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ABSTRACT

Recently, it was proven empirically that facial expressions can be
modelled as isometries, that is, geodesic distances on the facial
surface were shown to be significantly less sensitive to facial ex-
pressions compared to Euclidean ones. Based on this assump-
tion, the 3DFACE face recognition system was built. The sys-
tem efficiently computes expression invariant signatures based on
isometry-invariant representation of the facial surface. One of the
crucial steps in the recognition system was embedding of the face
geometric structure into a Euclidean (flat) space. Here, we pro-
pose to replace the flat embedding by a spherical one to construct
isometric invariant representations of the facial image. We refer
to these new invariants asspherical canonical images. Compared
to its Euclidean counterpart, spherical embedding leads to notably
smaller metric distortion. We demonstrate experimentally that rep-
resentations with lower embedding error lead to better recognition.
In order to efficiently compute the invariants we introduce a dis-
similarity measure between the spherical canonical images based
on the spherical harmonic transform.

1. INTRODUCTION: THE ISOMETRIC MODEL OF
FACIAL EXPRESSIONS

We start by briefly reviewing the ideas behind our three-dimensional
expression-invariant face recognition system. We refer to [1, 2,
3, 4] for a detailed introduction and presentation of the 3DFACE
system and computational methods. Here, we focus on the iso-
metric model of human facial expressions and the face recognition
method based on this model.

A face can be thought of as a complete compact smooth two-
dimensional Riemannian manifold (surface)(S, g) with a Rieman-
nian metricg, endowed with some property field (e.g., the scalar
fieldρ : S 7→ [0, 1] representing the gray-scale albedo of the face).
Practically, range and intensity imaging devices can provide a fi-
nite set of points{ξ1, ..., ξN ∈ S} obtained by the sampling ofS,
and the corresponding reflectance valuer at these points.

Most existing face recognition algorithms are based on the
reflectance image only (2D face recognition). Two-dimensional
data, however, is sensitive to variousexternalfactors influencing
the reflectance image such as illumination conditions, head ori-
entation, and the use of make up. In addition, facial expressions
(which can be consideredinternal factors) affect the reflectance
image as well (see an example in Figure 1, first row). A recent
trend in face recognition is the attempt to use the 3D data (geom-
etry of the face), sometimes combined with the reflectance image.
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Yet, while the geometry of the face is practically invariant to most
external factors, it is still affected by facial expressions.

In [1], we have presented an expression-invariant face recogni-
tion method, based on the conjecture that facial expressions can be
modelled asisometriesof the facial surface. Formally, this means
that a facial expression is a diffeomorphismf : (S, g) 7→ (Q, h)
between two Riemannian surfaces, which preserves thegeodesic
distances, that is, for allξ1, ξ2 ∈ S, andη1, η2 ∈ Q where
f : ξi 7→ ηi,

dS(ξ1, ξ2) = dQ(η1, η2), (1)

wheredS anddQ denote the geodesic distances induced by the
Riemannian metricsg andh, respectively. The surfaces(S, g) and
(Q, h) are calledisometric. Although in reality strong facial ex-
pressions are not strictly isometric, this model is still far better than
the common practice of regarding facial surfaces as rigid objects.
An experimental validation of the isometric model is available in
[4].

2. ISOMETRY-INVARIANT CANONICAL FORMS

Under the assumption of the isometric model, it is clear that in
order to obtain an expression-invariant (isometry-invariant) repre-
sentation of the face, one has to get rid of itsextrinsic geometry,
that is, the way the surfaceS is immersed into the ambient three-
dimensional Euclidean space, keeping only theintrinsic geometry,
that is, the geometryon the surface itself.

An obvious isometric invariant of the surface is the set of all
the geodesic distances between its points. However, we should re-
member that only asampledversion of the surfaceS is available,
and therefore in practice we have afinite metric space
({ξ1, ..., ξN},D), where the matrixD = (d(ξi, ξj)) denotes the
mutual geodesic distances between the points inS1. There is no
guarantee that different instances of the same facial surface are
sampled at the same points, nor that the number of samples is the
same. Moreover, even if the samples are the same, they can be or-
dered arbitrarily. This ambiguity makes impractical the use ofD
itself as an invariant representation.

An alternative proposed in [7] is to avoid dealing explicitly
with the matrix of geodesic distances and represent the Rieman-
nian surface as a subset of some convenientm-dimensional space
S ′m, such that the original intrinsic geometry is preserved. Such a
procedure is called anisometric embedding, and allows to get rid
of the extrinsic geometry, which does not exist in the new space.
As the result of isometric embedding, the representations of all

1In practice,d(ξi, ξj) are neither available, yet they can be approxi-
mately computed from the point cloud{xn}. Here, a modified fast varia-
tion of the Fast Marching Method on parametric manifolds [5, 6] was used
for this purpose.



the isometries ofS are identical, up to the isometry group inS ′m,
which is usually easy to deal with, for example, inRm all the pos-
sible isometries are rotations, translations, and reflections. Elad
and Kimmel focused on embedding intoRm for m > 2; planar
embedding was used beforehand in the analysis of cortical sur-
faces [8] and in texture mapping [9]. Yet, the embedding space
S ′m does not necessarily has to be Euclidean and can be chosen
completely to our discretion.

In the discrete setting, isometric embedding is a mapping be-
tween two finite metric spaces

ϕ : ({ξ1, ..., ξN} ⊂ S,D) → ({ξ′1, ..., ξ′N} ⊂ S ′m,D′) ,

such that for alli, j = 1, ..., N , d′ij = dij . The matricesD =
(dij) = (d(ξi, ξj)) andD′ = (d′ij) = (d′(ξ′i, ξ

′
j)) denote the

mutual geodesic distances between the points in the original and
the embedding space, respectively. Following Elad and Kimmel,
the image of{ξ1, ..., ξN} underϕ is called thecanonical formof
(S, g) [7]. In general, such isometric embedding does not exist,
and therefore one has to bear in mind that the canonical form is an
approximaterepresentation of the discrete surface. It is possible
to find optimal canonical forms in sense of some metric distortion
criterion. Again, the canonical form is uniquely defined up to any
transformation in the embedding space that does not alter the dis-
tances (like translations, rotations, and reflections in an Euclidean
embedding space).

The expression-invariant 3D face recognition method intro-
duced in [1] is based on embedding facial surfaces intoR3, fol-
lowed by rigid comparison of the resulting canonical forms. How-
ever, a “geometry-only” approach does not make explicit use of the
reflectance image, which may contain significant information and
can help to discriminate between faces. A way to incorporate the
facial image into the geometric framework is to perform the em-
bedding of(S, g) with the associated reflectance fieldr into R2,
exploiting ideas similar to those used in [9] for texture mapping
[1, 2]. As a result, the reflectance image in the embedding space,
which we term as thecanonical imageappears like a warped ver-
sion of the original image. Since the Euclidean distance between
the pixels in the canonical image approximates the geodesic dis-
tance between the corresponding points on the facial surface, such
a representation is insensitive to facial expressions. If instead of
the reflection image an estimate of the albedo (reflection coeffi-
cient) or an illumination-compensated image is used, the canonical
image is also insensitive to illumination.

A disadvantage of the discussed methods stems from the trans-
lation, orientation, and reflection ambiguity of canonical forms in
R3 and canonical images inR2. The possibility to perform precise
alignment required for their comparison is, in practice, limited by
the relatively small number of points participating in the embed-
ding.

3. SPHERICAL CANONICAL IMAGES

This paper introduces improvements to the method of isometry-
invariant canonical images, novel in three aspects. First, we pro-
pose to embed the facial image into a two- dimensional sphereS2

rather than a plane, which will be shown to produce lower embed-
ding distortions. Second, we justify the need for searching embed-
ding spaces “better” than the Euclidean one, where the embedding
error is lower than that inR2 by showing that embedding error is
related directly to recognition accuracy. Last, we take advantage
of the fact that the new canonical image is defined onS2 and use

Fig. 2. Face embedded intoS2 with different radii, from left to
right: R = 80mm, 100mm and150mm.

spherical harmonics to measure dissimilarity between two images.
Rotation and reflection invariance of spherical harmonics removes
the embedding ambiguity and does not require alignment of the
canonical images.

We parameterizeS2 using two angles: the elevation
θ1 ∈ [−π

2
, +π

2

]
measured from the azimuthal plane in the north-

ern direction, and the azimuthal angleθ2 ∈ [0, 2π). The geodesic
distance between two pointsθ = (θ1, θ2) andθ′ = (θ′1, θ′2) is
given by

dS2
(
θ, θ′

)
= (2)

R cos−1 (
cos θ1 cos θ′1 cos(θ2 − θ′2) + sin θ1 sin θ′1

)
,

whereR is the sphere radius. The choice ofR changes the curva-
ture of the embedding space, thus influencing the embedding error.
We will show that there exists an optimal value ofR suitable for
most human faces. For convenience, we will henceforth consider
a unit sphere; different values ofR will be achieved by scaling the
input distance matrixD.

The embedding procedure aims to find such a configuration of
points{θ1, ..., θN} on S2 that minimize some discrepancy mea-
sure (stress) betweendij andd′ij = dS2 (θi, θj). Among the va-
riety of stress functions, see for example [10], we have chosen the
raw stress

ε(θ1, ..., θN ;D) =
∑
i<j

(dij − dS2 (θi, θj))
2 . (3)

Gradient descent with backtracking line search was used for min-
imization. For reasons stated in the following, one of the points,
say θ1, was restricted to reside on the north pole of the sphere
(θ1

1 = π
2

). This point was chosen to be the nose tip and was deter-
mined as a local maximum of the Gaussian curvature on the facial
surface.

The transformationϕ : S 7→ S2 from the original manifold
to the sphere can be regarded as a warping transformation, which
maps the original facial image onto a portion of the sphere. The
resulting image,f : S2 7→ R, can be computed for anyθ by means
of linear interpolation (see Figures 1–2). The spherical canonical
imagef is invariant to isometric deformations of the face (hence,
insensitive to facial expressions) by definition of the embedding.
Moreover, if an albedo estimate is used as the original image,f is
also insensitive to illumination. Note that the spherical canonical
image is not a fully invariant signature of the face, since fixing a
single fiducial point on the pole still allows one degree of freedom
of rotation and reflection about that point.

4. SPHERICAL HARMONIC SIGNATURES

We resort to thespherical harmonic transformin order to obtain a
truly invariant signature of the face. A functionf ∈ L2

(
S2

)
can



Fig. 1. Left: four representative facial expressions, from left to right: neutral, disgust, inflated cheeks, and deflated cheeks. Right: the same
faces after embedding intoS2 (R = 100mm), represented in the parametric planeθ1 = 0÷ 90◦, θ2 = 0÷ 360◦.

be expanded in the spherical harmonic basis with the coefficients

f̂l,m = 〈f, Y m
l 〉 (4)

=

∫ π

0

∫ 2π

0

f
(
θ1, θ2) Y m

l (θ1, θ2)dθ2 cos(θ1)dθ1,

for l ∈ N ∪ {0} and|m| ≤ l, where

Y m
l

(
θ1, θ2) =

√
(2l + 1)(l −m)!

4π(l + m)!
P m

l

(
sin θ1) eımθ2

(5)

is the(l, m)-spherical harmonic andP m
l is the associate Legendre

function of degreel and orderm. A discrete version of the spher-
ical harmonic transform̂fl,m can be carried out efficiently using
the FFT [11].

A very handy property of spherical harmonics is that for every
∆θ2, f

(
θ1, θ2

)
andf

(
θ1, θ2 ±∆θ2

)
are transformed to two sets

of coefficients, which differ only in the complex phase. Hence, the

set of coefficientscl,m =
∣∣∣f̂l,m

∣∣∣ removes the rotation and reflec-

tion ambiguities from the canonical image and defines an invariant
signature of the face.

As a dissimilarity measure between two such signatures, we
use the Euclidean norm

dF

(
cl,m, c′l,m

)
=

∑

l≥0,|m|≤0

(
cl,m − c′l,m

)2
. (6)

Using basic properties of spherical harmonics, it is straightforward
to show that such a measure is characterized by thesimilarity prop-
erty, i.e.

dF

(
cl,m, c′l,m

) ≤
∑

l≥0,|m|≤0

∣∣∣f̂l,m − f̂ ′l,m
∣∣∣
2

=
∥∥f − f ′

∥∥ , (7)

and sincedF

(
cl,m, c′l,m

)
is invariant under anyR ∈ G, whereG

is the group of rotations and reflections about the north pole onS2,

dF

(
cl,m, c′l,m

) ≤ min
R∈G

∥∥f −Rf ′
∥∥ . (8)

In other words, similarf andf ′ (up someR ∈ G) will result in
small dissimilarities in sense ofdF , whereas dissimilarf andf ′

will result in large values ofdF . In practice, different “frequen-
cies” in the spherical harmonics domain typically have different
weights. Therefore, a more sophisticated dissimilarity measure
could be based on the weighted Euclidean norm. Optimal weights
can be found from a training set e.g. by means of PCA.

A disadvantage of the proposed representation stems from the
fact that it is invariant to azimuthal roto-reflection only, and not to
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Fig. 3. Part of the spherical harmonics coefficients (magnitude
only) of the four faces from Fig. 1 (four leftmost images), and of
a distinct subject’s face (rightmost image). Horizontal and verti-
cal axes correspond tom andl, respectively; white indicates zero.
Distances in terms ofdF from the leftmost face are indicated be-
low the images.

the general one. This, in turn, requires the use of constrained em-
bedding, which fixes the location of the nose tip, and thus relies on
its faithful localization. The use of a non-constrained embedding
is feasible in combination with a signature invariant under a gen-
eral roto-reflection group onS2. Construction of such a signature
is based on the fact that the subspace

Vl = span {Y m
l : |m| ≤ l} (9)

is closed under a roto-reflection group onS2 [12]. Hence, the sig-
nature of the form

cl =
∥∥∥f̂l

∥∥∥ =
∥∥∥
(
f̂l,−l, ..., f̂l,l

)∥∥∥ (10)

is invariant under general rotations and reflections. Dissimilarity
between such signatures can be measured as in (6).

5. NUMERICAL RESULTS

A data-set of104 faces was used for the experiments. The set
consisted of four subjects (two of which are identical twins) with
extreme facial expressions. Each subject was acquired with five
instances of neutral expression and three instances of smile, anger,
surprise, inflated cheeks, deflated cheeks, and neutral expression
with eyeglasses. The faces were preprocessed, and500 × 500
matricesD of geodesic distances between points on the facial sur-
faces were computed. For further technical details on data acquisi-
tion, preprocessing and geodesic distance computation, the reader
is referred to [1, 2, 4].

In the first experiment, the influence of the embedding sphere
radius on the embedding error was tested. Figure 4 depicts the
average RMS embedding error for each subject plotted as a func-
tion of R. Experiments on a larger variety of subjects allow to
establish that embedding sphere radius yielding the minimum em-
bedding error ranges from90 to 100mm, slightly depending on
the subject.
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Fig. 4. Average embedding error vs. the embedding sphere radius
for four different subjects. Dashed lines indicate95% confidence
intervals.R = ∞ stands for Euclidean embedding.
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Fig. 5. EER and rank 1 error rate vs. the embedding sphere radius.

Intuition suggests that representation with lower distortion due
to embedding should produce better recognition results. However,
such a claim is by no means obvious and requires an experimen-
tal proof. In the second experiment, the fast spherical harmonic
transform was applied to the data of the previous experiment2 and
Euclidean distances between the magnitudes of the spherical har-
monic coefficients were used as a dissimilarity measure. Figure 5
presents the equal error rate (EER) and rank 1 recognition error
as a function of the embedding sphere radius. The minimum EER
of 12.39% is achieved atR = 90mm. At this embedding sphere
radius, rank 1 error of1.9608% is achieved, which remains nearly
constant forR = 90 ÷ 125mm. We conclude that both recog-
nition error measures achieve the minimum at embedding sphere
radii that yield minimum embedding error.

6. DISCUSSION AND CONCLUSION

An extension of the 3DFACE system, which exploits the method
of expression-invariant representation of faces was introduced. We
proposed to replace the flat embedding by a spherical one. This
modification was shown to be advantageous in the sense of em-
bedding distortions. We also presented an experimental evidence

2The images in the parametric plane were scaled in order to guarantee
equal resolution for all embedding sphere radii. Histogram equalization
was used to reduce sensitivity to illumination.

that the spherical embedding has a direct consequence in terms of
better recognition rates. The use of spherical canonical images al-
lows us to perform matching in the spherical harmonic transform
domain, which does not require preliminary alignment of the im-
ages.

Unlike the original methods using canonical forms and planar
canonical images, which require a large amount of points for the
alignment, the approach presented here appears to provide simi-
lar results with relatively sparser sampling of the facial surface.
This allowed us to achieve real-time performance on a commodity
AMD processor with SSE extensions.
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