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Abstract

This paper explores similarity criteria between non-rigid
shapes. Broadly speaking, such criteria are divided into in-
trinsic and extrinsic, the first referring to the metric struc-
ture of the objects and the latter to the geometry of the
shapes in the Euclidean space. Both criteria have their ad-
vantages and disadvantages; extrinsic similarity is sensitive
to non-rigid deformations of the shapes, while intrinsic sim-
ilarity is sensitive to topological noise. Here, we present an
approach unifying both criteria in a single distance. Nu-
merical results demonstrate the robustness of our approach
in cases where using only extrinsic or intrinsic criteria fail.

1. Introduction
Most of us are familiar with the childhood Rock, Paper,

Scissors game, in which the players bend their fingers in
different ways to make the hand resemble one of the three
objects (rock, represented by a closed fist; paper – by an
open palm; or scissors – by the extended index and middle
fingers). In the context of pattern recognition, this example
demonstrates the difficulty of defining the similarity of non-
rigid shapes: one may recognize the hand shapes as objects
they intend to imitate, while others may say that all these
“objects” are actually just deformations of the same hand.
Using geometric terminology, the first similarity criterion is
extrinsic, i.e., relates to the way the shape is embedded in
the ambient space. The second criterion, on the other hand,
is related to the intrinsic properties of the shape, described
by its metric structure.

The problem of shape similarity is traditionally con-
sidered in computer vision, pattern recognition, and com-
putational geometry literature, either implicitly or explic-
itly, from the extrinsic point of view (see, for example,
[1, 11, 9]). A classical result for rigid object matching is the
iterative closest point (ICP) method, introduced by Chen
and Medioni [6] and Besl and McKay [2]. ICP methods
try to find a Euclidean transformation between two shapes,

minimizing an extrinsic distance between them, usually a
variant of the Hausdorff distance. In some sense, one can
think of ICP as finding the best possible rigid alignment be-
tween the shapes.

Intrinsic similarity was explored in the paper of Elad and
Kimmel [7], who proposed a non-rigid shape recognition
method based on Euclidean embeddings as a generaliza-
tion of the previous work of Schwartz et al. [15]. The key
idea is to map the metric structure of the shapes to a low-
dimensional Euclidean space and compare the resulting im-
ages (called canonical forms) in this space. The canonical
forms are computed using multidimensional scaling (MDS)
[3]. One of the main disadvantages of this method is that
the canonical forms can represent the intrinsic geometry of
the shapes only approximately, as it is generally impos-
sible to find an isometry between a non-flat surface and
a flat Euclidean space. Mémoli and Sapiro [13] showed
how the representation error can be theoretically avoided
by using the Gromov-Hausdorff distance [8]. The Gromov-
Hausdorff distance is invariant to isometries, which makes
it a useful tool for intrinsic shape comparison. Mémoli and
Sapiro showed an approximation of the Gromov-Hausdorff
distance, related to the latter by a probabilistic bound. In a
follow-up paper, Bronstein et al. [4] proposed a method for
the computation of the Gromov-Hausdorff distance based
on a numerical core similar to MDS, referred to as general-
ized MDS (GMDS).

The choice of whether to use intrinsic or extrinsic sim-
ilarity depends significantly on the application. The draw-
back of extrinsic similarity is its sensitivity to non-rigid de-
formations. Using our example, a gesture of the hand can
be extrinsically more similar to a rock or scissors rather than
another hand. This make extrinsic criteria unsuitable for the
analysis of non-rigid objects with a high degree of flexibil-
ity. The intrinsic criterion, on the other hand, is insensi-
tive to deformations which can be approximated by isome-
tries, since isometries preserve the metric structure of the
shape. However, intrinsic similarity is sensitive to topologi-
cal noise and can be problematic in cases where the objects
are partially missing (for example, connecting the fingers of



 
 
 
Figure 1. The difference between intrinsic and extrinsic similarity:
right and middle shapes are extrinsically similar while being in-
trinsically dissimilar (the two shapes have different topology, since
two fingers touch). Left and middle shapes are intrinsically similar
(one can be obtained from the other by a near-isometric deforma-
tion), but extrinsically dissimilar.

the hand results in a significantly different intrinsic geome-
try, see Figure 1). Consequently, it appears that two seman-
tically similar shapes can be substantially different both in
their extrinsic and intrinsic geometries.

In this paper, we propose an approach for computing the
similarity between non-rigid shapes trying to take the ad-
vantages of both intrinsic and extrinsic similarity criteria,
while avoiding their shortcomings. The proposed similarity
criterion is essentially a tradeoff between the extrinsic and
the intrinsic criteria. As an illustration, one can think of fit-
ting a rubber glove onto a hand. The extent to which the
rubber surface is stretched represents the intrinsic geometry
distortion. The fit quality, or in other words, how close the
glove is to the hand surface, represents the extrinsic distance
between the two objects.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the mathematical background and for-
mulate the standard approaches to measuring intrinsic and
extrinsic similarity. In Section 3, we present our approach
for computing the joint intrinsic-extrinsic similarity. In Sec-
tion 4, we show the numerical framework for computing
this distance. Section 5 is dedicated to experimental results.
Section 6 concludes the paper. Due to space limitations,
derivations and technical details are omitted and will appear
with additional experimental validation in the extended ver-
sion of this paper.

2. Mathematical foundations

We model a non-rigid shape as a pair (X, dX), where X
is a two-dimensional smooth compact connected and com-
plete Riemannian surface (possibly with boundary) embed-
ded into R3, and dX : X ×X → R is the geodesic metric
measuring the lengths of the shortest paths on the manifold,
induced by the Euclidean length structure. For brevity of
notation, we will write simply X , implying (X, dX).

We broadly refer to properties described in terms of the
metric dX as to the intrinsic geometry of X , and to proper-
ties associated with the restriction of the Euclidean metric
dR3 |X as the extrinsic geometry. From the intrinsic point
of view, two objects X and Y are similar if the metrics dX

and dY are sufficiently close to each other. Formally, we say
that X and Y are ε-isometric if there exists an ε-surjective
map ϕ : X → Y (i.e., dY (y, ϕ(X)) ≤ ε for all y ∈ Y ),
which has a distortion

dis ϕ = sup
x,x′∈X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))| = ε.

Such a ϕ is called an ε-isometry. A 0-isometry is called
simply an isometry, and two objects related by such a map
are termed isometric. Isometric shapes are indistinguish-
able in terms of intrinsic geometry. An isometry from X to
itself is called a self-isometry. The collection of all the self-
isometries forms a group with the function composition op-
erator and is referred to as the isometry group, denoted by
Iso(X). Self-isometries express the intrinsic symmetries of
an object.

Isometries are very different from ε-isometries. Partic-
ularly, an isometry is always bi-Lipschitz continuous [5],
which is not necessarily true for an ε-isometry. If we re-
lax the requirement of ε-surjectivity by demanding that ϕ
has only disϕ ≤ ε, we refer to such ϕ as an ε-isometric
embedding.

2.1. Extrinsic similarity

The basic tool in extrinsic shape comparison is the Haus-
dorff distance, measuring the distance between two sets of
points X and Y in R3,

dR
3

H (X, Y ) = max
{

sup
x∈X

dR3(x, Y ), sup
y∈Y

dR3(y, X)
}

,

where dR3(y,X) = infx∈X ‖y − x‖2 denotes the distance
between the set X and the point y. A non-symmetric ver-
sion of the Hausdorff distance,

dR
3

NH(X, Y ) = sup
x∈X

dR3(x, Y ), (1)

is often preferred since it allows for partial comparison
of shapes. The Hausdorff distance (both its symmetric
and non-symmetric versions) regards the objects as sets of
points in R3, is completely extrinsic, and consequently, is
sensitive to non-rigid deformations of the shapes. More-
over, it also depends on rigid transformations of shapes;
for example, translating one shape with respect to another
changes the Hausdorff distance.

ICP-type methods try to get rid of this alignment ambi-
guity by minimizing the Hausdorff distance between X and



Y over all the isometries in R3 (i.e., rigid transformations,
including rotations, translations and reflections),

dICP(X,Y ) = inf
i∈Iso(R3)

dR
3

H (i(X), Y ).

Though resolving the rigid transformations ambiguity, ICP
methods are still sensitive to non-rigid deformations. Nu-
merically, dICP is computed using local optimization meth-
ods, liable to converge to a suboptimal solution (local min-
imum).

2.2. Intrinsic similarity

Canonical form-type methods compute the intrinsic sim-
ilarity by posing the problem of intrinsic geometries com-
parison as the problem of extrinsic geometry comparison,
which is relatively easy to compute. The approach consists
of two stages. First, an extrinsic representation of the intrin-
sic geometry of the shapes (near-isometric embedding) in
some common metric space (Z, dZ) is constructed by find-
ing two maps ϕ : X → Z and ψ : Y → Z with minimum
distortions dis ϕ and dis ψ. The embedding, in a sense, al-
lows to “undo” all the isometric deformations of the objects
(though, some degree of ambiguity stemming from isome-
tries in Z still remains). Typically, Z is selected as the Eu-
clidean space. The second stage is extrinsic comparison
of the canonical forms ϕ(X) and ψ(Y ), using, for exam-
ple, the ICP distance dICP(ϕ(X), ψ(Y )). Since achieving
a true isometric embedding is usually impossible [12], the
canonical forms are only an approximate representation of
the intrinsic geometry of the shapes.

The problem of inaccuracy introduced by the embedding
into Z can be resolved if we do not assume a given embed-
ding space, but instead, include Z as a variable into the op-
timization. We can always find a sufficiently complicated
metric space into which both X and Y can be embedded
isometrically, and compare the images using the Hausdorff
distance,

dGH(X, Y ) = inf
Z

ϕ:X→Z
ψ:Y→Z

dZH(ϕ(X), ψ(Y )),

(here ϕ and ψ are assumed to be isometric embeddings).
Such an approach is referred to as Gromov-Hausdorff dis-
tance [8]. For compact surfaces, dGH can be expressed in
terms of the distortion obtained by embedding one surface
into another,

dGH(X,Y ) =
1
2

inf
ϕ:X→Y

ψ:X→Y

max{disϕ, dis ψ, dis (ϕ,ψ)},

where

dis (ϕ,ψ) = sup
x∈X,y∈Y

|dX(x, ψ(y))− dY (y, ϕ(x))|.

The computation of the distortions can be performed us-
ing GMDS, a procedure similar in its spirit to MDS, but
not limited to spaces with analytically expressed geodesic
distances. The Gromov-Hausdorff distance is a metric on
the quotient space of non-rigid shapes under the isometry
relation. Particularly, this implies that dGH(X,Y ) = 0
if and only if X and Y are isometric. More generally, if
dGH(X,Y ) ≤ ε, then X and Y are 2ε-isometric and con-
versely, if X and Y are ε-isometric, then dGH(X, Y ) ≤ 2ε
[5].

3. Joint similarity
Let us now return to our example of glove fitting. As-

sume that Y is the hand surface, and X is the glove we wish
to fit. Our goal is to find such a deformation of X , denoted
hereinafter by Z = f(X), that is the most similar to Y in
the extrinsic sense, yet, at the same time preserves its intrin-
sic geometry as much as possible (i.e., intrinsically similar
to X). In a generic setting, we assume that Y (probe) is ob-
tained from X (model) by means of some deformation (not
necessarily isometric). We allow for the possibility that the
topology of Y is different from that of X due to the pres-
ence of noise or as the result of the deformation (e.g, in the
glove fitting example, the fingers of the hand can touch each
other).

In order to quantify the intrinsic and extrinsic similarity,
we define generic extrinsic and intrinsic distances dE and
dI. We require that dE(X,Y ) = 0 if X and Y are extrinsi-
cally similar (i.e., X = Y ) and dI(X,Y ) = 0 if X and Y
are intrinsically similar (i.e., dX = dY ). Since the deforma-
tion f gives a one-to-one correspondence between X and Z,
we can set ϕ = f and ψ = f−1 in the Gromov-Hausdorff
distance, obtaining

dI(X, Z) =
1
2
dis ϕ

=
1
2

sup
x,x′∈X

|dX(x, x′)− dZ(f(x), f(x′))| (2)

as the intrinsic distance. Note that the correspondence be-
tween the surfaces is now fixed and does not participate
anymore in the minimization. dI(X, Z) defined this way
measures the distortion in the intrinsic geometry of X in-
troduced by the extrinsic deformation f . However, the
geodesic distances in Z have to be re-computed every time
the deformation changes.

Due to its sensitivty to noise, the L∞ formulation of dI

can be less practical when working with real shapes. For
that reason, we prefer to use its L2 version,

dI(x,Z) =∫

X×X

(dX(x, x′)− dZ(f(x), f(x′)))2da(x)da(x′), (3)



where da denotes the area element on X .
As the extrinsic distance, we use an L2 version of the

non-symmetric Hausdorff distance,

dE(Y,Z) =
∫

Z

‖z − y∗(z)‖2 da(z), (4)

where y∗(z) = arg miny∈Y ‖z − y‖2 is the closest point to
z on Y (we write y∗, since in practice we work with com-
pact objects, on which this minimum is always achieved).
The set of closest points y∗(Z) has to be recomputed ev-
ery time the deformation changes. The lack of symmetry of
dE(Y,Z) allows for partial matching.

Since it is usually impossible to say which of the two cri-
teria is more important, we judge the similarity as a tradeoff
between them,

dJ(X,Y ) = min
Z

dI(X, Z) + λ dE(Z, Y ), (5)

which we refer to as the joint similarity criterion. The pa-
rameter λ controls the relative significance of each crite-
rion. This approach generalizes the similarity criteria based
purely on extrinsic or intrinsic geometry. Setting λ ¿ 1
penalizes the distortions in the intrinsic geometry, yielding
a generalization of ICP, since we now allow for non-rigid
isometries and not only for the rigid ones. On the other
hand, setting λ À 1, the probe is forced to be attached to
the model surface, which boils down to a problem similar
to GMDS.

4. Numerical framework
For practical computations, we work with discretized

shapes. The surface X is sampled at N points X̂ =
{x1, ..., xN} ⊆ X , constituting an r-covering (i.e., X =⋃N

n=1 BX(xn, r), where BX(x, r) is a metric ball of radius
r centered at x). The extrinsic coordinates of X̂ are repre-
sented as an N × 3 matrix X, whose ith row corresponds to
a point xi ∈ R3. The discrete shape is represented as a tri-
angular mesh; each triangle is a triplet of indices of vertices
belonging to it. Vertices connected by an edge (belonging to
the same triangle) are said to be adjacent; we denote by E
the set of all adjacent pairs of vertices in X̂ . The geodesic
distances on X̂ are approximated using the Dijkstra algo-
rithm, forming an N × N matrix D̂(X), whose elements
are d̂ij(X) ≈ dX(xi, xj).

Assuming the deformed surface Ẑ = f(X̂) maintains
the connectivity of X̂ , we can formulate the following min-
imization problem with respect to the N×3 matrix Z of the
extrinsic coordinates of Ẑ:

dJ(X̂, Ŷ ) = min
Z

1
N2

N∑

i,j=1

(d̂ij(X)− d̂ij(Z))2

+
λ

N

N∑

i=1

d2
R3(zi, Ŷ ) (6)

where d(zi, Ŷ ) denotes the Euclidean distance from the
point zi to the discretized surface Ŷ . We denote the above
cost function by σ(Z). The first term in it is the discretiza-
tion of dI, whereas the second term is the discretization of
dE. In the following, we show how to compute these two
terms and their derivatives with respect to Z, required for
the minimization of (6).

4.1. Intrinsic distance computation

The main challenge in optimization involving the com-
putation of the intrinsic distance term dI is the necessity
to evaluate the geodesic distances on Ẑ = f(X̂) and
their derivatives with respect to the extrinsic geometry of
Ẑ changing at each iteration of the minimization algorithm.
We first define the matrix D(Z) of local distances, whose
elements are

dij(Z) =
{ ‖zi − zj‖ : (i, j) ∈ E

0 : (i, j) /∈ E.
(7)

Using the Dijkstra algorithm, we compute the set of the
shortest paths between all pairs of points (i, j). For exam-
ple, let Pij = {(i, i1), (i1, i2), ..., (in−1, in), (in, j)} ⊂ E
be the shortest path between the points i and j. Its length is
given by L(Pij) = di,i1 + di1,i2 + ... + din,j , which is a
linear combination of the elements of D(Z). We can there-
fore “complete” the missing entries in the matrix D(Z) by
defining the matrix of approximate global distances

D̂(Z) = I(D(Z))D(Z), (8)

where I is a sparse fourth order tensor, with the elements
Iijkl = 1 if the edge (k, l) is contained in the shortest path
Pij , and 0 otherwise. Note that I depends on the connectiv-
ity E, which is assumed to be fixed, and the matrix of local
distances D, which, in turn, depends on Z.

In order to compute the derivative of D̂(Z) with respect
to Z, we assume that a small perturbation dZ of Z does not
change the connectivity of the points on Ẑ, and as the re-
sults, the trajectory of the shortest paths between the points
on Ẑ traverses the same edges. Thus, we may write

D̂(Z + dZ) = I(D(Z + dZ))D(Z + dZ)
= I(D(Z))D(Z + dZ),

and compute the derivative of D̂(Z) as the derivative of the
linear form I(D(Z)). If I(D(Z)) 6= I(D(Z + dZ)), the
assumption does not hold and the derivative of D̂ usually
does not exist. Yet, the derivative of I(D(Z)) belongs to the
sub-gradient set of D̂(Z) at the point Z. This is sufficient
for many minimization algorithms to work correctly [14].

The intrinsic distance can be written in terms of D̂(Z) as



the Frobenius norm

dI(Z) =
1

N2
‖D̂(Z)− D̂(X)‖2F (9)

=
1

N2
tr((D̂(Z)− D̂(X))T(D̂(Z)− D̂(X))).

Its derivative with respect to X is given by

∂dI(Z)
∂Z

=
2

N2
(D̂(Z)− D̂(X))T

∂D̂(Z)
∂Z

, (10)

where

∂d̂ij(Z)
∂Z

=
∑

k,l

Iijkl
∂dkl(Z)

∂Z
, (11)

and the elements of ∂dkl(Z)
∂Z are given by

∂dkl

∂zm
n

=
1

dkl





zm
k − zm

l : n = k
zm
l − zm

k : n = l
0 : n 6= k, l

(12)

for m = 1, 2, 3.

4.2. Extrinsic distance computation

The computation of the extrinsic distance is similar to the
one used in ICP algorithms, where the main difficulty arises
from the need to re-compute the closest points each time
the extrinsic geometry of Ẑ changes. The extrinsic distance
term can be written as

dE(Z) =
1
N

tr ((Z−Y∗(Z))(Z−Y∗(Z))T) (13)

where Y∗(Z) denotes the N × 3 matrix, whose i-th row
is the closest point on Ŷ corresponding to xi. The closest
points are computed as a weighted average of the points on
Ŷ closest to xi. The weights are selected in inverse propor-
tion to the distance from xi.

In ICP algorithms, it is common to assume Y∗(Z +
dZ) ≈ Y∗(Z). By fixing Y∗, dE(Z) becomes a simple
quadratic function, and its derivative can be written as

∂dE(Z)
∂Z

=
2
N

(Z−Y∗(Z))T. (14)

4.3. Iterative minimization algorithm

For Z in the neighborhood of some X, the cost function
that needs to be minimized can be approximated as

σ(Z) ≈
1

N2
tr (D̂(Z)TD̂(Z)− 2D̂(X)TD̂(Z) + D̂(X)TD̂(X)) +

λ

N
tr (ZZT − 2Y∗(X)ZT + Y∗(X)TY∗(X)), (15)

where D̂(Z) ≈ I(D(X))D(Z). Like in ICP, after find-
ing a new Z which decreases σ(Z), the closest points Y∗

and the operator I are updated. The iterative minimization
algorithm can be summarized as follows:

Compute the closest points Y∗(Z).1

Compute the shortest paths between all pairs of points2

on Ẑ and assemble I.
Update Z by ∆Z such that Z + ∆Z sufficiently3

decreasing the cost function (15).
If the change in Z is small, stop. Else, go to Step 1.4

The update of Z in Step 3 can be safeguarded by evaluating
the true cost function (with I(Z + ∆Z) and Y∗(Z + ∆Z)
instead of I(Z) and Y∗(Z)). In our implementation, no
safeguard was used, and the minimization in Step 3 was
done using conjugate gradients.

The initialization of the algorithm can be done in several
ways, the simplest of which is Z = X. This choice works
well when the extrinsic dissimilarity between X̂ and Ŷ is
not too large; for large dE(X̂, Ŷ ), the algorithm will suffer
from poor convergence similar to most ICP methods. An-
other choice is to initialize Z by the corresponding points
on Ŷ resulting from the solution of the GMDS problem.
This choice is suitable for objects having sufficiently similar
intrinsic geometries, making the intrinsic correspondence
computed by GMDS meaningful.

5. Results

In order to demonstrate the proposed approach, we used
a data set of four objects with four non-rigid deformations
(Figure 2). While the first three deformations of each object
were nearly isometric, the fourth one introduced topologi-
cal changes modeled by welding points on the mesh. Three
distances were computed: a non-symmetric L2 approxima-
tion of the Gromov-Hausdorff distance, a non-symmetric
L2 approximation of the Hausdorff distance, and the joint
distance dJ. The Gromov-Hausdorff distance was com-
puted using GMDS with 100 points embedded into a surface
represented with 1000 points. The Hausdorff distance was
computed using ICP with meshes sampled at 1000 points.
The joint distance was implemented in MATLAB and com-
puted on meshes sampled at 100 points; its computation re-
quired approximately one minute per pair of shapes.

Figure 2 visualizes the computed similarities. It appears
that while the intrinsic similarity is nearly invariant to iso-
metric deformations, it is sensitive to topological changes,
which introduce significant distortions in the intrinsic ge-
ometry. At the other end, the extrinsic geometry is insensi-
tive to topological changes, yet sensitive to intrinsic defor-
mation. The joint similarity criterion combines both advan-
tages, and is insensitive to both isometries and topological
changes.



 
Intrinsic similarity (dGH).

 
 

Extrinsic similarity (dICP).  
 

Joint similarity (dJ).

Figure 2. Visualization of different types of similarity (distances in the plane represent the degree of similarity).

6. Conclusions

We presented a new approach for the computation of
non-rigid shape similarity as a tradeoff between extrinsic
and intrinsic similarity criteria, which can be thought of as
a hybrid of ICP and GMDS. Our approach can be illustra-
tively presented as deforming one shape in order to make
it the most similar to another from the extrinsic point of
view, while trying to preserve as much as possible its in-
trinsic geometry. The joint intrinsic and extrinsic similarity
appears to be advantageous over traditional purely extrinsic
or intrinsic similarity criteria. While extrinsic similarity is
sensitive to strong non-rigid deformations of the shapes and
intrinsic similarity is sensitive to topology changes resulting
from noise or non-rigid deformations, our joint similarity
criterion allows to gracefully handle such problems. Exper-
imental results demonstrate that it can be useful in situations
where intrinsic and extrinsic similarities fail. In addition to
shape analysis, our approach can be used for shape syn-
thesis (e.g., morphing and animation problems), in a way
similar to [10].
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