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Abstract This paper explores the problem of similarity cri-
teria between nonrigid shapes. Broadly speaking, such crite-
ria are divided into intrinsic and extrinsic, the first referring
to the metric structure of the object and the latter to how it is
laid out in the Euclidean space. Both criteria have their ad-
vantages and disadvantages: extrinsic similarity is sensitive
to nonrigid deformations, while intrinsic similarity is sen-
sitive to topological noise. In this paper, we approach the
problem from the perspective of metric geometry. We show
that by unifying the extrinsic and intrinsic similarity criteria,
it is possible to obtain a stronger topology-invariant similar-
ity, suitable for comparing deformed shapes with different
topology. We construct this new joint criterion as a tradeoff
between the extrinsic and intrinsic similarity and use it as a
set-valued distance. Numerical results demonstrate the effi-
ciency of our approach in cases where using either extrinsic
or intrinsic criteria alone would fail.

Keywords Shape similarity - Isometry - Topological
noise - Gromov-Hausdorff distance - Generalized MDS -
GMDS - Iterative closest point

1 Introduction

In the childhood game Rock, Paper, Scissors, the players
bend their fingers in different ways to make the hand resem-
ble one of three objects: a rock, a sheet of paper and scissors.
Looking at these shapes, we can recognize the hand postures
as the objects they intend to imitate. The rock is represented
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by a closed fist, the paper by an open palm and the scissors
by the extended index and middle fingers (Fig. 1). At the
same time, we can say that all these shapes are just different
articulations of the same hand.

This example demonstrates the difficulty of defining the
similarity of nonrigid shapes. On one hand, instances of non-
rigid objects can be considered as stand-alone rigid shapes.
On the other hand, these shapes can be regarded as nonrigid
deformations of the same object. Using geometric terminol-
ogy, the first similarity criterion is extrinsic, i.e., considers
the properties of the shape related to the particular way it is
laid out. The second criterion, looks at the intrinsic proper-
ties of the shape, invariant to the object deformations.

Extrinsic similarity of shapes has been widely addressed
in computer vision, pattern recognition, and computational
geometry literature (Tangelder and Veltkamp 2004; Bron-
stein et al. 2008c). Most of the papers in these fields, either
implicitly or explicitly, look at the problem of shape similar-
ity from the extrinsic point of view (see, for example, Bruck-
stein et al. 1992; Latecki and Lakaemper 2000; Jacobs et al.
2000a). A classical method for rigid object matching, intro-
duced by Chen and Medioni (1991) and Besl and McKay
(1992), is the iterative closest point (ICP) algorithm. ICP
and its numerous flavors (Zhang 1994; Leopoldseder et al.
2003; Mitra et al. 2004; Gelfand et al. 2005) try to find a
rigid transformation between two shapes, minimizing an ex-
trinsic distance between them, usually a variant of the Haus-
dorff distance.

Another important class of extrinsic similarity methods
is based on high-order moments (Teague 1979; Horn 1987;
Groemer 1996; Tal et al. 2001), where the shape’s extrin-
sic geometry is represented by a vector of coefficients ob-
tained from the decomposition of shape properties in some
basis. Conceptually, one can think of such methods as of a
Fourier-like representation (Zhang and Chen 2001a, 2001b),
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Fig. 1 (Color online) Rock, paper, and scissors: this childhood game
is based on the similarity of the postures of the hand to different objects
(blue arrows). Though being a valid similarity criterion, in many other
applications, we would rather be interested in saying that the different
postures are all similar, being nonrigid deformations of the same object
(red arrows)

though other bases like wavelets (Paquet et al. 2000), spheri-
cal harmonics (Vranic et al. 2001; Yu et al. 2003; Kazhdan et
al. 2003), and Zernike descriptors (Novotni and Klein 2003)
have been explored in the literature as well. Besides “global”
methods, there exist other families of extrinsic shape simi-
larity methods based on histograms of local shape proper-
ties like curvatures, distances, angles and areas (Osada et
al. 2002; Shum et al. 1995). Such local methods can be, to
some extent, insensitive to shape deformations. For a com-
prehensive survey of these approaches, the reader is referred
to (Tangelder and Veltkamp 2004).

At the other end, methods for the computation of intrin-
sic similarity of shapes started penetrating into the computer
vision and pattern recognition communities relatively late.
As a precursor, we consider the paper by Schwartz et al.
(1989), in which a method for the representation of the in-
trinsic geometry of the cortical surface of the brain using
multidimensional scaling (MDS) was presented. MDS is a
family of algorithms (Borg and Groenen 1997) commonly
used in dimensionality reduction and data analysis (Roweis
and Saul 2000; Donoho and Grimes 2003; Tennenbaum et
al. 2000) and graph representation (Linial et al. 1995). The
idea of Schwartz et al. was extended by Elad and Kimmel
(2003), who proposed a nonrigid shape recognition method
based on Euclidean embeddings. Elad and Kimmel mapped
the metric structure of the surfaces to a low-dimensional
Euclidean space and compared the resulting images (called
canonical forms) in this space.! Canonical forms were ap-

IThe measurement of pairwise geodesic distances and the solution
of the underlying MDS problem are the two most computationally-
intensive components of the canonical forms method. The measure-
ment of geodesic distance can be performed very efficiently using the
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plied to the problem of three-dimensional face recognition,
where this method was proved to be efficient in recognizing
the identity of people while being insensitive to their facial
expressions (Bronstein et al. 2005). Ling and Jacobs used
this method for recognition of articulated two-dimensional
shapes (Ling and Jacobs 2005b). Other applications were in
texture mapping and object morphing (Zigelman et al. 2002;
Grossman et al. 2002; Bronstein et al. 2007a), mesh seg-
mentation (Katz et al. 2005) and image matching (Ling and
Jacobs 2005a).

One of the main disadvantages of the canonical forms
is the fact that they can represent the intrinsic geometry of
the objects only approximately, as it is generally impossi-
ble to isometrically embed a non-flat surface into a low-
dimensional (and in general, finite-dimensional) Euclid-
ean space. It was shown empirically in Walter and Ritter
(2002), Bronstein et al. (2007b) that using spaces with non-
Euclidean geometry, it is possible to obtain more accurate
representations. Mémoli and Sapiro (2005) showed how the
representation error can be theoretically avoided by using
to the Gromov-Hausdorff distance, introduced by Mikhail
Gromov in Gromov (1981). Theoretically, the computation
of the discrete Gromov-Hausdorff distance is an NP-hard
problem. In order to overcome this difficulty, Mémoli and
Sapiro proposed an approximation, related to the Gromov-
Hausdorff distance by a probabilistic bound.

Using the fact that the Gromov-Hausdorff distance can
be related to the distortion of embedding one surface into
another, we proposed in Bronstein et al. (2006b) a re-
laxation of the discrete Gromov-Hausdorff distance, yield-
ing a continuous optimization problem similar to MDS.
This algorithm, named generalized MDS (GMDS) (Bron-
stein et al. 2006b, 2006a), can be thought of as a natural
extension of previous works on isometric embedding into
non-Euclidean spaces. GMDS was used for the compari-
son of two-dimensional (Bronstein et al. 2008b) and three-
dimensional (Bronstein et al. 2006b) shapes, face recogni-
tion (Bronstein et al. 2006¢), and in a particular setting of
intrinsic self-similarity for symmetry detection (Raviv et al.
2007; Bronstein et al. 2008b). It was also shown that GMDS
can be used to find deformation-invariant correspondence
between non-rigid shapes in computer graphics applications
such as texture mapping and shape manipulation (Bronstein
et al. 2007a). In these problems, GMDS is closely related to
the method of Litke et al. (2005).

Another class of intrinsic similarity methods is based on
the analysis of spectral properties of the Laplace-Beltrami
operator of the shape. Reuter et al. used Laplace-Beltrami

recently proposed parallel fast marching method (Weber et al. 2008).
The solution of an MDS problem can be carried out efficiently using
the multigrid framework (Bronstein et al. 2006d) or the vector extrap-
olation methods (Rosman et al. 2007). This allows for real-time appli-
cations like face recognition.
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Fig. 2 (Color online)
Illustration of the difference
between intrinsic and extrinsic
similarity

spectra (eigenvalues), referring to them as “shape DNA”, for
the characterization of surfaces (Reuter et al. 2006). Since
the Laplace-Beltrami operator is an intrinsic characteristic
of the surface, it is insensitive to isometric deformations
(Chung 1997; Mohar 1991; Lévy 2006). It appears, however,
that such criteria are able to identify isospectral rather than
isometric surfaces, and isospectrality is a weaker property
(two surfaces can be isospectral but not isometric Kac 1966;
Gordon et al. 1992; Berger 2002). Rustamov (2007) intro-
duced the global point signature (GPS) embedding, based
on eigenfunctions and eigenvalues of the Laplace-Beltrami
operator. Such a descriptor is exact and theoretically al-
lows to represent the shape up to isometric deformations.
GPS embeddings are intimately related to methods used in
manifold learning and data analysis (see e.g. Roweis and
Saul 2000; Zhang and Zha 2002; Belkin and Niyogi 2003;
Donoho and Grimes 2003; Coifman et al. 2005) and can be
thought of as infinite-dimensional canonical forms.

Though apparently completely different, from the view-
point of metric geometry both the intrinsic and extrinsic sim-
ilarity criteria can be formalized using the notion of isometry
invariance. Regarding a shape as a metric space, its extrin-
sic properties are described by using the Euclidean metric,
while intrinsic ones using the geodesic metric, which mea-
sures distances between points as the lengths of the short-
est paths on the shape. Shape transformations preserving the

Extrinsically dissimilar
Intrinsically similar

-

Extrinsically similar
Intrinsically dissimilar

Extrinsically dissimilar
Intrinsically dissimilar

metric are called isometries; extrinsic isometries are rigid
motions and intrinsic isometries are inelastic deformations.
Two shapes can be thus said to be similar if they are iso-
metric. Depending on whether we choose the Euclidean or
the geodesic metric, we obtain the extrinsic or the intrinsic
similarity, respectively. This perspective is recurrent in the
present paper, allowing us to consider intrinsic and extrinsic
similarity using the same framework.

The choice of whether to use intrinsic or extrinsic sim-
ilarity depends significantly on the application. The draw-
back of extrinsic similarity is its sensitivity to nonrigid de-
formations. Using our previous example, a gesture of the
human hand can be extrinsically more similar to a rock or
scissors rather than another hand. This makes extrinsic cri-
teria usually unsuitable for the analysis of nonrigid objects
with significant deformations (see Fig. 2, left and middle;
see also Fig. 4). On the other hand, extrinsic similarity is in-
sensitive to deformation changing the ropology of the shape
(such as “gluing” the fingers of the hand in Fig. 2, right;
see also Fig. 5). The intrinsic similarity criterion, in a sense,
behaves as the opposite of the extrinsic one: it is insensi-
tive to inelastic deformations, but is sensitive to topology
changes (Fig. 2, right). In practical situation, such changes
can arise due to acquisition imperfections (the so-called
topological noise often encountered in surfaces acquired us-
ing three-dimensional scanners, or reconstructed from volu-
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Fig. 3 (Color online) Fitting a glove onto one’s hand may be thought
of as an optimal tradeoff between the stretching of the rubber surface
(intrinsic dissimilarity), and the “amount of air” left between the glove
and the hand (extrinsic dissimilarity)

metric data) or partially missing data (“holes”) (Bronstein et
al. 2008a).

In the case shown in Fig. 2, neither extrinsic nor intrinsic
similarity per se is good enough, as none of these criteria
is capable of saying that the three hand shapes are similar,
which is the semantically desired result. In this example, we
can distinguish between two types of deformations: geomet-
ric and topological. Geometric transformation change the
coordinates of the points of the shape, and include, for exam-
ple, rigid motions (to which the extrinsic similarity criterion
is invariant) and inelastic deformations (to which intrinsic
similarity is invariant). Topological transformations, on the
other hand, change the “connectivity” of the shape. The ex-
trinsic geometry does not change significantly as a result of
such transformations, yet, the intrinsic one does: by modify-
ing the connectivity, the paths between points can change as
well, which can significantly alter the geodesic metric.

The criterion we need in order to capture correctly the
similarity of shapes in Fig. 2 must be insensitive to both
topological and geometric deformations. We call such a
criterion topology-invariant similarity. In Bronstein et al.
(2007c), we proposed an approach for computing topology-
invariant similarity between nonrigid shapes by combining
the advantages of intrinsic and extrinsic similarity crite-
ria, while avoiding their shortcomings. This paper presents
an extended discussion and experimental validation of this
method. The main idea can be visualized by looking at the
example of fitting a rubber glove onto a hand. The extent to
which the rubber surface is stretched represents the intrin-
sic geometry distortion. The fit quality, or in other words,
how close the glove is to the hand surface, represents the

@ Springer

extrinsic distance between the two objects (Fig. 3). A “vir-
tual” glove fitting is performed by moving the points of the
glove with respect to the shape of the hand, trying to simul-
taneously minimize the misfit (extrinsic dissimilarity) and
the stretching (intrinsic dissimilarity). Note that unlike real
glove fitting, topological changes like glued fingers do not
pose an obstacle in our case: the “virtual” glove can inter-
sect the hand.

Finding an optimal tradeoff between the misfit and
stretching can be posed as a multicriterion optimization
problem and related to the notion of Pareto optimality. From
this point of view, our approach is close in its spirit to the
method of Latecki et al. (2005), Bronstein et al. (2008b),
Bronstein and Bronstein (2008) for partial shape matching,
using a tradeoff between the size of the parts cropped out of
the shapes and the similarity between them. In our case, the
set of all Pareto optimal solutions can also be represented as
a set-valued similarity criterion, which contains much richer
information than each of the intrinsic and extrinsic criteria
separately.

Our approach can also be thought of as a generalization
or “hybridization” of ICP and GMDS methods. ICP methods
compute extrinsic similarity of shapes by means of finding
a rigid isometry minimizing the extrinsic distance between
them. Our method extends the class of transformations, al-
lows for nonrigid isometries and near-isometries, thus relat-
ing to the recent works on nonrigid ICP (Chui and Rangara-
jan 2003; Hahnel et al. 2003; Amberg et al. 2007). Using
GMDS, intrinsic similarity of shapes is computed as the de-
gree of distortion when trying to embed one shape into an-
other. This problem can be regarded as a particular case of
our approach in which we constraint the extrinsic distance
between the two surfaces to be zero.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the mathematical background and formulate
the shape similarity problem from the perspective of met-
ric geometry. We review standard approaches to measur-
ing intrinsic and extrinsic similarity. In Sect. 3, we define
topology-invariant similarity and present an approach for
computing it using a joint intrinsic-extrinsic criterion. We
discuss this approach using the formalism of Pareto opti-
mality. In Sect. 4, we show the numerical framework for
computing the proposed distance. Section 5 is dedicated to
experimental results. In Sect. 6, we conclude the paper and
discuss the relation of our approach to recent results in com-
puter graphics literature and “as isometric as possible” mor-
phing.

2 Isometry-Invariant Similarity
We model a shape as a metric space (X, d), where X is a

two-dimensional smooth compact connected surface (pos-
sibly with boundary) embedded in the three-dimensional
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Euclidean space E=R3, and d : X x X — Ry, is a (semi)
metric> measuring the distance between each pair of points
on X. There exist two natural choices for the metric on X.
The first one is the restriction of the Euclidean metric de-
noted here by dg(x, x’) = ||x — x’||2, measuring the distance
between any x, x’ € X along “straight lines” in E. The sec-
ond natural choice is the geodesic metric,

dx(x,x)= min L(y), (1)
yel(x,x")

measuring the length of the shortest path on the surface con-

necting a pair of points x and x’. In order to give a for-

mal definition of the path length L(y), we express y as

the limit of piece-wise linear segments connecting the points

{x1,...,x,}on X,

n—1

L(y) = lim ) de(xi. xit1). @
i=l

The geodesic metric dy (x, x”) is given as the minimum over
the set of all admissible paths between x and x’, denoted
by I'(x, x’). A path is admissible if the edges of all the infin-
itesimal segments x;, x;4+ are connected. We defer a more
precise definition to the next section. We broadly refer to
properties described in terms of dg as the extrinsic geome-
try of X, and to properties associated with dx as the intrinsic
geometry of X.

In order to determine whether two shapes X and Y are
similar, we compare them as metric spaces. From the point
of view of metric geometry, two metric spaces are equivalent
if their corresponding metric structures are equal. Such met-
ric spaces are said to be isometric. More formally, a bijective
map f:(X,d) — (¥, 96) is called an isometry if

So(fx[f)=d. (€)

In other words, an isometry is a metric-preserving map be-
tween two metric spaces, such that d(xj,x2) =
8(f(x1), f(x2)). We call such (X,d) and (Y, d) isometric
and denote this property by (X, d) ~ (¥, §).

This definition of equivalence obviously depends on the
choice of the metric. A bijection f : (X,dx) — (Y, dy) sat-
isfying dy o (f x f) = dx is called an intrinsic isometry.
Saying that (X,dyx) and (Y,dy) are isometric is synony-
mous to X and Y being intrinsically equivalent. On the other
hand, if we consider the extrinsic geometry of the shapes
(i.e., look at the shapes endowed with the Euclidean rather
than geodesic metric), we notice that (X, dg) and (Y, dg) are
subsets of the same metric space (E, dg). As a result, an ex-
trinsic isometry is a bijection between subsets of the Euclid-
ean space rather than between two different metric spaces.

2 A semi-metric does not require the property d(x, x’) = 0 if and only
if x = x’ to hold.

In Euclidean geometry, the only possible isometries are rigid
motions, which include rotation, translation and reflection
transformations; we denote the family of such transforma-
tions by Iso(E). Thus, X and Y are extrinsically isometric
if there exists f € Iso(IE) such that dg =dg o (f x f) on
X x X. This means that two shapes are extrinsically isomet-
ric if one can be obtained by a rigid transformation of the
other, which is often expressed by saying that X and Y are
congruent.

To avoid confusion, in the following, we say that X and Y
are isometric implying intrinsic isometry, and that X and Y
are congruent when referring to extrinsic isometry. The class
of intrinsic isometries is usually richer than that of congru-
ences, since any congruence is by definition also an intrinsic
isometry. However, for some objects these two classes co-
incide, meaning that they have no incongruent isometries.
Such shapes are called rigid, and their extrinsic geometry is
completely defined by the intrinsic one.

2.1 Similarity

In practice, perfect equivalence rarely exists, and we are usu-
ally limited to speaking about similarity of shapes rather
than their equivalence in the strict sense. In order to ac-
count for this, we need to relax the notion of isometry. Two
metric spaces (X, d) and (Y, 8) are said to be e-isometric
if there exists an e-surjective map f : (X,d) — (¥, 9d) (i.e.,
8(y, f(X)) <e forall y € Y), which has the distortion

dis f = sup |d(x,x") =8(f(x), f(xN|<e. “

x,x'eX

Such an f is called an e-isometry. e-isometries are quite
different from their true counterparts. Particularly, an isom-
etry is always bi-Lipschitz continuous (Burago et al. 2001),
which is not necessarily true for an e-isometry. If we further
relax the requirement of e-surjectivity by demanding that f
has only dis f < €, we refer to such f as an e-isometric em-
bedding.

A way to quantify the degree of shape dissimilarity is
by defining a shape distance dshape : S x S — R, on the
space of shapes S. Note that dgpape is a function of (X, d)
and (Y, 6). In the following, we will write dshape (X, Y) omit-
ting explicit reference to the metrics for notation brevity. It
is common to require dshape to satisfy the following set of
properties for any X,Y, and Z in S and a constant ¢ > 1
independent of X, Y and Z:

(I1) Equivalence: dshape(X,Y) = 0if and only if (X, d) and
(Y, 8) are isometric.

(12) Similarity: if dshape(X,Y) < €, then (X, d) and (Y, §)
are ce-isometric; and if (X,d) and (Y,§) are e-iso-
metric, then dghape (X, Y) < ce.

(I3) Symmetry: dshape (X, Y) = dshape (Y, X).
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(I4) Triangle inequality: dsnape(X, Z) < dshape(X,Y) +
dshape(Yy Z).

The first two properties guarantee that the shape distance
dshape reflects the degree of shape dissimilarity, i.e. dshape
is small for similar (isometric) shapes, and large for dis-
similar ones. The third property is synonymous to the re-
flexivity of the shape similarity relation, while the fourth
reflects its transitivity: if X is similar to Y and Y is sim-
ilar to Z, then X and Z cannot be too much dissimi-
lar. Properties (I1), (I3), and (I4) can be expressed equiv-
alently by saying that dghape is a metric on the quotient
space of S under the isometric equivalence relation, de-
noted by S\ ~. We refer to a shape distance satisfying (I1)—
(I4) as to isometry-invariant shape distance. Note, however,
that in the case of a partial shape similarity relation, met-
ric axioms are usually too restrictive (Jacobs et al. 2000b;
Bronstein et al. 2008a).

Since the definitions of equivalence and similarity de-
pend on the choice of the metrics on the shapes, our no-
tion of isometry-invariant distance between shapes also de-
pends on them. In the remainder of this section, we will
consider two particular cases of extrinsic and intrinsic shape
distances, defining, respectively, the extrinsic and intrinsic
similarity.

2.2 Extrinsic Distances

Extrinsic similarity is a simple case of the general prob-
lem of metric space comparison, since two shapes with the
Euclidean metric, (X, dr) and (Y, dg), are a subset of the
same metric space (E, dg). Consequently, we can use the
Hausdorff distance measuring the distance between two sets
Xand Y inE,

df (X, ¥) = max|sup dg (x, ¥), supdz(y, )}, )
xeX yey

where dg(y, X) = infyex|ly — x||2 denotes the distance
between the set X and the point y. In practice, a non-
symmetric version of dE,

diy(X,Y) = supdg(x, Y), (©6)
xeX

is often preferred since it allows for partial comparison of

surfaces. L, approximations are also often preferred, as the

original L, formulation is sensitive to outliers.

Extrinsic equivalence of shapes implies that they are con-
gruent, i.e., can be brought into ideal correspondence by
means of a rigid transformation. In other words, there ex-
ists f € Iso(IE) such that dII_EI(f(X), Y) = 0. We can use the
same idea in order to measure extrinsic similarity: find the
minimum possible value of the Hausdorff distance over all
possible rigid motions,

— E
dext(X,Y) = fellgof(E) dy (f(X),Y). @)
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Fig. 4 (Color online) The weakness of extrinsic similarity. Top row
shown deformations of a three-dimensional shape of the nonrigid hu-
man body. Weak deformations (/eft and middle) can be compared using
ICP algorithm, which finds a meaningful alignment between the shapes
(bottom row, left), despite topological noise (simulated here by weld-
ing hand and leg). However, in the case of strong deformations (top
row, right) ICP produces meaningless matching (bottom row, right)

Since Iso(E) can be easily parametrized, the resulting ex-
trinsic distance can be computed as

dext(X, Y) = i}gfd&(Rx +1,Y), (8)
N

where R denotes the rotation matrix and ¢ is the trans-
lation vector.® Practical methods to solve problem (7) are
the ICP algorithms, which use an alternating minimization
scheme consisting of two stages. First, the closest-point cor-
respondence between X and Y is computed. Next, the rigid
transformation is found between X and Y that minimizes
the Hausdorff distance. The process is repeated until con-
vergence. Though theoretically a global minimum should
be searched for, in practice, local optimization methods are
usually employed, and thus, ICP algorithms are often prone
to convergence to a suboptimal solution (local minimum).

The distance dex; satisfies Properties (I1)-(I4), being a
metric on the space of shapes modulo Iso(E), and is a good
way to measure extrinsic similarity.

3Reflection is usually excluded as having no physical realization in E.
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2.3 Intrinsic Distances

Computation of intrinsic shape dissimilarity is a more com-
plex task compared to its extrinsic counterpart due to two
main reasons. First, intrinsic isometries usually constitute a
significantly richer class of transformations than Euclidean
congruences, and there often exists no simple parametriza-
tion comparable to the six degrees of freedom that are suffi-
cient to represent a rigid motion. Second, unlike in the rigid
case where (X, dg) and (Y, dg) are compared as subsets of
a common metric space (E, dg), the comparison of (X, dx)
and (Y, dy) does not allow using the Hausdorff distance, and
hence dex; in (7) cannot be straightforwardly generalized to
the intrinsic case.

Elad and Kimmel (2003) reduced the problem of intrinsic
shape similarity to the more tractable problem of extrinsic
similarity, by first computing an extrinsic representation of
the intrinsic geometry of the shapes in some common metric
space (Q, dg). Such a representation, dubbed as the canoni-
cal form, is constructed by minimum-distortion embedding,
attempting to find two maps ¢ : (X,dx) — (Q,dg) and
Y 1 (Y,dy) — (Q, dg) with minimum distortions dis ¢ and
dis 1. The embedding, in a sense, allows to “undo” all the
isometric deformations of the shapes (though, some degree
of ambiguity stemming from isometries in Q still remains).
Once the canonical forms ¢(X) and ¥ (Y) are computed,
they are compared extrinsically using, for example, ICP. In
other words, the intrinsic distance between two shapes X
and Y is computed as the extrinsic distance between their
canonical forms,

dint(X, Y) = dexie(0(X), ¥ (V). &)

If the Euclidean space (E™, dgn) is used as the embed-
ding space, the minimum distortion embedding of (X, dx)
can be found by solving a multidimensional scaling (MDS)
problem. Given the shape X sampled at points X={x,...,
xy} and the N x N matrix of distances D¢ = (dx (x;, X)),
MDS algorithms try to find a configuration of points in
R™ such that the Euclidean distances between these points
are as close as possible in some sense to the elements
of D;. Typically, the L, distortion criterion is used, in which
case the MDS problem is referred to as least-squares MDS
(LSMDS). The canonical form is given by
Z = argmin Y _ [[lxi — x; 2 — dx (xi, x)I, (10)
ZeRNxmi>]

where Z is an N x m matrix representing the coordinates
of the points in ™. There exist numerically simple and ef-
ficient algorithms for solving problem (10) (Borg and Groe-
nen 1997; Bronstein et al. 2006d).

The choice of Q has an important influence on the com-
putation of canonical forms. Though the Euclidean space is

the simplest and most convenient metric space for this pur-
pose, other choices are possible as well (Elad and Kimmel
2002; Walter and Ritter 2002; Bronstein et al. 2007b). There
are a few criteria for choosing the embedding space. First, it
is desired that QQ is homogeneous and its isometry group is
simple, in order to reduce the number of degrees of freedom
in the definition of the canonical forms. Secondly, an ana-
lytic expression for dg allows using MDS algorithms (Borg
and Groenen 1997). Finally, it appears that for some classes
of shapes, certain embedding spaces are generally more suit-
able (see, for example, experimental results in Bronstein et
al. 2007b).

However, achieving a true isometric embedding (i.e., the
minimum in problem (10) equal to zero) is usually impos-
sible (Linial et al. 1995) with a metric space Q satisfying
the above criteria. Hence, the canonical forms are only an
approximate representation of the intrinsic geometry of the
shapes. The problem of inaccuracy introduced by the em-
bedding into QQ can be resolved if we do not assume a given
embedding space, but instead, include QQ as a variable into
the optimization problem. We can always find a sufficiently
complicated metric space into which both X and Y can be
embedded isometrically, and compare the images using the
Hausdorff distance,

dou((X,dx), (Y, dy)) = i(g)f dg(@(X), y(¥), (11

¢:X—>Q

VY —Q
(here ¢ and  are assumed to be isometric embeddings).
The resulting distance is referred to as Gromov-Hausdorff
distance (Gromov 1981). This distance was first introduced
to surface matching by Mémoli and Sapiro (2005). In the
following, we use a brief notation dgy (X, Y) when the im-
plied metrics are clear.

While the computation of dgy as defined in (11) is
hardly tractable due to the minimization over all embedding
spaces Q, it appears that for compact surfaces, the Gromov-
Hausdorff distance can be expressed in terms of the distor-
tion obtained by embedding one surface into the other,

1
dogu(X,Y) = - inf max{diseg,disy,dis (¢, ¥)}, (12)
2 ¢ X—Y
v:X—>Y

where,

dis(p,¥) = sup |dx(x,¥(y)) —dy(y,e(x))].  (13)

xeX,yeY
The computation of the distortions is performed using
the generalized multidimensional scaling (Bronstein et al.
20064, 2006b), a procedure similar in its spirit to MDS, but
not limited to spaces with analytically expressed geodesic
distances. Using the Gromov-Hausdorff distance, the intrin-
sic shape distance can be computed as

din(X,Y) = dou((X, dx), (Y, dy)). (14)
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Fig. 5 (Color online) The
weakness of intrinsic similarity.
Shown are deformations of a
three-dimensional nonrigid
human body shape (fop row)
and the corresponding canonical
forms (bottom row) computed
using classical MDS. The
canonical forms appear to be
insensitive to near-isometric
deformations of the shape (left
and middle columns). However,
topological noise (simulated
here by welding the hands to the
legs at points indicated by red
circles) results in a completely
different canonical form

2.4 A Unified View of Extrinsic and Intrinsic Similarity

It is worthwhile to note that the Gromov-Hausdorff dis-
tance is a generic isometry-invariant shape distance satis-
fying properties (I1)-(I4) with ¢ = 2. Particularly, this im-
plies that if dgu((X, d), (Y, 8)) <€, then (X,d) and (Y, §)
are 2e-isometric and conversely, if (X,d) and (Y,§) are
e-isometric, then dgu((X,d), (¥,8)) < 2¢ (Burago et al.
2001). One can think of the Gromov-Hausdorff distance as
a general framework for isometry-invariant shape compari-
son, unifying both extrinsic and intrinsic similarity. Select-
ing d and § as the geodesic metrics (dy and dy, respec-
tively), we obtain the intrinsic shape distance dj,;. Consider-
ing the shapes with the Euclidean metric df, yields an equiv-
alent (but not equal) way to express the extrinsic shape dis-
tance as

dext(X, Y) = dau((X, dg), (Y, dg)), 15)

instead of the definition we have seen before. In this case, we
interpret isometry as congruence, while in the former case, it
implies the existence of a geodesic distance-preserving de-
formation of X into Y.

3 Topology-Invariant Similarity
Let us now return to our example of glove fitting. Assume

that Y is the hand surface, and X is the glove we wish to fit.
A perfect fit is achieved when X and Y are equivalent. Since
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both the glove and the hand are nonrigid shapes, we under-
stand equivalence in the intrinsic sense, i.e., as the existence
of an isometry between (X, dx) and (Y, dy). An alternative
way to express this fact is by saying that there exists an iso-
metric deformation f of X, such that f(X) =Y. In other
words, we may say that the glove X perfectly fits the hand
Y if there exists Z intrinsically equivalent to X and extrinsi-
cally equivalent to Y.

Let us now assume that the hand is given in a posture
where the fingers are glued, while the fingers of the glove
are disconnected. Such a topological difference would make
distinct the intrinsic geometries of the hand and the glove,
preventing X and Y from being intrinsically equivalent (for
an illustration, see Fig. 5). However, our alternative defini-
tion of equivalence would still hold, as we can still find Z
intrinsically equivalent to X, which will fit ¥ extrinsically
(though, unlike the previous case, Z and Y are no longer
intrinsically equivalent).

This example visualizes the limitations of the notion of
intrinsic equivalence of shapes, and brings forth the need to
construct a more general notion of equivalence, insensitive
to topological changes. Such a construction requires several
additions to our mathematical machinery. We define a fopol-
ogy T of X as a family of subsets of X (i.e., T is a subset of
the power set 2%) closed under finite intersection and union
of arbitrarily many elements of 7. By definition, both the
empty set and X itself are members of 7. Conventionally, a
subset of X is called open if it belongs to T, and closed if
its complement belongs to 7. From now on, when speaking
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about a shape X, we will actually imply the triplet (X, T, d),
and omitting 7" will imply that the topology is induced by the
metric. For example, for the choice d = dE, the topology of
the Euclidean space E is assumed. Topology defines proper-
ties of the shape which are “coarser” than metric geometry,
such as connectivity of points.

Our glove fitting example suggests that there may exist
two shapes (X, T,dy) and (X, T’,d}) with identical real-
ization X in the Euclidean space, yet different topology and
intrinsic geometry. This is possible due to the fact that our
definition of the geodesic metric in (1) was based on the
length of the shortest admissible path y € I'(x, x) connect-
ing two points x and x" on X.

However, the definition of the set of all admissible paths
connecting x and x’ is itself a function of the topology, as it
depends on the connectivity. For example, in case of a hand
with glued fingers, there exists a path between two finger
tips crossing the fingers. When the fingers are disconnected,
the shortest path between the finger tips goes along the fin-
gers, since the path directly connecting the finger tips is no
longer admissible (for a more formal discussion, the reader
is referred to Chap. 2 in Burago et al. 2001).

Two topological spaces (X, T') and (Y, T’) are said to be
homeomorphic or topologically equivalent if there exists a
continuous bijection g : (X, T) — (Y, T’), whose inverse is
also continuous (the continuity of g and g~! is understood
in the sense of T and T', respectively). Since isometries
are also homeomorphisms, it follows straightforwardly that
both T and d remain invariant under an isometry.

In order to distinguish between purely geometric and
purely topological deformations of a shape, we will say
that a map f : (X, T,d) — (Y, T’,8) is a topological de-
formation if it leaves X unchanged (i.e., X = Y).* Using
this notion, we can finally define two shapes (X, Tx, dx)
and (Y, Ty, dy) to be equivalent in the sense of topology-
invariant similarity if there exists a topological deforma-
tion g : (X, Tx,dx) — (X, Ty,dy), and an isometry f :
(X, Ty,dy) — (Z,Ty,dy) suchthat Y = Z = (f o g)(X).
Note that though we gave a simple example of topologi-
cal deformations that change point-wise connectivity, other,
more generic deformations (such as opening holes) are also
possible.

Such a definition of topology-invariant equivalence is
more general than extrinsic or intrinsic similarity we had
before. In our example, a glove (Y, Ty, dy) shown in Fig. 2
(left) and a hand with glued fingers (X, Tx, dx) shown in
Fig. 2 (right) are extrinsically dissimilar since X and Y are
incongruent. On the other hand, (X, Ty, dx) and (Y, Ty, dy)
are intrinsically dissimilar since (X, Tx) and (Y, Ty) are not
topologically equivalent and as a result, (X, dx) and (Y, dy)
are not isometric. Yet, using the above criterion, there is a

40r more generally, X and Y are congruent.

topology-invariant equivalence between shapes (X, Tx, dx)
and (Y, Ty, dy): we can first “unglue” the fingers of the hand
by means of a topological deformation g : (X, Tx,dx) —
(X, Ty, dY), and then bend the hand by means of an isom-
etry f: (X, Ty,dy) — (Z,Tz,dz), suchthat Z =Y, Ty is
equivalent to 77z, and d, is equivalent to dz.

In order to relax this notion of equivalence into a
topology-invariant similarity relation, a slightly more com-
plicated construction is required. We will say that (X, Tx, dx)
and (Y, Ty, dy) are (€int, €ext)-similar if there exists a topo-
logical deformation g : (X, Tx,dx) — (X, Ty,d}), and
an eip-isometry f : (X, Ty,dy) — (Z, Ty, dY) such that
di((f08)(X),Y) < €ext.

In many practical situations, an asymmetric definition of
topology-invariant similarity is sufficient. In such cases, we
distinguish between a probe X that is fit to a model Y. We
say that (X, Tx, dx) and (Y, Ty, dy) are (€in, €ext)-similar if
there exists an ejy-isometry f : (X, Ty, dy) = (Z, Ty, dy)
such that dII_EI((f 02)(X),Y) < €ex. In what follows, we will
limit our attention to the latter definition of similarity, and
will construct a distance based on a combination of extrinsic
and intrinsic distances to reflect it.

3.1 Topology-Invariant Distance

Another way to express our notion of topology-invariant
similarity is by saying that the probe X admits a topology-
preserving deformation Z such that diy (X, Z) < €jp, and
dext(Z,Y) < €ext- Since it is usually impossible to say which
of the two criteria is more important, we judge the similarity
as a tradeoff between them. Such a joint intrinsic-extrinsic
similarity between two shapes can be quantitatively repre-
sented by the extent to which we have to modify the ex-
trinsic geometry in order to make the two shapes intrinsi-
cally similar, or alternatively, the extent to which we have
to modify the intrinsic geometry in order to make the two
shapes extrinsically similar. This, in turn, can be formu-
lated as a multicriterion optimization problem, in which we
bring to minimum the vector objective function ®(Z) =
(din(Z, X), dexi(Z, Y)) with respect to Z.

Unlike optimization with a scalar objective, we cannot
define unambiguously the minimum of &, since there does
not exist a total order relation between the criteria—we can-
not say, for example, whether it is better to have ® = (0.5, 1)
or ® = (1,0.5). At the same time, we have no doubt that
® = (0.5,0.5) is better than & = (1, 1), since both criteria
have smaller values. This allows us to define a minimizer of
our vector objective ® as a Z*, such that there is no other
Z for which ®(Z) is better that ®(Z*) (which can be ex-
pressed as a vector inequality ®(Z*) > ®(Z)). Such an Z*
is called non-inferior or Pareto optimal. Pareto optimum is
not unique; we denote by Q* the set of all Z* that satisfy
the above relation. The corresponding values of ®(Q2*) are
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Extrinsic distance dexi(Z,Y")

Intrinsic distance dine(X, Z)

Fig. 6 (Color online) Visualization of the concept of set-valued dis-
tance. Different points on the Pareto frontier represent different trade-
offs between intrinsic and extrinsic similarity

referred to as a Pareto frontier and can be visualized as a
planar curve (Fig. 6).

Bronstein et al. (2008a) proposed considering the entire
Pareto frontier as a criterion of similarity, of which we can
think as a generalized, set-valued distance.’ In our case, this
distance measures the tradeoff between the intrinsic and ex-
trinsic similarity, which we denote by dp(X,Y) = ®(2*)
and refer to as the Pareto distance. The Pareto distance
quantifies the degree of asymmetric topology-invariant dis-
similarity; particularly, (0,0) € dp(X,Y) if and only if X
and Y are equivalent in the sense that X has an isome-
try congruent to Y. The Pareto distance also generalizes
the similarity criteria based on purely extrinsic or intrin-
sic geometry. Asserting dinc(X, Z) = 0, the other criterion
dext(Z,Y) in dp(X, Y) will measure how close a perfectly
isometric deformation of X can bring X to Y. Since in prac-
tice we work with meshes which are known to be almost
always rigid, the only possible deformations are congru-
ences of X. This means that with dj, (X, Z) fixed to zero,
dp(X,Y) is equivalent to ICP. On the other hand, if we
require dex((Y, Z) = 0, the probe is forced to be attached
to the model surface, which boils down to a GMDS prob-
lem, where we are trying to find a deformation of X mini-
mizing din(Z, Y). We conclude that the two extreme cases

3Set-valued distances arise from similarity relations based on more
than one criterion such as in the case of partial similarity, which can
be regarded as the tradeoff between similarity and significance of the
parts. We believe that it is more natural to use set-valued distances for
such relations, rather than trying to fit them into the Procrustean bed of
scalar-valued similarity.
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of dp(X,Y) are (0,dext(X,Y)) and (dint(X, Y), 0). Other
points on the Pareto frontier represent different tradeoffs be-
tween the extrinsic and the intrinsic criteria, as depicted in
Fig. 6.

In general, by saying that dp(X, Y) < (€int, €ext) (the vec-
tor inequality implies that the point (€, €ext) iS above or
on the Pareto frontier), we mean that there exists a deforma-
tion Z of X distorting its intrinsic geometry by less than €y,
while making its extrinsic geometry less than €qx¢-dissimilar
from that of Y. Saying that dp(X,Y) < dp(X, Y’), implies
that bringing X to a certain proximity of Y requires a smaller
intrinsic distortion than bringing X to the same proximity
of Y’. Using our glove fitting example, we would say that
the glove X fits the hand Y better than the hand Y’. Geomet-
rically, this fact is manifested by the curve dp(X, Y) being
entirely below dp(X, Y").

3.2 Joint Intrinsic and Extrinsic Similarity

The set-valued distance dp may be inconvenient to use
since only a partial order relation exists between the Pareto
frontiers—given two set-valued distances, we cannot in gen-
eral say which of them is “smaller”, unless one curve is en-
tirely above or below the other. In order to compare shape
distances, we have to convert them into a single scalar value.

Intuitively, the “speed of decay” of the Pareto frontier in-
dicates how similar two shape are (the faster, the more sim-
ilar). There are multiple ways to represent this information
as a single number. First, one can measure the area under
the Pareto frontier. Smaller area corresponds to higher sim-
ilarity. Second, it is possible to select a single point on the
Pareto frontier by fixing a pre-set value of one of the dissimi-
larities. For example, if we know that the shapes are inelastic
to a certain degree, i.e. they can stretch or shrink by no more
than €, we will fix the intrinsic dissimilarity dj,; = € and will
use the value extrinsic dissimilarity at this point as the shape
distance. A third alternative is to require that both dissimi-
larities are equal and compute the point at which diy; = dext.
This way, we obtain a shape distance similar in its spirit to
the equal error rate (EER) used in receiver operating char-
acteristic analysis.

A more generic approach to converting a set-valued dis-
tance into a scalar-valued one comes from the multicrite-
rion optimization theory (Salukwadze 1979). Among all the
Pareto optima, we cannot prefer any since they are non-
comparable: we cannot say which Pareto optimum is bet-
ter. However, ideally we want to bring both of our criteria
to zero, that is, achieve the “utopia point” (0,0). We can
choose a single point on the Pareto frontier the closest to the
utopia point, in the sense of some distance.

Using this idea, we define the joint distance as

djoint(X, Y) = inf
(€int €ext) €dp (XY

) Il (€int. Gext)”Ri» (16)
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where || - ”Ri 1S some norm on Ri. In the following, we will
consider a family of norms ||(€jnt, €ext)||x = €int + A€ext, fOr
A > 0. The joint distance in this case can be written as

djoint(X, Y) ZmZin dini(X, Z) + Adexi(Z,Y). a7

Different selections of the multiplier A attribute importance
either to din; or dex, and give us different points on the
Pareto frontier.

3.3 Simplification

The intrinsic distance term din (X, Z) can be simplified by
observing that the deformation Z = f(X) gives a one-to-
one correspondence between X and Z. We can therefore fix
@ and ¥ in the Gromov-Hausdorff distance to f and f~!,
respectively, obtaining the following intrinsic distance,

dine(X, Z) = dis f
= sup |ldx(x,x") —dz(f(x), f&xDI.  (18)

x,x'eX

Note that the correspondence between the surfaces is now
fixed and does not participate anymore in the minimization.
dint(X, Z) defined this way measures the distortion in the
intrinsic geometry of X introduced by the extrinsic defor-
mation f. The main difficulty in its computation stems from
the fact the geodesic metric dz has to be re-computed every
time the deformation changes. We will defer the discussion
of this issue to the following section.

A simplification of the extrinsic distance term dex((Z, Y)
in djoint(X, Y) is possible due to the fact that the deforma-
tion Z of X already accounts for all possible congruences.
Consequently, there is no need to minimize over Iso(E)
when computing dexi(Z, Y)—we can simply use dE(Y, Z)
or dEH(Y , Z) instead. Like in ICP, the main computational
challenge is the need to re-compute the set of closest points
every time the deformation changes.

4 Numerical Framework

For practical computations, we work with discretized shapes.

The surface X is sampled at N points X = {x1,..., 28} C
X, constituting an r-covering, i.e., X = U,I:,:l Bx (x,,1)
(here, Bx(x,r) is a metric ball of radius r around x). The
extrinsic coordinates of X can be represented as an N x 3
matrix X, each row of which corresponds to x; € E. The dis-
crete shape is represented as a triangular mesh; each triangle
is a triplet of indices of vertices belonging to it. The maxi-
mum length of an edge is r. Vertices connected by an edge
(or in other words, belonging to the same triangle) are said
to be adjacent; we describe the adjacency by the set E of all
adjacent pairs of vertices in X. The geodesic distances on X

are approximated using the fast marching method (Kimmel
and Sethian 1998) or the Dijkstra’s algorithm, forming an
N x N matrix Dy

Assuming the deformed surface 7= f (X ) maintains the
connectivity of X, we can formulate the following mini-
mization problem with respect to the N x 3 matrix Z of the
extrinsic coordinates of Z:

N
A A 1
dioim (X, ¥) =min —5 3 " (dg (xi, x}) = dij (2))?
i,j=1

BN
) A

+y 4@ ) (19)

i=1
where d;;(Z) = d;(zi, z;) denote the geodesic distances on
VA , and d(z;, I?) denotes the Euclidean distance from the
point z; to the discretized surface Y. The first term of the
above cost function is the discretization of di,¢, whereas the
second term is the discretization of dex. In the sequel, we
show how to efficiently compute these two terms and their

derivatives with respect to Z, required for the minimization
of (19).

4.1 Intrinsic Distance Computation

The main challenge in the computation of the intrinsic dis-
tance term djy, is the need to evaluate the geodesic distances
on Z and their derivatives with respect to the extrinsic geom-
etry of Z changing at each iteration of the minimization al-
gorithm. The simplest remedy would be to modify the in-
trinsic term by restricting i and j to the neighboring points
only,

1
i ) (dg (i x)) —d(zin2)) 20)

(. ))ek

This way, we use only the local distances on Z, which can
be approximated as the Euclidean distances d;(z;,z;) =
llzi — zjll. However, such a modification makes di, sig-
nificantly less sensitive to large deformations of X. Indeed,
many deformations change the local distance only slightly,
while introducing large distortion to larger distances.

In order to penalize for such deformations of X , we need
to approximate the full matrix of geodesic distances on Z.
We first define the matrix D(Z) of local distances, whose
elements are, as before,

(i,))€eE
(i,))¢E.

lzi —z;l

dij(Z) = {0 21

Using the Dijkstra algorithm,® we compute the set of short-
est paths between all pairs of points (i, j). For example,

SDijkstra’s algorithm (unlike e.g. Fast Marching) is known to produce
a triangulation-dependent approximation of the geodesic distances due
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let P;;j ={(i,i1), (i1,i2), ..., (in=1,in), (in, j)} C E be the
shortest path between the points i and j. Its length is given
by L(P;;) =d, i, +d;, i, +---+d;, j, whichis alinear com-
bination of the elements of D(Z). We can therefore “com-
plete” the missing entries in the matrix D(Z) by defining the
matrix of global distances

D(Z) = Z(Z)D(Z), (22)

where Z is a sparse fourth order tensor, with the elements
Ziji = 1 if the edge (k,[) is contained in the shortest path
Pij, and 0 otherwise. Note that 7 depends on the connectiv-
ity E, which is assumed to be fixed, and the matrix of local
distances D, which, in turn, depends on Z.

It is straightforward to verify that the entries of ﬁ(Z) and
D(Z) coincide for all (i, j) € E. The global distance matrix
f)(Z) constitutes an approximation of the geodesic distances
on the surface Z c?,'j ~ di (zi,zj), while having a simple
linear form in terms of the local distances. A consistent and
more accurate estimate of d; can be produced by replacing
the Dijkstra algorithm with fast marching and allowing the
shortest paths to pass on the faces of the mesh represent-
ing Z. However, such an approach results in more elaborate
expressions and will not be discussed here.

In order to compute the derivative of ﬁ(Z) with respect
to Z, we assume that a small perturbation dZ of Z does not
change the connectivity of the points on Z, and as a result,
the trajectory of the shortest paths between the points on Z
remains constant (though their length may change). Thus,
we may write

D(Z +dZ) = T(Z + dZ)D(Z + dZ) = T(Z)D(Z + d7Z),
(23)

and compute the derivative of ﬁ(Z) as the derivative of the
linear form Z(Z)D(Z). If Z(Z) # Z(Z + dZ), the assump-
tion does not hold, and the derivative of D usually does not
exist. Yet, the derivative of Z(Z)D(Z) belongs to the sub-
gradient set of D at the point Z. This is sufficient for many
minimization algorithms to work correctly.

The intrinsic distance term can be readily written in terms
of D as the Frobenius norm

1 .
din(Z) = 5 D) —- Dy}

1 . R
= 3 trace(D(Z) — D) (D@Z)-Dy). (24

Its derivative with respect to Z is given by

ddim(Z) 2 -

W = s B@ -py D

0z

(25)

to the so-called metrication error. However, since in our case we are
comparing the shape to a deformed version of itself, the triangulation
remains the same and thus triangulation-independence is not required.
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where
3d;; (Z) ddu(Z)
=Y T , 26
a7 ; ijkl 97 (26)
and the elements of % are given by
m —
dd O T
G = oA =l @7
Zn K10 n#k,l
form=1,2,3.

4.2 Extrinsic Distance Computation

The computation of the extrinsic distance is similar to the
one used in ICP algorithms, where the main difficulty arises
from the need to re-compute the closest points each time
the extrinsic geometry of Z changes. The extrinsic distance
term can be written as

dexi(Z) = %trace((l —Y*(2))(Z - Y*(Z))") (28)

where Y*(Z) denotes the N x 3 matrix, whose i-th row y*
is the closest point on Y corresponding to z;. The closest
points y* are computed as a weighted average of the points
on Y, which are the closest to z;. The weights are selected
in inverse proportion to the distance from z;.

In ICP algorithms, it is common to assume that Y*(Z +
dZ) ~ Y*(Z). By fixing Y*, dext(Z) becomes a simple
quadratic function, and its derivative can be written as

adext(Z) _ E oy T
oz N(Z Y (Z))". (29)

4.3 Iterative Minimization Algorithm

For Z/ in the neighborhood of some Z, the cost function that
needs to be minimized can be approximated as

1 . . .
o(Z) ~ 3 race DZH'DZ) - 2D§(D(Z’) + D?{Df()

A
+ - trace Z'Z7" -2 ()2 + Y (Z2)Y*(Z)),
(30)

where D(Z') = Z(Z)D(Z/). Like in ICP, after finding a new
Z/ which decreases o (Z'), the closest points Y* and the op-
erator Z are updated. The iterative minimization algorithm
can be summarized as follows:
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1 Compute the closest points Y*(Z).

2 Compute the shortest paths between all pairs of points
on Z and assemble Z.

3 Find Z/ sufficiently decreasing o (Z’) in (30).

4 If the change ||Z — Z/| is small, stop. Else, set Z = Z/
and go to Step 1.

The update of Z in Step 3 can be safeguarded by evalu-
ating the true cost function (with Z(Z') and Y*(Z’) instead
of Z(Z) and Y*(Z)). In our implementation, no safeguard
was used, and the minimization in Step 3 was done using
conjugate gradients.

The initialization of the algorithm can be done in several
ways, the simplest of which is Z = X. This choice works
well when the extrinsic dissimilarity between X and Y is not
too large; for large dexi (X, Y), the algorithm will suffer from
poor convergence similarly to most ICP methods. Another
choice is to initialize Z by the corresponding points on Y re-
sulting from the solution of the GMDS problem. This choice
is suitable for objects having sufficiently similar intrinsic
geometries, making the intrinsic correspondence computed
by GMDS meaningful. A more robust initialization scheme
can be constructed based on branch-and-bound global opti-
mization proposed in Gelfand et al. (2005) for the initializa-
tion of ICP algorithms, and adopted in Raviv et al. (2007),
Bronstein et al. (2008b) for the initialization of GMDS. This
family of approaches consists of computing local descrip-
tors (in our case, reflecting intrinsic geometric properties)
for a set of prominent feature points on both shapes, fol-
lowed by finding the best correspondence between the two
sets of features. The branch-and-bound technique is used for
fast pruning of the search space, guaranteeing global opti-
mality of the found solution on one hand, while maintaining
reasonably low complexity on the other.

As both in ICP and GMDS, a multi-resolution scheme
can improve significantly the convergence speed of our min-
imization algorithm. In a multi-resolution approach, an ini-
tial solution is found by first computing djint between coarse
versions of X and Y, and subsequently interpolating it to
higher resolution levels. This allows to practically eliminate
many spurious local minima.

5 Results

In order to assess the proposed approach, three experiments
were performed. In the first experiment, we show the com-
putation of the set-valued Pareto distance between differ-
ent nonrigid shapes. In the second experiment, we evaluate
the discriminative power of the joint similarity criterion and
compare its performance to extrinsic and intrinsic similarity

criteria. In the third experiment, we compare joint similarity
with state-of-the-art shape matching methods.

The shapes in our experiments were taken from the non-
rigid objects database available online at tosca.cs.technion.
ac.il. The joint similarity computation was implemented in
MATLAB. The Dijkstra algorithm was written in C. No
code optimization was performed.

5.1 Pareto Distance

In the first experiment, we compared three different objects:
a man, a woman and a gorilla. As a model, we used the
shape of aiming man (shown in red in Fig. 8), sampled at
1000 points. Three probes were compared to the model: a
near-isometric deformation of the man shape (a man with
open hands), a woman and a gorilla. Each probe was rep-
resented by 100 points. Subsampling was performed using
the farthest point sampling method (Hochbaum and Shmoys
1985b, 1985a; Gonzalez 1985). The Pareto frontier was ob-
tained by computing the joint distance for thirteen different
values of L. The computation of each point on the Pareto
frontier took several minutes.

Figure 7 shows the Pareto distances between the model
shape and the probe objects. The Pareto frontiers clearly in-
dicate that the man shape is more similar to its deformed
version than to a woman and even less to the gorilla.

Figure 8 shows the matching obtained as a result of com-
putation of the joint distance. Small values of A give larger
weight to intrinsic similarity, which results in the probe (de-
picted in blue) remaining almost rigid. Increasing A, more
weight is given to the extrinsic similarity, which results in
the probe bent to better fit the model. Thus, “traversing” the
solutions on the Pareto frontier, one can obtain a continu-
ous morphing between the probe and the model. Note that
unlike many morphing methods used in computer graphics
which assume compatible meshing of the source and the tar-
get shapes, here the two shapes have arbitrary number of
samples, and arbitrary triangulations.

5.2 Comparison of dy, dgu and djoint

In the second experiment, we compared different distances
on a data set of six shape classes. Each object appeared in
a variety of instances, obtained by near-isometric deforma-
tions. In addition, for each of the deformations, a version
with different topology was created by welding the shapes
at a set of points (marked by red circles in Fig. 9). In to-
tal, the data set contained the following shapes: 5 cats, 9
dogs, 13 gorillas, 7 lions, 13 males and 13 females (total of
60 shapes; 27 of them with welding).

We compared three shape distances: the Gromov-Haus-
dorff distance dgy (representing intrinsic dissimilarity), ex-
trinsic dissimilarity computed using an ICP algorithm, and
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Fig. 7 (Color online) Pareto
distances between a man

shape and its deformed version
(green curve), man and woman
(red curve) man and gorilla
(blue curve)

Fig. 8 (Color online) Matching
a man shape to different shapes
(another version of the man, a
woman and a gorilla) produced
by joint similarity using
different values of A. Gradually
increasing the value of A results
in a morphing effect
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Fig. 9 (Color online) The set of
objects used in the second
experiment. Topological noise
was modeled by welding the
meshes at points indicated by
red circles

was performed. For the ICP method, meshes with 1000 sam-
ples were used. For the computation of the joint distance,
the model and the probe were represented by 1000 and 100
points, respectively. The typical computation time of the ex-
trinsic, intrinsic and joint similarity between a pair of shapes
was a few seconds, 30—60 seconds, and a few minutes, re-
spectively.

The recognition accuracy was assessed both qualitatively
and quantitatively. The first assessment consisted of present-

ing the shapes as points in the Euclidean space, with the
Euclidean distance representing the distances between the
shapes (Figs. 10—13). Such plots are straightforwardly ob-
tained using MDS and allow to visually represent the ap-
proximate similarity relations between the shapes.

The second, quantitative assessment consisted of com-
puting the receiver operating characteristic (ROC) curves
for each similarity criterion, representing a tradeoff between
the false acceptance rate (FAR) and the false rejection rate
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Fig. 10 (Color online)
Visualization of the intrinsic
similarity (Gromov-Hausdorff
distance) between nonrigid
shapes. No topological noise is
present

Fig. 11 (Color online)
Visualization of the intrinsic
similarity (Gromov-Hausdorff
distance) between nonrigid
shapes. Shapes with different
topology created by welding are
marked by hollow circles
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Fig. 12 (Color online)
Visualization of the extrinsic
similarity (computed using ICP)
between nonrigid shapes.
Shapes with different topology
created by welding are marked
by hollow circles

Fig. 13 (Color online)
Visualization of the joint
intrinsic-extrinsic similarity
computed using the proposed
method. Shapes with different
topology created by welding are
marked by hollow circles
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(FRR). Each ROC curve was computed as follows: the
matrix of distances between different shapes was thresh-
olded by a value ranging from zero to the maximum dis-
tance value. Shapes with distances falling below the thresh-
old were regarded similar (i.e., instances of the same ob-
ject); those with distances above the threshold were regarded
dissimilar (different objects). The FAR was computed as
the percentage of dissimilar shapes wrongfully identified as
similar. The FRR was computed as the percentage of similar
shapes wrongfully identified as dissimilar. For small values
of the threshold, the FAR is small (two shapes must have
a very small distance in order to be considered similar),
while the FAR is large. For large values of the threshold,
the FAR is large and the FRR is small. Ideally, both should
be as small as possible, meaning that the recognition is ac-
curate. A single number capturing the recognition error was
computed as the point at which the values of FAR and FRR
coincide (referred to as equal error rate or EER).

Figure 10 visualizes the Gromov-Hausdorff distance be-
tween the shapes in the absence of topological noise (us-
ing a subset of the database of 33 shapes without weld-
ing). The Gromov-Hausdorff distance appears insensitive to
deformations, which is seen as tight clusters in the figure,
and allows to distinguish between different objects almost
perfectly (with EER of 1.14%, see Fig. 14). This idealistic
picture changes dramatically when shapes with topological
noise are added. Figure 11 shows that shapes with welded
points (represented as hollow circles in the figure) are sig-
nificantly different from the original ones. This is confirmed
by a significant drop in the recognition rate (EER of 7.68%).

Figure 12 visualizes the ICP distance between the shapes.
While the extrinsic distance is insensitive to topological
noise (which is clearly seen from the hollow circles, rep-
resenting shapes with welding, coinciding with points, rep-
resenting shapes without welding), it is sensitive to nonrigid
deformations. Overall, the recognition rate is poor (EER of
10.34%).

Finally, Fig. 13 visualizes the joint distance. The joint
similarity criterion combines the advantages of the two dis-
tances, and is insensitive to both isometries and topological
changes. It significantly outperforms the extrinsic and intrin-
sic distances used separately, achieving an EER of 1.61%.

5.3 Comparison to Other Methods

In the third experiment, we compared the joint similar-
ity criterion with two state-of-the-art methods: shape DNA
(Reuter et al. 2006; Lévy 2006; Rustamov 2007) and D2
shape distribution (Osada et al. 2002). The shape DNA
method is based on comparison of the Laplace-Beltrami
spectrum of the shapes. The discrete Laplace-Beltrami op-
erator was computed on shapes subsampled at 500 points.
We used the approximation described in Rustamov (2007).
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Fig. 14 (Color online) ROC curves describing the recognition power
of intrinsic, extrinsic and joint similarities in the second experiment

Twenty largest eigenvalues were used as shape descriptors.
The descriptors were compared using Euclidean norm. In
the D2 shape distribution method, the shape is described by
a histogram of Euclidean distances between uniform sam-
ples. We used uniform subsampling based on farthest point
sampling. We used histograms with 125 bins. Comparison
of histograms was performed using the Earth Moving dis-
tance (EMD).

Figure 15 shows the performance of these method on
the same database used in the second experiment. The EER
of the shape DNA and the shape distribution methods is
8.02% and 11.8%, respectively. One can see that the pro-
posed joint similarity significantly outperforms the shape
descriptor methods achieving the EER of 1.61%.

The disadvantage of our method is the computational
complexity and comparison efficiency: each comparison re-
quires solving a complicated optimization problem (in cur-
rent implementation, each comparison takes a few minutes).
For comparison, the computation of the Laplace-Beltrami
spectrum took 4.6 sec in our implementation and the com-
parison of two spectra using the Euclidean norm was neg-
ligible. The computation of the D2 shape distribution took
4.2 sec and the computation of the EMD between two dis-
tribution was below one second.



Int J Comput Vis (2009) 81: 281-301

299

100 o
N,
L] '}
[ ] s
'
[ H
vl
10 % ]
'
[
v
[
. .
.
[
52 '
= b :
= Vi
0.1f 1
0T 1 10 100
FAR%
------ Shape DNA (Laplace-Beltrami)
wssssenss D2 shape distribution
Joint

Fig. 15 (Color online) ROC curves describing the recognition power

of joint similarity, shape DNA and D2 shape distribution methods in
the third experiment

6 Conclusions

We presented a new approach for the computation of non-
rigid shape similarity as a tradeoff between extrinsic and
intrinsic similarity criteria. Our approach can be illustra-
tively presented as deforming one shape in order to make it
the most similar to another from an extrinsic point of view,
while trying to preserve as much as possible its intrinsic
geometry. The joint intrinsic and extrinsic similarity appears
to be advantageous over traditional purely extrinsic or intrin-
sic similarity criteria. While extrinsic similarity is sensitive
to strong nonrigid deformations and intrinsic similarity is
sensitive to topology changes, our joint similarity criterion
allows to gracefully handle both geometric and topological
deformations. Experimental results prove that it can be used
in situations where intrinsic and extrinsic similarities fail.
The numerical framework presented in this paper ex-
tends beyond shape similarity problems. As a byproduct of
our similarity computation, we obtain nonrigid alignment
or correspondence of two shapes. This potentially allows to
employ the proposed framework for morphing problems in
computer graphics in a way similar to Eckstein et al. (2007),
Kilian et al. (2007). Additional potential applications are in-
verse problems arising in shape reconstruction (Anguelov et
al. 2005; Salzmann et al. 2007). Our intrinsic and extrinsic

distances can be used as priors for regularization of such
problems.
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