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Abstract— Similarity is one of the most important abstract con-
cepts in the human perception of the world. In computer vision,
numerous applications deal with comparing objects observed in
a scene with some a priori known patterns. Often, it happens
that while two objects are not similar, they have large similar
parts, that is, they are partially similar. Here, we present a novel
approach to quantify this semantic definition of partial similarity
using the notion of Pareto optimality. We exemplify our approach
on the problems of recognizing non-rigid objects and analyzing
text sequences.

I. INTRODUCTION

Similarity is one of the most important abstract concepts
in the human perception of the world. We encounter it every
day during our interaction with other people whose faces we
recognize. Similarity also plays a crucial role in many fields
in science. Attempts to understand self-similar or symmetric
behavior of Nature led to many fundamental discoveries in
physics [1]. In bioinformatics, a fundamental problem is
detecting patterns similar to a sequence of nucleotides in
given DNA sequences. In computer vision, comparing objects
observed in a scene with some a priori known patterns is a
fundamental and largely open problem.

The definition of similarity is, to a large extent, a semantic
question. Judging the similarity of faces, one may say that
two human faces are similar if they have a common skin tone,
while someone else would require the identity of the geometric
structure of facial features like the eyes, the nose, and the
mouth.

With slight exaggeration, we can say that all pattern recog-
nition problems boil down to giving quantitative interpretation
of similarity (or equivalently, dissimilarity) between objects.
Since there is no unique definition of similarity, every class
of objects and every problem require a specific, problem-
dependent similarity criterion. Such criteria have been pro-
posed for images [2], [3], [4], [5], two-dimensional shapes
[6], [7], [8], [9], [10], [11], [12], [13], [9], [14], three-
dimensional objects [15], [16], [17], [18], [19], text [20],
[21], and audio [22], [23]. In the face recognition community,
extensive research has been done on similarities insensitive to
illumination [24], [25], head pose [26], and facial expressions
[27], [28].

In many situation, it happens that, while two objects are
not similar, some of their parts are [29], [30], [31], [32]. Such
a situation is common, for example, in the face recognition
application, where the quality facial images (or surfaces in
case of 3D face recognition) can be degraded by acquisition

 

Fig. 1. Is a centaur similar to a horse? A large part of the centaur (blue)
is similar to a horse; likely, a large part of the centaur (red) is similar to a
human. However, considered as a whole, the centaur is similar neither to a
horse, nor to a human.

imperfections, occlusions, and the presence of facial hair [33].
As an illustration that will help to understand the problem
of partial similarity, we give an example from the realm of
shape comparison. Figure 1 (inspired by Jacobs et al. [11];
see also [30], [31]) shows a centaur – a half-horse half-
human mythological creature. From the point of view of two-
dimensional shape similarity, a centaur is similar neither to
a horse nor to a man. However, large part of these objects
(the upper part of the human body, marked in red and the
bottom part of the horse body, marked in blue) are similar.
Semantically, we can say that two object are partially similar
if they have large similar parts. If one is able to detect such
parts, the degree of partial similarity can be evaluated [31].

The main purpose of this paper, stated briefly, is to give a
quantitative interpretation to what is meant by “similar” and
“large”, and derive a consistent relation between these terms,
which allows formulate a computationally-tractable problem
of finding the largest most similar parts. While presenting a
generic framework that may be applied to numerous pattern
recognition problems, we try to provide specific examples
proving the usefulness of our approach.

The rest of this paper is organized as follows. In Section II,
we give formal axiomatic definitions of partiality and similar-
ity and the necessary mathematical background. In Section III,
we formulate a multicriterion optimization problem, from
which the relation between partiality and similarity is derived.
We represent partial similarity as a set-valued distance and
study its properties. Sections IV and V are case studies of
applications of our partial similarity framework. We study
extensively the application of analysis of two- and three-



dimensional non-rigid objects, presenting a practical numerical
scheme of its computation. In Section V, we show how the
partial similarity approach generalizes classical results in text
sequences analysis. All the application-specific mathematical
background is defined in the beginning of each section. Sec-
tion VI concludes the paper.

II. BASIC DEFINITIONS

In order to give a quantitative interpretation to our semantic
definition of partial similarity, we first have to define the terms
“part”, “large” and “similar”. We start our construction by
defining the class C of objects we wish to compare: these may
be, for instance, shapes, pictures, three-dimensional surfaces,
or words. An object in C is a set, denoted by X . Given a σ-
algebra ΣX on X (a subset of the powerset 2X closed under
compliment and countable union), we refer to any X ′ ∈ ΣX

as a part of X . The class of all parts of all the objects is
denoted as PC =

⋃
X∈C ΣX ; by properties of σ-algebras, C

itself is also in PC .
To judge how similar two objects or their parts are, we

define a non-negative function ε : PC × PC → R+, obeying
the following properties,

(D1) Self-similarity: ε(X, X) = 0;
(D2) Symmetry: ε(X, Y ) = ε(Y, X);
(D3) Triangle inequality: ε(X, Y ) + ε(Y, Z) ≥ ε(X,Z);
for all objects X , Y and Z in C. We call ε a dissimilarity,
since the greater it is, the less similar are the objects. Property
(D1) simply states that an object is similar to itself; property
(D2) requires similarity to be reflexive; and (D3) expresses
the transitivity of similarity: if X is similar to Y , which is
in turn similar to Z, then X and Z cannot be dissimilar.
Technically speaking, ε is a pseudo-metric on C, and a metric
on the quotient space of C under the similarity relation. We
will encounter some examples of dissimilarities in Sections IV
and V.

In order to quantify the size of a part of on object X , we
define a function µX : ΣX → R+, satisfying the following
properties,

(M1) Additivity: µX(X ′∪X ′′) = µX(X ′)+µX(X ′′) for two
disjoint parts X ′ ∩X ′′ = ∅.

(M2) Monotonicity: µX(X ′′) ≤ µX(X ′) for all X ′′ ⊆ X ′ ∈
ΣX .

We call µX a measure; an intuitive example of a measure
is the area of a geometric object. Using the measure theory
jargon, a property is said to hold almost everywhere (a.e.) on
X if it holds on entire X , excepting a part with zero measure.
A real function f : X → R is called ΣX -measurable if {x ∈
X : f(x) ≥ α} ∈ ΣX for all α.

Let f : R2 → R+ be a non-negative bivariate function,
satisfying the following conditions,

(F1) f(0, 0) = 0;
(F2) Monotonicity: f(a′, b) ≤ f(a, b) and f(a, b′) ≤ f(a, b)

for all a′ ≤ a, b′ ≤ b;
(F3) Symmetry: f(a, b) = f(b, a);

(F4) Homogeneity of order ρ: f(αa, αb) = |α|ρf(a, b),
where ρ ≥ 0;

and let X and Y be objects in C. We define a partiality,

λ(X ′, Y ′) = f(µX(X ′c), µY (Y ′c)), (1)

for all X ′ ∈ ΣX and Y ′ ∈ ΣY , where X ′c = X\X ′. Partiality
quantifies how “small” are the parts X ′ and Y ′; the larger is
the partiality, the smaller are the parts.

Proposition 1: λ satisfies the following properties,

(P1) Partiality of the whole: λ(X, Y ) = 0.
(P2) Symmetry: λ(X ′, Y ′) = λ(Y ′, X ′).
(P3) Partial order: λ(X ′′, Y ′′) ≥ λ(X ′, Y ′) for every X ′′ ⊆

X ′ ∈ ΣX and Y ′′ ⊆ Y ′ ∈ ΣY .
The proof is straightforward by using properties (M1)–(M2)
and (F1)–(F4). Hereinafter, we will encounter the following
examples of partialities:

λSUM(X ′, Y ′) = µX(X ′c) + µY (Y ′c);
λMAX(X ′, Y ′) = max{µX(X ′c), µY (Y ′c)};

λNMAX(X ′, Y ′) = max
{

µX(X ′c)
µX(X)

,
µY (Y ′c)
µY (Y )

}
.

All the above partialities are homogeneous of order ρ = 1.

A. Fuzzy formulation

The above definitions can be extended using the fuzzy set
theory [34]. This formulation is useful in numerical com-
putations, as will be shown in Section IV-E. As a notation
convention, we will use tilde to denote all the fuzzy quantities.

We define a fuzzy part of X as a collection of pairs of the
form {(x,mX(x)) : x ∈ X}, where mX : X → [0, 1] is re-
ferred to as a membership function and measures the degree of
inclusion of a point into the subset. A fuzzy part is completely
described by its membership function mX ; hereinafter, we use
mX referring to fuzzy parts. The complement of the fuzzy
part is defined as mc

X = 1 −mX . A subset X ′ ⊆ X in the
traditional set theoretic sense (called crisp in fuzzy set theory)
can be described by a membership function IX′(x), equal to
one if x ∈ X ′ and zero otherwise. More generally, a fuzzy
part mX can be converted into a crisp one by thresholding,
τδ ◦mX , where

τδ(x) =
{

1 x ≥ δ
0 otherwise.

(2)

and 0 ≤ δ ≤ 1 is some constant. The corresponding crisp set
is denoted by TδmX = {x ∈ X : τδ ◦mX = 1}.

Given a ΣX , we define MX as the set of all the fuzzy parts
whose membership functions are ΣX -measurable. It follows
straightforwardly that TδmX is in ΣX for all mX ∈ MX and
0 ≤ δ ≤ 1. As previously, we define P̃C =

⋃
X∈C MX . Since

crisp parts are a particular case of fuzzy parts, PC ⊆ P̃C .
We define a fuzzy dissimilarity as a function ε̃ : P̃C×P̃C →

R+ satisfying properties (D1)–(D3) with crisp sets replaces by
fuzzy ones. We require ε̃ to coincide with ε on PC × PC , or
in other words, ε(X ′, Y ′) = ε̃(IX′ , IY ′). The fuzzy measure is



defined as

µ̃X(mX) =
∫

X

mX(x)dµX , (3)

for all mX ∈ MX , where µX is a (crisp) measure on X . Given
a function f obeying properties (F1)–(F4) and homogeneous
of order ρ, we define the fuzzy partiality as

λ̃(mX , mY ) = f(µ̃X(mc
X), µ̃Y (mc

Y )), (4)

similarly to definition (1). The following relation between the
fuzzy and the crisp partialities holds,

Proposition 2: (i) λ(X ′, Y ′) = λ̃(IX′ , IY ′); (ii)
λ(TδmX , TδmY ) ≤

(
1

1−δ

)ρ

λ̃(mX ,mY ), for all 0 < δ < 1.

III. PARETIAN FORMULATION OF PARTIAL SIMILARITY

Using the definitions of Section II, we can now give a
quantitative expression to our semantic definition of partial
similarity: X and Y are partially similar if they have parts
X ′ and Y ′ with small partiality λ(X ′, Y ′) (“large”) and small
dissimilarity ε(X ′, Y ′) (“similar”).

We therefore formulate the computation of partial similarity
as a multicriterion optimization problem: minimization of the
vector objective function Φ(X ′, Y ′) = (ε(X ′, Y ′), λ(X ′, Y ′))
with respect to the pair (X ′, Y ′) over the feasible set Ω =
ΣX ×ΣY . The values of the criteria ε(X ′, Y ′) and λ(X ′, Y ′)
for every (X ′, Y ′) ∈ Ω can be associated with a point with
the coordinates Φ(X ′, Y ′) in the criteria space R2. The set of
possible criteria values correspond to the region Λ = Φ(Ω) in
R2, referred to as the attainable set (see Figure 2a). The point
(0, 0) is usually not achievable, unless X and Y are completely
similar. For this reason, it is called the utopia point.

Since the two criteria are competing, no solution simul-
taneously optimal for both (i.e., the utopia point) can be
found.1 Thus, the notion of optimality used in traditional
scalar optimization must be replaced by a new one, adapted
to the multicriterion problem. Since there does not exist a
total order relation in R2, we generally cannot say which
solution is better, for example: is the point (0.5, 1) better than
(1, 0.5)? Yet, we can introduce partial order by coordinate-
wise comparison: Φ(X ′, Y ′) is better than Φ(X ′′, Y ′′) if both
λ(X ′, Y ′) ≤ λ(X ′′, Y ′′) and ε(X ′, Y ′) ≤ ε(X ′′, Y ′′), e.g., the
point (0.5, 0.5) is better than (1, 1). By writing Φ(X ′, Y ′) ≤
Φ(X ′′, Y ′′), this partial order relation is implied hereinafter.

A solution (X∗, Y ∗) is called a Pareto optimum [35], [36],
[37] of the multicriterion optimization problem, if at least one
of the following holds,

ε(X∗, Y ∗) ≤ ε(X ′, Y ′); or,
λ(X∗, Y ∗) ≤ λ(X ′, Y ′), (5)

for all (X ′, Y ′) ∈ Ω. An intuitive explanation of Pareto
optimality is that no criterion can be improved without com-
promising the other. The set of all the Pareto optima, referred

1In information theory, such multicriterion optimization problems are
widely known. For example, in statistical estimation, the bias and the variance
of an estimator are two competing criteria. In lossy signal compression,
distortion and bitrate are competing.
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Fig. 2. (a) Illustration of the notion of Pareto optimality. (b) Illustration of
order relations between partial dissimilarities. We can say that dP(X, Y ) <
dP(X, Z) because the entire dP(X, Y ) is below dP(X, Z). Since the point
(λ, ε) is below dP(X, Y ), the point-wise order relation (λ, ε) < dP(X, Y )
holds.

to as the Pareto frontier in economics, is our criterion of partial
similarity. We denote the partial dissimilarity by dP(X, Y ),
thinking of it as a generalized, set-valued distance. By writing
(λ, ε) ∈ dP(X, Y ), we mean that there exist two parts X ′ and
Y ′ with partiality λ(X ′, Y ′) and dissimilarity ε(X ′, Y ′), such
that any two other parts with smaller partiality have larger
dissimilarity, or two other parts with smaller dissimilarity have
larger partiality. For brevity, we express the latter fact by
saying that X and Y are (λ, ε)-dissimilar.

Since there exists only a partial order relation between our
criteria, not all partial dissimilarities are mutually comparable.
In this sense, the notion of partial similarity is notably different
from the standard “full” similarity. We can say that X is more
similar to Y than to Z (expressed as dP(X, Y ) < dP(X, Z))
only if dP(X, Y ) is entirely below dP(X, Z). Otherwise,
only point-wise comparison is possible: we write (λ0, ε0) <
dP(X, Y ), implying that the point (λ0, ε0) is below dP(X, Y )
(see Figure 2b).

A. Scalar-valued partial dissimilarities

The set-valued distance dP conceals much information
about the partial similarity of objects, however, it is sometimes
inconvenient to work with due to the lack of total order
relation, and as the result, the inability to compare two such
distances. In order to define a total order between partial
dissimilarities, we have to convert the set-valued distance
into a scalar-valued one. A naı̈ve approach is selecting a
point on the Pareto frontier with fixed value of partiality or
dissimilarity. This allows us define the following scalar partial
dissimilarities,

dλ0−PART(X,Y ) = inf
(λ0,ε)∈Λ,

ε

= inf
(X′,Y ′)∈Ω

ε(X ′, Y ′) s.t. λ(X ′, Y ′) ≤ λ0,

and

dε0−DIS(X,Y ) = inf
(λ,ε0)∈Λ,

λ

= inf
(X′,Y ′)∈Ω

λ(X ′, Y ′) s.t. ε(X ′, Y ′) ≤ ε0.



 (a) (b) 

Fig. 3. Converting set-valued partial dissimilarity into a scalar-valued one:
in order to make a spear-bearer similar to a man (a), we have to remove the
spear (i.e., dε0−DIS is small). In order to make a centaur similar to a man
(b) we have to remove the horse body from the centaur and the legs from the
man (dε0−DIS is large).

dλ0−PART(X,Y ), to which we refer as the λ0-partiality
distance, equals the minimum possible dissimilarity between
parts which have partiality λ0. dε0−DIS(X,Y ), referred to as
the ε0-dissimilarity distance, quantifies how large are the parts
we have to remove from the objects X and Y in order to make
the remaining parts ε0-dissimilar.

The disadvantage of dλ0−PART and dε0−DIS is that it is
usually impossible to fix a threshold suitable for all the objects.
Such a situation is illustrated in Figure 3: in order to make a
spear-bearer similar to a man we have to remove only a small
part (the spear), whereas in order to make a centaur similar
to a man we have to remove large parts (the horse body from
the centaur and the legs from the man).

To overcome this problem, we can select a point on
dP(X, Y ) which is the closest, in the sense of some distance,
to the utopia point (0, 0). A Pareto optimum corresponding to
such a point is called Salukwadze optimal [38]. We define the
Salukwadze distance between X and Y as

dS(X,Y ) = inf
(λ,ε)∈Λ

‖(λ, ε)‖
= inf

(X′,Y ′)∈Ω
‖Φ(X ′, Y ′)‖. (6)

Here, ‖ · ‖ denotes some norm on R2
+. One example is the

family of weighted norms ‖Φ‖w = ΦT w (w ∈ R2
+). The

particular case ‖ · ‖(1,1) coincides with the L1-norm.

IV. CASE STUDY I – NON-RIGID OBJECTS

Our first case study deals with non-rigid two- and three-
dimensional objects. Analysis of such objects is an important
field emerging in the last decade in the pattern recognition
community and arising in applications of face recognition
[27], [28], matching of articulated objects [7], [11], [17], [39],
[40], [18], [14], shape watermarking [41], texture mapping
and morphing [42], [43], to mention a few. Often, natural
deformations of non-rigid objects can be approximated as
isometries, hence, recognition of such objects requires an
isometry-invariant criterion of similarity. Moreover, in many
situations (e.g. in face recognition [33]), due to acquisition
imperfections, the objects are given only partially, i.e., have
similar overlapping parts. This makes our partial similarity
framework especially useful for such problems.

A. Background

A non-rigid object is modeled as a pair (X, dX), where X
is a two-dimensional smooth compact connected and complete
Riemannian manifold with boundary, and dX : X ×X → R
is the geodesic metric (measuring the lengths of the shortest
paths on the manifold), induced by the Riemannian structure.
For the brevity of notation, we will write simply X , implying
(X, dX). Two-dimensional objects (silhouettes) are obtained
as a particular case of flat manifolds.

We broadly refer to dX as to the intrinsic geometry of
X . From the intrinsic point of view, two objects X and Y
are similar (isometric) if there exists a bijective distance-
preserving map (isometry) between X and Y . More generally,
X and Y are said to be ε-isometric if there exists an ε-
surjective map ϕ : X → Y (i.e., dY (y, f(X)) ≤ ε for all
y ∈ Y ), which has distortion

dis ϕ = sup
x,x′∈X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))| = ε.

Such ϕ is called an ε-isometry.
In [44], Mikhail Gromov introduced a criterion of intrinsic

geometric similarity between metric spaces, commonly known
today as the Gromov-Hausdorff distance, defined in our setting
as

dGH(X,Y ) =
1
2

inf
ϕ:X→Y

ψ:Y→X

max{dis ϕ,dis ψ, dis (ϕ,ψ)}.

Here, dis (ϕ,ψ) = supx∈X,y∈Y |dX(x, ψ(y))− dY (y, ϕ(x))|.
The Gromov-Hausdorff distance is a metric on the quotient
space of non-rigid objects under the isometry relation. Par-
ticularly, this implies that dGH(X,Y ) = 0 if and only if X
and Y are isometric. More generally, if dGH(X,Y ) ≤ ε, then
X and Y are 2ε-isometric and conversely, if X and Y are
ε-isometric, then dGH(X, Y ) ≤ 2ε [45]. Mémoli and Sapiro
[18] introduced this criterion to the realm of three-dimensional
shape matching and proposed its probabilistic approximation.

We define a part of (X, dX) as a pair (X ′, dX |X′), where
X ′ ⊆ X and dX |X′(x, x′) = dX(x, x′) for all x, x′ ∈ X ′

is the restricted metric. As the measure µX , we use the
area derived from the Riemannian structure of the manifold;
technically, the corresponding σ-algebra is assumed to be a
Borel algebra.

B. Partial similarity of non-rigid objects

As the dissimilarity in our framework, we use ε = dGH.
Roughly speaking, it measures how non-isometric two ob-
jects or their parts are. On the other hand, there are many
meaningful ways to define the partiality. For example, λSUM

measures the area of the regions cropped from the objects;
λMAX measures the maximum area of the cropped regions and
λNMAX measures the maximum relative area of the cropped
regions.

The partial dissimilarity dP(X, Y ) measures the tradeoff be-
tween the intrinsic dissimilarity (Gromov-Hausdorff distance)
and the area cropped from the objects (one of the partiali-
ties defined above). By properties of the Gromov-Hausdorff



distance, (λ, ε) ∈ dP(X, Y ) implies that there exist X ′ ∈ ΣX

and Y ′ ∈ ΣY with partiality λ(X ′, Y ′), such that (X ′, dX |X′)
and (Y ′, dY |Y ′) are 2ε-isometric; and if (X ′, dX |X′) and
(Y ′, dY |Y ′) are ε-isometric, then (λ(X ′, Y ′), 2ε) ∈ dP(X, Y ).
If (0, 0) ∈ dP(X, Y ), then X and Y are a.e. isometric [46].

C. Fuzzy approximation of dP

The partial similarity computation problem requires opti-
mization over subsets of X and Y , which, in the discrete
setting, gives rise to an NP-hard combinatorial optimization
problem. Using fuzzy formulation, we can pose this compu-
tation as continuous optimization.

Given two fuzzy parts mX ∈ MX and mY ∈ MY ,
we define the fuzzy partiality according to (4). The fuzzy
dissimilarity is constructed as a fuzzy version of the Gromov-
Hausdorff distance,

ε̃δ(mX ,mY ) =
1
2

inf
ϕ:X→Y

ψ:Y→X

max





sup
x,x′∈X

mX(x)mX(x′)|dX(x, x′)− dY (ϕ(x), ϕ(x′))|
sup

y,y′∈Y
mY (y)mY (y′)|dY (y, y′)− dX(ψ(y), ψ(y′))|

sup
x∈X,y∈Y

mX(x)mY (y)|dX(x, ψ(y))− dY (ϕ(x), y)|
sup
x∈X

D (1−mY (ϕ(x)))mX(x)

sup
y∈Y

D (1−mX(ψ(y)))mY (y)





,

where D = max{diam X, diam Y }/δ(1 − δ) and 0 < δ < 1
is a parameter.

Proposition 3: (i) ε̃δ(I′X , I′Y ) = ε(X ′, Y ′); (ii)
ε̃(TδmX , TδmY ) ≤ 1

δ2 ε̃δ(mX ,mY ), for all 0 < δ < 1.

The multicriterion optimization problem is defined as the
minimization of the vector objective Φ̃ = (λ̃, ε̃δ) over the set
Ω̃ = MX ×MY . A Pareto optimum is a point (m∗

X ,m∗
Y ), for

which at least one of the following holds,

ε̃δ(m∗
X ,m∗

Y ) ≤ ε̃δ(mX ,mY ); or,
λ̃(m∗

X ,m∗
Y ) ≤ λ̃(mX ,mY ), (7)

for all (mX ,mY ) ∈ Ω̃. The fuzzy partial dissimilarity
d̃P(X, Y ) is defined as the Pareto frontier, similarly to our
previous crisp definition. Combining the results of Proposi-
tions 2 and 3, we can connect the crisp and fuzzy partial
dissimilarities,

d̃P(X, Y ) ≤ (
(1− δ)−ρ, δ−2

) · dP(X, Y ). (8)

This result allows us use d̃P(X, Y ) as an approximation of
dP(X, Y ).

D. Discretization

In practice, the computation of the partial dissimilarity
is performed on discretized manifolds. The manifold X is
sampled at N points Xr = {x1, ..., xN} ⊆ X , constituting
an r-covering, i.e., X =

⋃N
n=1 BX(xn, r) (here, BX(x, r) is

a metric ball of radius r around x). The discrete manifold

is represented as a triangular mesh with N vertices x1, ..., xN

and TX triangles; each triangle is a triplet of indices of vertices
belonging to it. A point on the mesh is represented as a vector
x = (t,u), where t ∈ {1, ..., TX} is the index of the triangular
face enclosing it, and u ∈ [0, 1]2 is the vector of barycentric
coordinates with respect to the vertices of that triangle. We
denote UX = {1, ..., TX} × [0, 1]2.

The geodesic metric dX is discretized by numerically
approximating the geodesic distances dX(xi, xj) between
the manifold samples, e.g., using the fast marching method
(FMM) [47], [48]. Geodesic distances dX(x,x′) between
two arbitrary points x,x′ on the mesh are interpolated from
the values of dX(xi, xj) using the three-point interpolation
presented in [49]. The error of the distance discretization is
O(r2).

The measure µX is discretized by assigning to µX(xi) the
area of the Voronoi cell around xi and represented as a vector
µX = (µX(x1), ..., µX(xN ))T.

E. Iterative computation of partial similarity

Given two meshes Xr and Yr sampled at N and M points,
respectively, the set-valued partial dissimilarity dP(Xr, Yr) is
found by computing dλ−PART(Xr, Yr) for a range of values
of λ, each giving a point on the Pareto frontier. The numer-
ical solution is similar to the generalized multidimensional
scaling (GMDS) [19], [49] and, in general, to the spirit of
multidimensional scaling (MDS) problems [50], [17]. Instead
of optimizing over the embeddings ϕ : Xr → Yr and ψ : Yr →
Xr, optimization is performed over the images y′i = ϕ(xi) and
x′j = ψ(yj), with i = 1, ..., N and j = 1, ..., M (note that in
our notation, x′i is a point on Y and y′j is a point on X). The
points y′i and x′j are represented in baricentric coordinates, as
matrices Y′ ∈ UN

X and X′ ∈ UM
Y .

The discrete optimization problem is formulated as follows,

dλ−PART(Xr, Yr) = min
Y′∈UN

X

X′∈UM
Y

mX∈[0,1]N

mY ∈[0,1]M

s(Y′,X′,mX ,mY )

s.t. mT
XµX ≥ 1− λ,

mT
Y µY ≥ 1− λ, (9)

where

s(Y′,X′,mX ,mY ) =

max





max
i,j

mX(xi)mX(xj)|dX(xi, xj)− dY (y′i,y
′
k)|

max
k,l

mY (yk)mY (yl)|dY (yk, yl)− dX(x′k,x′l)|
max
i,k

mX(xi)mY (yk)|dX(xi,x′k)− dY (yk,y′i)|
max

i
D (1−mX(x′i))mX(xi)

max
k

D (1−mX(y′k))mY (yk)





,

and mX = (mX(x1), ...,mX(xN )) and mY =
(mY (y1), ..., mY (yM )) represent the discretized membership
functions. The values mX(x′i) and mY (y′i) at arbitrary
points of the triangular mesh are computed by interpolation.



The geodesic distances dX(xi, xj) and dY (yk, yl) are
pre-computed by FMM; on the other hand, the distances
dY (y′i,y

′
k), dX(x′k,x′l), dX(xi,x′k) and dY (yk,y′i) are

interpolated.
Problem (9) is solved using alternating minimization, con-

sisting of two stages, repeated until convergence: First, the
values of mX ,mY are fixed and and minimization is per-
formed over X′ and Y′, cast as the constrained minimization
problem,

min
ε≥0

Y′∈UN
X

X′∈UM
Y

ε (10)

s.t.





mX(xi)mX(xj)|dX(xi, xj)− dY (y′i,y
′
k)| ≤ ε

mY (yk)mY (yl)|dY (yk, yl)− dX(x′k,x′l)| ≤ ε
mX(xi)mY (yk)|dX(xi,x′k)− dY (yk,y′i)| ≤ ε
D (1−mX(x′i))mX(xi) ≤ ε
D (1−mY (y′k))mY (yk) ≤ ε

,

with i, j = 1, ..., N and k, l = 1, ..., M . Numerical solution
of problem (10) requires the ability to perform a step in a
given direction on a triangulated mesh (such a path is poly-
linear if it traverses more than one triangle), computed using
an unfolding procedure described in [49]. The second stage is
performed by fixing X′ and Y′ and minimizing with respect
to mX ,mY ,

min
ε≥0

mX∈[0,1]N

mY ∈[0,1]M

ε (11)

s.t.





mX(xi)mX(xj)|dX(xi, xj)− dY (y′i,y
′
k)| ≤ ε

mY (yk)mY (yl)|dY (yk, yl)− dX(x′k,x′l)| ≤ ε
mX(xi)mY (yk)|dX(xi,x′k)− dY (yk,y′i)| ≤ ε
D (1−mX(x′i))mX(xi) ≤ ε
D (1−mY (y′k))mY (yk) ≤ ε
mT

XµX ≥ 1− λ
mT

Y µY ≥ 1− λ,

The entire iterative optimization algorithm can be summarized
as follows:

for λ = 0, ∆λ, ..., λmax do1

Initialization: set k ←− 0; m(0)
X = 1, m(0)

Y = 1;2

X′(0),Y′(0).
repeat3

Compute the (k + 1)st iteration solution4

X′(k+1),Y′(k+1) by solving problem (10) with
fixed m(k)

X ,m(k)
Y .

Compute the (k + 1)st iteration solution5

m(k+1)
X ,m(k+1)

Y by solving problem (11) with
fixed X′(k),Y′(k).
Set k ←− k + 1.6

until convergence7

dλ−PART(Xr, Yr) = s(Y′(k),X′(k),m(k)
X ,m(k)

Y ).8

end9

Convergence at Step 7 is determined when the optimization
variables on subsequent iterations do not change significantly,
i.e., the values of ‖m(k)

X −m(k−1)
X ‖, ‖X′(k) −X′(k−1)‖ and

‖Y′(k)−Y′(k−1)‖ are below some threshold. At Steps 4 and 5,
convex optimization algorithms are used. Since the problems
are non-convex, such algorithms are liable to converge to a
local minimum, a caveat widely known in MDS problems
[50]. Local convergence can be avoided in practice by using
a multiresolution scheme [51], [52], in which a hierarchy of
problems is constructed, starting from a coarse version of the
problem containing a small number of points. The coarse level
solution is interpolated to the next resolution level, and is
used as an initialization for the optimization at that level. The
process is repeated until the finest level solution is obtained.
We use this multiresolution scheme at Stage 5 of the algorithm.

F. Results

In order to exemplify the presented method, two experi-
ments were performed. Our first experiment is a numerical
demonstration of the mythological creatures example we used
as a motivation. The two-dimensional objects (human, horse
and centaur) were represented as binary images and sub-
sampled using the farthest point strategy [53], [54], [17] at
approximately 3000 points. The geodesic distances between
the samples were approximated numerically using FMM.
Thirteen values of λ were used to compute the Pareto frontier.
Figure 4 shows the partial dissimilarities between the objects.
We can say that a human is more similar to a centaur than to a
horse, because the Pareto frontier corresponding to the human-
centaur comparison (green) is below that corresponding to the
human-horse comparison (red). Additional examples with two-
dimensional objects are shown in [55].

In the second experiment, we used five three-dimensional
non-rigid objects from [17]. Each object appeared in five
different deformations with different parts missing (see Fig-
ure 6). The objects were represented as triangular meshes,
sampled between 1500 to 3000 points, with geodesic distances
computed using FMM. Partial dissimilarities were computed
between all the objects using 13 values of λ. We used the
scheme described in Section IV-E with six-level multireso-
lution optimization. The finest resolution level contained 50
points. Figure 5 shows the Pareto frontiers arising from partial
comparison of the dog object to different objects. One can ob-
serve that a dog and dog-man and the dog-giraffe comparisons
(red) result in curves above those obtained for the comparison
of different instances of the dog (black). Figure 6 depicts the
L1-Salukwadze distance between the objects, represented as
Euclidean similarities using MDS [50]. Clusters corresponding
to different objects are clearly distinguishable. For additional
results and examples, the reader is referred to [46].

V. CASE STUDY II – CHARACTER SEQUENCES

Another application of our partial similarity is the analysis
of character sequences. Problems requiring the comparison
of such sequences arise in linguistics [56], web search [57],
[58], spell checking [59], plagiarism detection [60], speech



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Comparison of partially-overlapping deformable objects. In this example, we show a Euclidean representation of the Salukwadze distance, which
captures the partial similarity between such objects (light shading represent the missing parts). Each point in the plane represents an object, and Euclidean
distances between pairs of points approximate the corresponding Salukwadze distances.

recognition, and bioinformatics [61], [62]. The basic problem
in this field is finding subsets of sequences that are similar to
some give pattern – again, a problem fitting nicely into the
concept of partial similarity.

A. Background

The object used in text analysis is a sequence X = (xn)N
n=1.

Each xk (called character) is an element in some set A,
referred to as the alphabet. For example, in text analysis A can
be the Latin alphabet, and in bioinformatics, A is the set of
four nucleotides. A part is a sequence of the form X ′ = (xnk

)
(called a subsequence of X), where nk is a strictly increasing
sequence in the index set {1, ..., N}. The σ-algebra ΣX in this
problem is defined as the collection of all the subsequences of
X . The measure is the subsequence length, µX(X ′) = |X ′|.

Given two sequences X and Y , a longest common subse-
quence (LCS) of X and Y is defined as

lcs(X, Y ) = argmax
Z∈ΣX∩ΣY

|Z|. (12)

Note that the LCS may not be unique; for example, the
longest common subsequences of AATCC and ACACG are the
sequences ACC and AAC.

If X and Y are of equal length, we can define the Ham-
ming distance between X and Y as the number of character

substitution edits required to transform one string to another,

dHAM(X, Y ) =
|X|∑
n=1

Ixn 6=yn . (13)

For sequences of non-equal length, the Hamming distance can
be extended by considering not only the substitution edits,
but also character insertions and deletions. A classical tool
in text analysis, known as the edit- or Levenshtein distance
and denoted here by dE(X, Y ), is defined as the minimum
number of edits required to transform one string to another,
where an edit is either a single character deletion or insertion
(which adds 1 to the distance), or character substitution (which
adds 2)2 [20], [63]. The edit distance is related to the longest
common subsequence,

dE(X, Y ) = |X|+ |Y | − 2|lcs(X, Y )|. (14)

B. Partial similarity of text sequences

To define the partial similarity between character sequences,
we use ε = dHAM as the dissimilarity. If the subsequences
are not of equal length, ε is undefined. The partiality is
defined as the total number of characters dropped from the
sequences X and Y to obtain the two sub-sequences X ′ and

2In some definitions, character substitution adds up 1 to dE.
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Fig. 4. Partial similarity between mythological creatures. Shown are the set-
valued distances between human and horse (red), human and centaur (green)
and centaur and horse (blue).
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Fig. 5. Comparison of the partially-missing dog object to other objects. The
set-valued partial dissimilarity clearly indicates that dog is more similar to
other instances of dogs than to other objects.

Y ′, λSUM(X ′, Y ′) = |X|+ |Y | − (|X ′|+ |Y ′|). As the result
of the tradeoff between dHAM(X ′, Y ′) and λSUM(X ′, Y ′), a
discrete Pareto frontier dP(X, Y ) is obtained. If the value of
|X|+ |Y | is even, dP(X, Y ) exists only at even λSUM points3;
otherwise, it is defined only at odd values of λSUM.

3Subsequences X′ and Y ′ must be of equal length in order for dHAM to
be defined, such that |X′| + |Y ′| is always even. If |X| + |Y | is even, an
odd value of λSUM(X′, Y ′) implies that X′ and Y ′ are of unequal length
and consequently, the Pareto frontier is not defined at this point.

We can establish the following relation between the zero-
dissimilarity distance and the edit distance:

Theorem 1: (i) d0−DIS(X, Y ) = dE(X,Y );
(ii) d0−DIS(X, Y ) is realized on subsequences X ′ = Y ′ =
lcs(X, Y ).
In other words, the edit distance is a particular case of our par-
tial similarity framework, obtained by selecting a specific point
on the Pareto frontier, corresponding to the minimum partiality
obtained requiring that dHAM is zero. However, we may allow
for subsequences which are not similar (dHAM > 0), yet,
have smaller partiality. This brings us to the definition of the
Salukwadze distance dS(X, Y ), which may better quantify the
partial similarity between two sequences.

C. Numerical example

To demonstrate the partial similarity concept in
text analysis, we compare two sequences: X =
PARTIAL SIMILARITY and Y = PARETO OPTIMUM.
The obtained discrete Pareto frontier is shown in
Figure 7. Point marked as (a) on the Pareto frontier in
Figure 7 corresponds to the smallest Hamming distance
with the smallest possible partiality (λSUM = 4). It is
realized on subsequences X ′ = PARIAL SIMIITY and
Y ′ = PARETO OPTIMUM, the Hamming distance between
which is dHAM(X ′, Y ′) = 9. Point (b) corresponds to the
L2-Salukwadze distance (dS(X, Y ) = ‖(6, 7)‖2 =

√
85).

It is realized on subsequences PARTL SIMIITY and
PARTO OPTIMUM (highlighted in red in Figure 7b). Point
(c) is the smallest value of partiality (λSUM = 18), for
which dHAM is zero, i.e., d0−DIS(X, Y ) = 18. According to
Theorem 1(ii), it is realized on a LCS, which in our example
is lcs(X,Y ) = PART IM (highlighted in Figure 7c). It is
easy to verify that dE(X, Y ) = 18 as well, which is an
empirical evidence that Theorem 1(i) holds in this case.

VI. CONCLUSIONS

We presented a method for quantifying the partial similarity
between objects, based on selecting parts of the objects with
the optimal tradeoff between dissimilarity and partiality. We
use the formalism of Pareto optimality to provide a definition
to such a tradeoff. We demonstrated our approach on two
problems, comparison of non-rigid objects and analysis of text
sequences. In both cases, our construction has a meaningful
interpretation. The set-valued distances resulting from it have
appealing theoretical and practical properties. Particularly, in
shape matching and text analysis, they can be viewed as a
generalization of prior results. The presented framework of
partial similarity is generic and can be applied to different
pattern recognition problems.
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