TECHNION - Israel Institute of Technology
Computer Science Dept.

" RELATIONS AMONG PUBLIC KEY
SIGNATURE SYSTEMS
) ' by
*x * %
Shimon Even and Yacovy Yacobi

Technical Report #175
March 1980

* Computer Science Dept.,Technion, Haifa, Israel

** Graduate Student, Electrical Engineering Dept., Technion, Haifa,
Israel.

ABSTRACT

We attempt to establish the axioms and definitions of Pub11c-Key
Identification, Signature and Agreement Schemes (PKIS, PKSS and PKAS
respectively, PKS is the collective name for all types).

The discussion is restricted to PKS in which there is no need for
a third honest party (a 'Judicator' [3]) to interfere in the usual
operation of the system. The only role a judicator plays is in
initfating a PKS and in settling disputes. The system does not require
the release of secrets to the judicator.

Our definitions lead to the following main results:

(a) There is no PKAS.
(b)_ Every PKSS is a PKIS, but the converse is not necessarily true._
{c} EQery PKSS which is based on a dialog between parties can be converted

into a single transmission PKSS.

Discussion

We attempt to establish the axioms and definitions of Public-Key
Identification, Signature and Agreement Schemes (PKIS, PKSS and PKAS
respectively, PKS is the collective name for all types).

The discussion is restricted to PKS in which there is no need for
a third honest party (2 'judicator' [3]) to interfere in the usual opera-
tion of the system. The only role a judicator plays is in initiating
a PKS and in settling disputes. The system does not require the release
of secrets to the judicator.

Throughout this paper we use the phrases ‘'hard to compute' and
'‘easy to compute' without explicit definitions, since our results are
independent of the complexity measures used. Let us define first some
new complexity notions to be used later in our diécussion.

In.every day practice we often encounter problems for which certain
assumptions exist. These assumptions rule out some of the possible input
instances, i.e. the required algorithm is guaranteed to receive as an
input only a subclass of the input instances of the poblem. [t seems
therefore natural to investigate the time complexity of the problem,
provided the background assumptions hold.

Let us define this unconventional type of a problem [4], which we
calt ‘promise problem’. (Some authors use the name ‘birdy-problem’,
[5,6].)

In order to understand it better, first consider a conventional

problem:

Input: x,

Property: P(x).
Where P 1is a predicate. A solution is an algorithm AL, which

halts with a ‘'ves' or ‘'no' answer such that:

vx[AL{x) = 'yes’ e P(x)].

A promise problem has the following structure:

Ingut: X,

Promise: Q(x),

Property: P(x).

Where P and Q are predicates, Now, a solution is an algorithm

AL such that

Vx[Q(x) = (AL(x) = 'yes' P(x})] .

Definition 1: Assume B and 81 are the following decision problems:

Problem B:

Data: - Xy3Xy, integers,
Promise: (Ex)[Q(x.xz)] = Qxy.x,),
where (is a predicate,

Property: (ax)[Q(x,xz)].

Problem B1:

Data: X5, integer,

Property: (ax)[Q(x,xz)].

Xy 1s an essential datum of B8 if 3 is easily solvabie, but B, is not.

Conclusion 1: BEP m B] € NP,

Conclusion 2: It is hard to find an essential datum, given the rest of

the data . Analogously, we define essential datum for construction

problems.

Definition 1': Assume B ang B] are the following construction problems:

Problem B:
Data: X1» Xg integers,
Promise: (3x,y)[Q(x,x,.y)] = (FY)[Q(x;,%,5,¥)1,

where Q is a predicate,

Task: Find vy such that (ax)[Q(x,xz,y)]. if such exists.

Problem BT:
Data: X5 integer ,

Task: Find y such that (ax)[Q(x,xz,y)], if such exists.

X1 is an essential datum of B if B is easily solvable, but B.I is not.

~ Definition 2: A One Way Function (OWF) s an easily computable function

f for which given a y' it is hard to find an x such that f(x) = vy.
(See [1], for example.) We denote the fact that a function f s a OWF
by an arrow above (i.e. ¥).

For all types of PKS we assume the following:

Hypothesis 1;

(a) Every participant chooses some secret key z, which only he knows.
(b) He uses a publically known OMF § to compute E(zi) = Y-
(c) He is conventionally identified by the judicator, and announces 178

(d} If Y5 is not yet used then the judicator accepts Y; as a means
of identifying 1.

(e} From now on everybody knowing Z4 is regarded as being 1, but the
release of Z; should not be necessary for verifying 1i's identity.

Let us define now the notion of identification in public key systems.

Definition 3: A proof of identification in pubiic key systems is the

outcome of a process of computations and transmissions between J and a

party claiming to be i, such that at the end of the process j knows

whether or not the other party holds- z;. A process implementing this

goal is called a Public Key Identification System {PKIS).
We now characterize the first type of a PKSS which implements what

we call a Uni-Directional-Signature (UDS).

Definitfon 4: A DS, by {1 of a message m which includes the time and

date of the signature, is a word m, which is an outcome of a process of
calcuiations and transmissions, at the end of which it is known to the
receiver j. The process has the following properties:
(a} Given Z; and m, there is OWF which yields ny. Also,
given m, 2 1s essential datum for the computation of a legitimate
pair (m,mi). This must hold even if a polynomially bounded history
of message-signature pairs is avai]ab1e, provided it does not contain
-(m,mi) explicitly. Also, it must hold even if a polynomially bounded
set of keys {Zz} is known, but z; is not in the set.

{b) The knowledge of Yy 1s sufficient for efficient verification of a

given (m,mi) pair,

Note that ina WDSwe do not need the restriction that it should be hard
for 1, the signer, to fabricate some m' suitable for a given My s
because another pair (m',mi) does not contradict the fact that (m,mi) is
sufficfent to prove i's obligation.

From Property {a) of Definftion 5 it follows that a UDS can be
implemented using one transmission only.

Let us define now the verification problem, VP, which implies directly
that ¥; is necessary for the verification process. Let D be the

algorithm producing the signature.

Problem VP:

Data: (m'm.i)! yi ’
Property: 321[6(21) =y; A 3(zi,m) = m1].

The number 1 s not a part of VP's data. It is not relevant
because z, is a random variable independent of i. Also, VP's property
is not defined without Yy therefore ¥s is necessary for the verification
process. We conclude that a PKSS which implements a UDS has the follow-

ing form. (3 and E are the algorithms used by the signer and the

lm

verifier respectively.)

-é :
D L > £ —a»{yes,no}
[|
Yi
Zi —_—>
—— -» 5

Figure 1: A block diagram of a PKSS which
implements a UDS.

We now turn our attention to another kind of PKSS which implements,

what we call, a Bi-Directional-Signature (BDS).

Definition 5: A BDS of i before j on message m, which includes

time and date of signature, is a word My g which j (but perhaps not i)
has as an outcome of a process of calculations and transmissions. The

process has the following properties:

(a) There is an efficient computation of mij which uses Zis zj and m.
Also, each of z; and zj is essential datum for the computation of
a legitimate pair (m.mij). This must hold even if a polynomially
bounded history of message-signature pairs is available, provided
it does not contain (m,mij) explicitly. Also, it must hold even if a
polynomially bounded set of keys {zi} is known, but z; or 25 is
not in the set.

(b) The knowledge of y; and yj is sufficient for efficient verification

of a given (m,mij) pair.

From (a) one concludes that not only is it hard to forge a BDS on a
given m, but it is also hard for each one of i and j to pretend that
‘they actually signed some other message m', or to fabricate some néw pair,
Also it assures that a BDS of i before j is untransferable to a BDS
of 1 'before k, without i's consent.

Like the case of UDS, it is easily shown, that each of Yy and yj
is necessary for the verification process of a BDS.

We conclude that PKSS which implements BDS has the foliowing form:

' + : v .
. ; mij

L. *,,.-A
’,_,. (o3} Dz
"\.\ //
S -
e -

\\\ ’/,

— <. ——

7 o Y A Yi . Z
3

£ e

(10" e}

Figure 2: A PKSS which implements BDS (dotted lines denote
data which may or may not be essential).

Lemma 1: A PKSS which implements a BDS can be effectively converted into

a PKSS which implements a UDS.

Proof: Given a PKSS impTementing a BDS we build a PKSS which impiements a

UDS as follows: (denote the new Parameters and operators by asterisks)

* ->k * - * -
Z_i:= (21'Zj); G (Z,i)' y_]. - (y-i,'vj).
g,
Finallv Jet p implement the dialog between D] and DZ and output
*

R Q.E.D.

Remarks :
(1) From Property (a) of Definition 5 one concludes that it must be hard
to compute (m,mik) given (m,mij), Z; and - (i.e. the signature must
be untransferable.) Also, the problem is easily avoided by including
1, J and the time and date of signature in the message to he signed.
(i) The construction of a BDS scheme 1s easy, assuming for example, that
the RSA [2] Scheme 1s hard to crack. In this case two transmissions will
do, where i starts, and the dotted Tines of Fig. 2 can be omitted.
(i11) Every PKSS implementing a UDS or a BDS is also a PKIS (Definition 3).
It is not clear whether the converse is true. For example, there exists
a hypothetical possibility sketched in Appendix A, of a PKIS which is not
a PKSS,

We now suggest what we believe to be a plausible definition of a PKAS.

We then show that such a PKAS is not achievable, and therefore, conclude

that BDS is the best substitute one can hope for.

Definition 6: A PKAS is a PKSS which implements a BDS so that it never
happens that one of the parties can compute mij’ while the other cannot.

This point deserves elaboration. By Definition 5, mij is indeed a

mutual signature of an agreement. Definition 6 imposes additional symmetry
on the process creating mij’ which we believe is of great importance for
contractual commercial relations.

Lemma 2: (If the judicator is not active during the ordinary operation

of the system then) There is no PKAS.

Proof: Assume that, after n communications, i has sufficient information

for efficient calculation of m;., but that this is not true for n-1

ij?
communications. We conclude that J transmits the n-th communication,
and therefore the first time J has sufficient information is after n'
communications, where n' £ n. This contradicts Definition 6.

Q.E.D.

APPENDIX A: A HYPOTHETICAL PKIS WHICH IS NOT A PKSS

Consider a system similar to the one sketched in Fig. 1, and assume
an active eavesdropper having finite resources, such that for input of, say,
length 100 bits it takes one minute to calculate ms given m and P
and two minutes when z; is omitted,

In such a situation the system, clearly, cannot serve as a PKSS.
However, it is.still possible to use the system as a PKIS (Definition 3)
as follows:

(a) The identifier, J» chooses at random some m, transmits it to the
‘party which claims to be i, and requests that it calculates m,
and transmit it to j as soon as possible,

{b) Upon receiving the answer, j checks the response time. If it is not

more than one minute and if E(m,mi.yi) = 'yes', then j knows that

the other party holds Zy, T.e. J accepts that the other party is 1.

-10 -

REFERENCES

[1] ~ Diffie, W. and Hellman, M.E., "New Directions in Cryptography".
IEEE Transactions on Information Theory, Vol. 22, 1976,
pp. 644-654,

[2] Rivest, R.L., Shamir, A., and Adleman, L., "“A Method for

Obtaining Digital Signatures and Public Key Cryptosystems”.
Comm. ACM 21, February 1978, pp. 120-126.

[3] Rabin, M.0., "Digitalized Signatures", Foundations of Secure
- Computation, New York Academic Press, 1978, pp. 155-168, edited
by R.A, De-Millo et al.

[4] Even, S. and Yacobi, Y., "Cryptocomplexity and NP-Completeness",
to appear in the Proceedings of ICALP 1980, Amsterdam.
[5] Ginsburg, S., Private communications.
6] Ullian, J.5., "Partial Algorithm Problems for Context Free

Languages". Information and Control, Vol. 11, 1967, pp. 80-101.

