The first condition guarantees that the produced simplices are acute; the second condition guarantees that the
splitting will not limit the set of directions, from where the vertex x0 can be updated.
rival time T 0 may be non-differentiable. In such a case, the maximum over the left- and right-sided derivatives of T 0 with respect to
st be used instead of oT 0

oT i
and the presented analysis is still valid. We are grateful to one of our referees for noting this issue.
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3.1. Splitting simplices with one obtuse angle

We start with the case where the simplex has only one obtuse angle at x0 (without loss of generality,
\x1x0x2 > 90�, or, equivalently, e12 < 0). In this case, a single virtual connection of u0 to some
u4 ¼ u0 þm4, m4 2 Z3, is sufficient to perform the splitting. By condition (C1), the virtual edge x0x4 has to
form acute angles with x0x1, x0x2 and x0x3, which holds if and only if
mT
i Gm4 P 0 ð28Þ
for i ¼ 1; 2; 3. Condition (C2) is satisfied by the requirement that the vector x4 lies outside the face x1x0x2

(Fig. 3, left). Let us denote by n ¼ x1 � x2 the normal to the face x1x0x2 pointing outside the simplex; x4

has to form an acute angles with n, namely
nTm4 P 0: ð29Þ

Our goal is to satisfy constrains (28), (29) with the shortest possible connection. This gives rise to the minimi-
zation problem
min
m42Z3

km4k1

s:t: Am4 P �;
ð30Þ
where
A ¼ MTG

nT

 !
ð31Þ
and � > 0 is a small constant used to disallow the trivial solution m4 ¼ 0. The choice of the ‘1 norm is espe-
cially convenient, since it allows to reformulate the problem as an integer linear program (ILP). Indeed, let us
define mþ;m� P 0, so that m ¼ mþ � m� and jmj ¼ mþ þ m�. Then, the problem can be reformulated as
min
mþ

4
;m�

4
2Z3

1Tmþ4 þ 1Tm�4

s:t:
A mþ4 �m�4
� �

P �;

mþ4 ;m
�
4 P 0;

( ð32Þ
where 1 ¼ ð1; 1; 1ÞT. Once the vertex x4 is found, the simplex x0x1x2x3 can be split into x0x1x3x4 and x0x2x3x4,
both of which are acute. We postpone the discussion on how to practically solve (32) to Section 3.3.

3.2. Splitting simplices with two or three obtuse angles

Let us now assume that the simplex has two acute angles at x0, without loss of generality, \x1x0x2;\x1x0x3

>90� (or, equivalently, e12; e13 < 0). Obviously, one virtual edge is insufficient to satisfy condition (C1) without
Fig. 3. Splitting a vertex x0 with one (left), two (middle), and three (right) obtuse angles.
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violating (C2). Sacrificing optimality, we first construct a virtual connection to some point x4, satisfying (C1)
and lying inside the basis x1x2x3, thus, violating condition (C2). Such a connection can be found by solving
Fig. 4.
region
min
m42Z3

km4k1

s:t: MTGm4 P �;
ð33Þ
which, as before, can be reformulated as an integer linear program. Once the vertex x4 is found, the simplex is
split into three simplices, x0x1x2x4, x0x1x3x4 and x0x2x3x4. The latter one is acute, since e23 P 0, whereas the
two former ones are obtuse, since e12; e13 < 0, yet have only one obtuse angle. Therefore, the procedure for
splitting a simplex with one obtuse angle described before can be applied to each of the two obtuse simplices,
resulting in a total of five simplices (Fig. 3, middle). In the same manner, one can split a simplex with three
obtuse angles, obtaining a total of six simplices (Fig. 3, right). We note that the described procedure might
generate more splits than required theoretically. However, the overhead does not appear very significant.
3.3. Heuristic simplex splitting algorithm

Though solution of ILPs is believed to be an NP-hard problem, here, the number of optimization variables
is constant (six). Therefore, splitting a single simplex by solving (32) or (33) can be considered to have constant
complexity for any practical purpose. However, the particular geometry of the problem allows to obtain a sub-
optimal solution using a simple heuristic algorithm instead of resorting to a cumbersome general ILP solver.
Here, we briefly outline an algorithm for an appoximate solution of problem (33), where the objective is to

minimize kmk1 over integer triples m ¼ ðm; n; pÞT lying inside the semi-unbounded cone Bm P 0, B ¼MTG.
The cone is given by the intersection of three planes bT

i m ¼ 0, where bT
i are the rows of B, or, equivalently,

by the set of three rays r1 ¼ b3 � b1; r2 ¼ b1 � b2, and r3 ¼ b2 � b3 emanating from the origin. We define
Di ¼ signri
1 þ signri

2 þ signri
3: ð34Þ
Existence of an i such that jDij ¼ 3 is manifest of the fact that the ith elements of the vectors r1, r2 and r3 are
aligned in the same direction (�ui depending on the sign of Di).

Let us first explore the case where, without loss of generality, D3 ¼ þ3. The cone formed by r1, r2 and r3

intersects the plane u3 ¼ p > 0 at a triangle, whose vertices are given by
vi ¼
pr1

i

r3
i

;
pr2

i

r3
i

; p
� �T

ð35Þ
(Fig. 4, left). We increase p in unit steps starting from p ¼ 1, until the triangular intersection region contains at
least one integer point. Table 3 outlines an algorithm to perform this task.

Obviously, the increase of p enlarges the intersection region. A pessimistic bound on p can be obtained by

demanding the radius of the incircle of v1v2v3 to be larger than
ffiffi
2
p

2
. This yields
The semi-infinite cone Bm P 0 (grayed) can intersect a plane parallel to one of the axes ui at a triangle (left) or a semi-infinite
(right).



Table 3
Heuristic algorithm for approximate solution of ILP (33) under the assumption D3 ¼ 3

Input: Vectors r1; r2; r3.

1. For p ¼ 1; 2; . . .
2. Project ri onto the plane u3 ¼ p according to (35). Order the resulting vectors so that v1

1 6 v1
2 6 v1

3.
3. Compute

P ¼ max
v2

2
�v2

1

v1
2
�v1

1

;
v2

3
�v2

1

v1
3
�v1

1

n o
Q ¼ min

v2
2
�v2

1

v1
2
�v1

1

;
v2

3
�v2

1

v1
3
�v1

1

n o
R ¼ v2

3
�v2

2

v1
3
�v1

2

D ¼ v2
1 þ Qðv1

2 � v1
1Þ � v2

2

4. For m ¼ dv1
1e; . . . ; bv1

3c
5. Compute

a ¼ v2
1 þ P m� v1

1

� �
b ¼ v2

1 þ Q m� v1
1

� �
c ¼ v2

2 þ R m� v1
2

� �
6. If (D < 0 And minfbac; bccgP dbe) Or (D > 0 And bacP maxfbcc; bbcg),
Output: ðm; n ¼ bac; pÞ and stop
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p 6
P 1

2
ffiffiffi
2
p

S1


 �
; ð36Þ
where S1 and P 1 are the area and the perimeter of triangle v1v2v3 for p ¼ 1, respectively.
Let us now address the more exotic case when jDij < 3 for i ¼ 1; 2; 3, i.e. the cone does not intersect any of

the planes normal to one of the axes ui at more than two points. Let us assume without loss of generality that
r2 and r3 intersect the plane u3 ¼ 1 at two points v2, v3 given, as before, by (35). Although the ray r1 does not
intersect the plane, �r1 does at v1 (defined as before). In this case, the intersection of the cone with the plane is
the semi-infinite region formed by the rays v1v2, v1v3 emanating from v1 and excluding the interior of triangle
v1v2v3 (Fig. 4, right). Fixing p ¼ 1 and running steps 3–6 of the algorithm described in Table 3 while reversing
the sign of D, handles this special case as well.

Last, we address the suboptimal solution of ILP (32). This problem is very similar to (33), except that it has
four linear constraints instead of three. The latter can be interpreted as finding the shortest integer vector m in
a semi-infinite cone with quadrilateral section. The cone can be split into two cones with triangular section,
which makes the previously described algorithm applicable.

4. Numerical results

Three numerical experiments were performed to assess the accuracy of the proposed algorithm. In the first
experiment, a distance map was computed from a point source on an orthogonal 31� 31� 31 grid with step
h ¼ 1=31, 6-neighbor connectivity, and non-uniform weight varying according to
F ðxÞ ¼

1:8 : 0:1225 sinð4px1Þ þ 1:2x2 þ 0:05 < 0:33

0:9 : 0:33 6 0:1225 sinð4px1Þ þ 1:2x2 þ 0:05 < 0:66

1:08 : 0:66 6 0:1225 sinð4px1Þ þ 1:2x2 þ 0:05 < 1

4 : 0:1225 sinð4px1Þ þ 1:2x2 þ 0:05 P 1:

8>>><>>>: ð37Þ
The level sets of the computed distance function are depicted in Fig. 5. In the second experiment, a non-
weighted distance map was measured from a point source on a non-Euclidean volume
x4 ¼ 0:9 sinð2pðx1 � 0:5ÞÞ sinð2pðx2 � 0:5ÞÞ sinð2pðx3 � 0:5ÞÞ ð38Þ

for x1; x2; x3 2 ½0; 1	 discretized on a 31� 31� 31 grid. 18-neighbor grid connectivity was used and obtuse an-
gle splitting was performed. The computed distance map is presented in Fig. 6. Similar results were obtained
using the proposed technique with a raster scan grid update order.



Fig. 5. Distance map from a point source in a Euclidean domain with non-uniform weight F, computed using the fast marching algorithm
on a 31� 31� 31 grid. Left: slices through the volume with equi-distance contours with step 0.05; color shading represent the
configuration of the weight. Right: equi-distant surfaces (distance function level sets) with step 0.1.

Fig. 6. Distance map from a point source in a non-Euclidean domain given by x4 ¼ 0:9 sinð2pðx1 � 0:5ÞÞ sinð2pðx2 � 0:5ÞÞ
sinð2pðx3 � 0:5ÞÞ, computed using the fast marching algorithm on a 31� 31� 31 grid. Left: slices through the volume with equi-distance
contours with step 0.05; color shading represent the configuration of the slowness field. Right: equi-distant surfaces (distance function level
sets) with step 0.1.
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In the third experiment, the fast marching algorithm was executed in a Euclidean hyperplane with obtuse
tessellation discretized on grids of varying sizes ranging from 53 to 513. Analytic geodesic distances were used
to compute the numerical errors. From Fig. 7 it is evident that the algorithm has first-order convergence when
the splitting technique is employed, and no convergence when the obtuse tessellation is used as is. Fig. 8 shows
the level sets of the distance function computed on an obtuse 313 tessellation with two angles of 120� with and
without obtuse angle splitting.



Fig. 7. Numerical error (left: L1; right: L1) as function of the grid step for the fast marching algorithm on an obtuse tessellation with
obtuse angle splitting (solid) and without obtuse angle splitting (dashed).

Fig. 8. Equi-distant contours computed by the fast marching algorithm on an obtuse tessellation without obtuse angle splitting (left) and
with obtuse angle splitting (right). The true level sets of the distance function are shown in dashed red. (For interpretation of colour
representation in this figure legend the reader is referred to the web version of this article.)
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5. Conclusions

We presented an extension of the fast marching method for efficient computation of distance maps on para-
metric three-dimensional curved manifolds. For that goal, we extended the technique proposed in [9] as an
alternative to unfolding triangles in cases of obtuse angles in two-dimensional manifolds. We presented an
extension of the update step to three dimensions based on the planar wavefront propagation model. Numer-
ical simulations show that the proposed method achieves plausible results in solving the eikonal equation on
both Euclidean and non-Euclidean three-dimensional manifolds. Our method can be used both in the priority
queue (fast marching type) and raster scan-based (fast sweeping type) families of algorithms. In sequel works,
we intend to use our three-dimensional eikonal solver to track white matter fiber bundles in diffusion tensor
MRI medical data.
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